KR20060021361A - 컴퓨팅 시스템 및 내장형 컴퓨팅 시스템 구성 방법 - Google Patents

컴퓨팅 시스템 및 내장형 컴퓨팅 시스템 구성 방법 Download PDF

Info

Publication number
KR20060021361A
KR20060021361A KR1020057023722A KR20057023722A KR20060021361A KR 20060021361 A KR20060021361 A KR 20060021361A KR 1020057023722 A KR1020057023722 A KR 1020057023722A KR 20057023722 A KR20057023722 A KR 20057023722A KR 20060021361 A KR20060021361 A KR 20060021361A
Authority
KR
South Korea
Prior art keywords
domain
power supply
computing system
clock signal
value
Prior art date
Application number
KR1020057023722A
Other languages
English (en)
Inventor
올리베이라 카스트럽 페레이라 베르나르도 드
메에르베르겐 요제프 엘 반
요셉푸스 에이 휴이스켄
알렉산더 아우구스테이즌
Original Assignee
코닌클리즈케 필립스 일렉트로닉스 엔.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닌클리즈케 필립스 일렉트로닉스 엔.브이. filed Critical 코닌클리즈케 필립스 일렉트로닉스 엔.브이.
Publication of KR20060021361A publication Critical patent/KR20060021361A/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/324Power saving characterised by the action undertaken by lowering clock frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3296Power saving characterised by the action undertaken by lowering the supply or operating voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)
  • Logic Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

본 발명은 성능과 에너지 소모간의 최적의 트레이드오프가 달성될 수 있도록 하는 내장형 컴퓨팅 시스템의 수명 동안 내장형 컴퓨팅 시스템을 재구성하는 방법 및 장치를 제공한다. 본 발명에 따른 내장형 컴퓨팅 시스템(10)은 복수의 도메인을 포함하는데, 각각의 도메인(80, 82)은 적어도 하나의 프로세싱 소자(12)를 포함하고, 각각의 도메인(80, 82)은 유용 공급값에서 동작하며, 하나의 도메인(80, 82)은 제 1 유용 공급값을 가진다. 하나의 도메인의 각 프로세싱 소자(12)에는, 그 유용 공급값을 하나의 도메인에 대한 제 2 유용 공급값으로 독립적으로 변경하기 위한 재구성 장치가 제공된다.

Description

컴퓨팅 시스템 및 내장형 컴퓨팅 시스템 구성 방법{EMBEDDED COMPUTING SYSTEM WITH RECONFIGURABLE POWER SUPPLY AND/OR CLOCK FREQUENCY DOMAINS}
본 발명은 다수의 처리 소자가 상호접속 구조의 콘텍스트에서 애플리케이션의 상이한 부분들을 처리하는 내장형 컴퓨팅 시스템에 관한 것이다. 내장형 컴퓨팅 시스템은, 예를 들어, 지능형 TV 수상기, 음료수 기계 또는 냉장고와 같은 거의 모든 유형의 가전 제품에서 발견될 수 있다. 이들 장치는 지능망으로의 액세스 및 관련 정보와 서비스 모두의 검색과 같은 다양한 기능을 허용하는 내장형 마이크로프로세서를 구비하고 있다. 전형적인 내장형 컴퓨팅 애플리케이션은 머신 자동화, 머신 비전, 매체 수송, 레이더 및 고속 데이터 획득을 포함한다.
소위 시스템-온-칩(SoC)이라고도 호칭되는 최첨단 내장형 컴퓨팅 시스템, 즉, 전자 장치에 내장된 컴퓨팅 시스템에서, 이종 처리 소자는 도 1에 나타낸 바와 같이 일반적으로 메인 시스템 버스(7)를 통해 접속된 시스템 내에 배치된다. 처리 소자는, 예를 들어, 마이크로제어기 또는 마이크로프로세서(2)와 같은 임의의 유형의 회로일 수 있으나, 이로 제한되지는 않으며, 입력/출력(I/O) 블록(3), 디지털 신호 프로세서(DSP)(4), 주문형 집적회로(ASIC) 코어, 메모리(5), 직접 메모리 액세스 제어기(DMA ctrl)(6), 논리 회로 등을 구비한다.
클록 주파수 및 전력 공급 값 VDD는 각각의 처리 소자와 관련된다. 동일한 클록 주파수 및 전력 공급 값 VDD를 갖는 처리 소자는 도메인을 형성한다. 처리 소자의 상이한 도메인과 관련된 클록 주파수 및/또는 전력 공급 값 VDD는 상이한 것이 유리하며, 이로 인해 전력 소비 및 성능의 적절한 트레이드오프가 시스템의 상이한 부분에서 이루어질 수 있다. 이것은 도 1에 나타낸 바와 같이 하나의 시스템 내에 다수의 클록 및 VDD 도메인의 생성을 가져온다. 도 1에는, 3개의 이러한 도메인이 나타난다.
제조 과정에 의하면, 일정한 클록 및 VDD 신호가 시스템의 모든 부분에 제공되어 다수의 도메인이 다시 유용하게 되는 것을 보증하는 것은 점차로 어려워지고 있다. 그러나, 종래 기술에 있어서, 클록 및 VDD 도메인은 고정된 배선, 예를 들어, 실리콘이다. 이들은 장치 제조 후에는 더 이상 변화될 수 없다.
US-6384628에는 프로그래밍가능 논리 장치(PLD)가 기술되어 있다. PLD는 상이한 전력 공급 레벨, 예를 들어 공급 전압을 수신하는 상이한 입력을 구비하고 있다. 각각의 전력 공급 레벨은 PLD의 일부분을 향하는데, 예를 들어, 제 1 공급 전압은 PLD의 전압 조정기 및 그것의 프로그래밍가능 논리 부분으로 향하고, 제 2 공급 전압은 입력 회로로 향하며, 제 3 공급 전압은 출력 회로로 향한다. 전압 조정 기 및 프로그래밍 논리 부분, 입력 회로 및 출력 회로는 각각 VDD 도메인을 정의한다. 즉, 이들은 상이한 전력 공급 레벨에서 실행되는 처리 소자이다. PLD의 상이한 도메인이 상이한 전력 공급 전압을 수신하고 있으나, 각각의 도메인은 수명 동안 제조 순간의 배선과 동일한 공급 전압을 수신한다.
그 수명 동안, 상이한 애플리케이션은, 또는 장치의 상이한 여러 가지 사용 모드도, 고정 클록 및 VDD 도메인 분포에 의해 실시된 것과는 상이한 성능/전력 트레이드오프가 더욱 효율적으로 된다는 것을 의미할 수 있다. 이 때문에, 그것은 도메인 구성이 제조 후에 탄력적인 방식으로 변화할 수 있다면 더 유리할 것이다. 그러나, 이것은 종래기술로는 가능하지 않다.
본 발명의 목적은 종래기술의 단점을 극복하는 데 있다. 더 구체적으로, 본 발명의 목적은 재구성가능한 전력 공급 및/또는 클록 주파수 도메인을 갖는 내장형 컴퓨팅 시스템, 즉, 도메인이 수명 동안 상이한 전력 공급 레벨, 예를 들어, 공급 전압 또는 공급 전류를 수신할 수 있는 시스템을 제공하는 데 있다.
상기의 목적은 본 발명에 따른 장치 및 방법에 의해 달성된다.
본 발명은 다수의 도메인을 포함하는 내장형 컴퓨팅 시스템을 제공하며, 각각의 도메인은 적어도 하나의 처리 소자를 포함하고, 각각의 도메인은 유틸리티 공급 값에서 동작하고 있으며, 하나의 도메인은 제 1 유틸리티 공급 값을 갖는다. 한 도메인의 각 처리 소자에는 유틸리티 공급 값을 개별적으로 한 도메인에 대한 제 2 유틸리티 공급 값으로 변화시키는 재구성 장치가 제공된다. 유틸리티 공급 값은, 회로의 구성에 필요한 것이 아니라 동작에 필요한 기본 기능을 의미한다. 전력, 전압 또는 전류, 및 클록 신호는 유틸리티 공급 값의 예이다. 데이터, 예를 들어, 시스템의 페이로드는 유틸리티 공급 값으로 간주되지 않는다. 다시 말해, 유틸리티 공급 값은 전자 회로의 소모성 비구성 비-페이로드이고, 전자적, 특히 디지털 시스템 작업을 만드는 데 필요한 소모재이다. 이러한 시스템은 성능과 에너지 소비 사이의 최적 트레이드오프가 내장형 컴퓨팅 시스템의 수명 동안 달성될 수 있다는 것이 장점이다.
본 발명에 따른 내장형 컴퓨팅 시스템에 있어서, 유틸리티 공급 값은 전력 공급 값, 즉, 전압 레벨 또는 전류 레벨이다. 다수의 공급 전압 레일은 상이한 전력 공급 값을 갖는 전력을 도메인 중 적어도 하나의 도메인의 처리 소자에 전달한다. 그 후, 적어도 하나의 도메인의 각각의 처리 소자에는 전력 공급 레일로의 커넥션을 개별적으로 만들어 내어 전력 공급 값을 제 2 전력 공급 값으로 변화시키는 스위칭 소자가 제공된다. 스위칭 소자는 트랜지스터일 수 있다. 이러한 트랜지스터는 흔히 반도체 장치인 처리 소자에 용이하게 통합된다.
추가로, 또는 대안으로, 본 발명에 따른 내장형 컴퓨팅 시스템에 있어서, 유틸리티 공급 값은 클록 신호일 수 있다. 컴퓨팅 시스템은 기준 클록 신호를 도메인 중 적어도 하나의 도메인의 처리 소자에 전달하는 범용 기준 클록 라인을 포함한다. 적어도 하나의 도메인의 각 처리 소자에는 하나의 도메인에 대해 제 1 내부 동작 클록 신호를 기준 클록 신호로부터 생성하는 주파수 어댑터가 제공된다. 본 발명에 따르면, 내장형 컴퓨팅 시스템의 수명 동안 제 2 내부 동작 클록 신호를 기준 클록 신호로부터 개별적으로 생성하는 주파수 어댑터가 재구성가능하다. 재구성가능한 주파수 어댑터는, 예를 들어, 위상 고정 루프일 수 있다. PLL은 희망하는 바에 따라 기준 클록 신호와 동일한 위상을 갖는 내부 클록 신호를 생성할 것이다. 기준 신호는 기본적으로 위상 기준을 설정하여, PLL이 이상적으로는 위상 기준을 유지할 것을 보증하게 한다는 점을 유의한다. 또한, PLL이 들어오는 기준 신호를 승산하여 더 높은 주파수를 생성할 수 있기 때문에, 필요한 모든 주파수 중 최저 주파수만이 기준으로서 전체 시스템을 통해 전송될 필요가 있으며, 이에 따라, 총 전력 소비를 감소시키는데, 이는 더 높은 주파수가 생성되며 국소적으로 사용되기 때문이다. 대안으로, 비동기식 기술은, 드라이버 및 게이팅과 함께 자유 구동 클록(링 발진기)과 함께, 마찬가지로 사용될 수 있다.
본 발명에 따른 내장형 컴퓨팅 시스템에서는, 생성된 제 1 또는 제 2 내부 동작 클록 신호를 증폭하는 증폭기가 제공된다.
또한, 적어도 일부의 처리 소자들 사이에는 데이터 통신 채널이 제공된다. 이것은 처리 소자가 서로 통신하게 한다. 각각의 처리 소자는 데이터 통신 채널에 의해서 가장 가까운 인접물에 모두 접속될 수 있다. 이것은 더 많은 유연성을 제공하는데, 하나의 구성에 필수적인 것은 아닌 통신 채널이 다른 구성에 필요하기 때문이다. 모든 인접 처리 소자들 사이의 통신 채널이 제공되는 경우, 더 많은 구성이 가능하다.
레벨 시프트 장치는 2개의 처리 소자들 사이의 데이터 통신 채널 내에 제공된다. 이것은 상이한 전력 공급 레벨 상에 있는 처리 소자들 사이의 통신을 허용한다. 레벨 시프트 장치는 컴퓨팅 시스템에 제공되는 상이한 공급 레일과 관련된 전력 공급 레벨 범위를 처리할 수 있도록 구성가능하다. 그 후, 동일한 레벨 시프트 장치는 처리 소자가 상이한 전력 공급 레벨로 실행하도록 재구되는 경우에 사용될 수 있다.
본 발명은 또한, 다수의 도메인을 포함하는 내장형 컴퓨팅 시스템을 구성하는 방법을 제공하며, 각각의 도메인은 적어도 하나의 처리 소자를 포함하고, 각각의 도메인은 유틸리티 공급 값을 동작시키며, 하나의 도메인은 제 1 유틸리티 공급 값에서 동작하되, 여기에서 재구성은 컴퓨팅 시스템의 동작 동안 이루어진다. 본 발명의 방법은 하나의 도메인에 대해 유틸리티 공급 값을 제 2 유틸리티 공급 값으로 개별적으로 변화시키는 단계를 포함한다. 이것은, 장치의 수명 동안 성능과 에너지 소비 사이의 최적 트레이드오프를 달성하게 한다.
유틸리티 공급 값은 전력 공급 값일 수 있다. 본 발명의 방법은 상이한 전력 공급 레벨을 전달하는 다수의 전력 공급 레일들 사이에서 스위칭함으로써 한 도메인에 대해 제 2 전력 공급값으로 개별적으로 변화하는 단계를 포함한다.
추가로, 또는 대안으로, 유틸리티 공급 값은 클록 주파수이다. 본 발명의 방법은 각각의 도메인에 대해, 각각의 도메인에 제공된 기준 클록으로부터 내부 동작 클록 신호를 생성하는 단계를 포함하며, 적어도 2개의 도메인의 내부 동작 클록 신호는 서로 상이하며, 내부 동작 클록 신호의 생성은 내장형 컴퓨팅 시스템의 수명 도안 재구성가능하다.
본 발명의 이들 및 그 밖의 특성, 특징 및 이점은 예로서, 본 발명의 원리를 예시하는 첨부한 도면과 함께 다음의 상세한 설명으로부터 명백해진다. 이 설명은 단지 예로서 주어지면, 본 발명의 범주를 제한하지는 않는다. 이하에 인용된 참조 도면은 첨부한 도면을 나타낸다.
도 1은 고정 배선 클록 및 전력 공급 값 분포를 갖는 종래기술의 내장형 컴퓨팅 시스템의 일례를 예시한 도면,
도 2는 본 발명에 따른 내장형 컴퓨팅 시스템의 일 실시예로서, 규칙적인 처리 소자 그리드를 포함하며, 구성가능한 클록 및 전력 공급 값을 갖는 내장형 컴퓨팅 시스템을 예시한 도면,
도 3은 처리 소자의 상세한 구현 실시예로서, 클록 및 전력 공급 값을 구성하는 가능한 방법을 나타내는 도면,
도 4는 처리 소자들 사이의 데이터 통신 채널에서 상이한 전력 공급 레벨에서 실행되는 처리 소자가 서로 통신하게 하는 레벨 시프트 장치의 사용을 예시한 도면이다.
상이한 도면에서, 동일한 참조부호는 동일하거나 유사한 소자를 나타낸다.
본 발명은 특정 실시예와 관련하여 특정 도면을 참조로 설명되지만, 이러한 것으로 한정되지 않으며 청구범위에 의해서만 한정된다. 기술된 도면은 단지 개략적인 것일 뿐 제한적인 것은 아니다. 도면에서, 일부 소자의 크기는 과장되어 있으며, 예증을 위해 실측으로 도시되지 않았다. "포함하는"이라는 용어가 본 발명의 상세한 설명 및 청구의 범위에서 사용되는 경우에는 다른 소자 또는 단계를 배제하는 것은 아니다. 단수 명사를 나타내는 표현이 사용되고 있는 경우에는 특별히 진술하지 않은 경우에는 복수 명사를 포함한다.
또한, 상세한 설명 및 청구의 범위에서 제 1, 제 2, 제 3 등의 용어는 유사한 소자들을 식별하는 데 사용되고 있으며, 순차적인 순서 또는 구별용 순서를 나타내는 데 필수적인 것은 아니다. 이와 같이 사용된 용어들은 적절한 환경 항에서 상호교환가능하며, 본 명세서에서 설명된 본 발명의 실시예는 본 명세서에서 기술하거나 예시한 것과는 다른 순서로 동작할 수 있다.
도 2는 본 발명에 따른 고정된 필드-프로그래밍가능한 정의의 클록 및 전력 공급 도메인을 갖는 내장형 컴퓨팅 시스템(10)의 실시예를 개략적으로 나타낸다. 내장형 컴퓨팅 시스템(10)은 다수의 처리 소자(PE)(12)를 포함한다. 도 2에서, 처리 소자(12)는 규칙적인 그리드에 배치된 상자로 도시된다. 레이아웃이 또한 가능하지만, 도면에서 나타내지 않았다. 처리 소자(12)는, 예를 들어, 프로그래밍가능 프로세서(즉, DSP), 필드 프로그래밍가능 게이트 어레이(FPGA), 프로그래밍가능 어레이 로직(PAL), 프로그래밍가능 로직 (PLA), ASIC 코어, 메모리 블록(예를 들어, RAM) 또는 그 밖의 상태 유지 소자(예를 들어, 레지스터 파일), 재구성가능한 코어, 또는 이들의 임의의 조합일 수 있으나, 이러한 것으로 한정되지는 않는다. 바람직하게는, 그리드 내의 처리 소자(12)는 동일하지만, 필수적인 것은 아니다. 동일한 처리 소자(12)는 그 확장성이 용이하다. 더 큰 설계가 이루어지는 경우, 그것은 PE(12)의 개수를 증가시킴으로써 빠를 수 있고, 용이하게 간단히 달성될 수 있다. 또한, 동일한 처리 소자(12)는 이종 회로보다는 더욱 범용인 동종 회로를 고려하며, 여기서, 국소적인 불규칙성은 애플리케이션의 맵핑 시에 고려될 필요가 있다.
다수의 전압 공급 레일(14, 16, 18)이 그리드를 통해 제공된다. 각각의 전압 공급 레일(14, 16, 18)은, 예를 들어, 값 VDD1, VDD2 및 VDD3으로 각각 주어진 예에서, 상이한 전력 공급과 관련된다. 도 2에는, 3개의 상이한 전압 공급 레일(14, 16, 18)이 예시된다. 그러나, 다른 개수의 전력 공급 레일도 가능하다.
기준 클록 신호 fREF를 전달하기 위한 범용 기준 클록 라인(20)이 또한 그리드를 통해 분포된다. 이 기준 클록 라인(20)의 주파수는 바람직하게는 그리드 내의 임의의 장소, 즉, 그리드 상의 처리 소자(12) 중 임의의 것에서 요구될 수 있는 최저 클록 주파수 이하가 되어야 한다.
처리 소자(12)는 점선 화살표로 도 2에 나타낸 데이터 통신 채널(30)을 통해 서로 통신할 수 있다. 그리드 내의 모든 통신 채널(30)의 수집은 소위 통신 네트워크를 형성한다. 도 2는 각각의 처리 소자(12)가 가장 가까운 모든 인접물에 접 속되어 규칙적인 통신 네트워크를 형성하는 그리드를 예시한다. 규칙적인 패턴을 갖는 통신 네트워크가 또한 가능하지만, 적응성으로 인해 바람직한 것은 아니다.
도 3은 본 발명에 따른 처리 소자(12)를 더욱 상세히 예시한다. 이것은 그리드 내의 처리 소자(12)가 상이한 전압 공급 레일(14, 16, 18) 상에서 사용가능한 다수의 공급 전압 VDD11, VDD2 또는 VDD3 중 하나를 사용하도록 구성하는 방법에 대해 설명한다. 전압 공급 레일(14, 16, 18)의 개수와 동일한 개수의 입력 스위칭 소자(40, 42 44)는, 예를 들어, 트랜지스터와 같은 고체 상태 스위치일 수 있다. 각각의 입력 스위칭 소자(40, 42, 44)와는, 스위칭 신호가 관련되며, 이 신호는 스위칭 소자(40, 42, 44)를 폐쇄하거나 개방하여, 도통시키거나 도통이 되지 않게 한다. 스위칭 소자(40, 42, 44)가 예를 들어 트랜지스터인 경우, 각각의 트랜지스터에는 소정의 게이트 전위(도 3에서는 각각 Vg1, Vg2, Vg3)가 관련되며, 게이트 전위 중 하나를 적절한 값으로 설정하는 것은 트랜지스터 중 하나를 분극화하여, 관련된 공급 전압을 컴퓨팅 및 통신 리소스(50)(예를 들어, 기능 유닛, 레지스터 파일, 멀티플렉서, 내부 통신 네트워크, 메모리 등)로 전달한다. 예를 들어, FPGA의 구성 메모리와 유사한 방식이 스위칭 소자(40, 42, 44)의 스위칭 신호, 예를 들어, 입력 트랜지스터(도 3에는 도시하지 않음)의 게이트 전위를 제어하는 데 사용될 수 있다. 예를 들어, SRAM 메모리 셀은, 직접적으로 또는 상기 메모리 셀에 저장된 값을 트랜지스터 게이트에 인가될 적절한 분극 전압으로 변환할 수 있는 소정의 보조 전기 소자를 통해서, 각 트랜지스터(40, 42, 44)의 게이트에 연결될 수 있다. 논 리 "0"이 상기 메모리 셀에 저장되는 경우, 게이트는 분극화되지 않으며, 스위치는 개방 상태에 있다. 논리값 "1"이 상기 메모리 셀 내에 저장되는 경우, 게이트 전위는 트랜지스터에 인가되어, 스위치를 폐쇄하고 공급 전압을 리소스(50)에 전달한다. 모든 메모리 셀(각 메모리 셀은 전체 시스템에서 각각의 처리 소자(12)의 각 트랜지스터(40, 42, 44)에 연결됨)의 집합은 FPGA에서 사용된 것과 유사한 구성 평면으로 보일 수 있다. 이것은 내장형 컴퓨팅 그리드가 전기적 레벨에서 필드-구성가능하게 한다.
바람직하게는, 모든 전력 공급 레일(14, 16, 18)은 모든 PE(12)에 대해 실행되는데, 이는 얼마나 많은 도메인이 있는지 또는 어떤 PE가 어떤 도메인에 있는지는 미리 알지 못하기 때문이다. 아키텍처의 탄력성을 보존하기 위해서, 하드웨어는 바람직하게 각각의 PE가 다른 PE 각각과는 별개로 공급 전력을 선택할 수 있게 한다. 장치 제조 후, 프로그래머는 공급 전력의 선택을 도메인에 속하는 모든 PE에서 동일하게 프로그래밍함으로써 상이한 도메인을 임의로 정의할 수 있다. 모든 공급 레일을 하드웨어 내의 모든 PE에 가져옴으로써, 입도(granularity)의 PE 레벨에서 도메인의 임의의 사후-제조 정의가 고려된다.
도 3은 또한 처리 소자(12)가 그리드 내의 범용 기준 클록 라인(20) 상에서 이용할 수 있는 주파수 fREF와 함께 기준 클록 신호를 기초로 자신의 동작 클록 신호(클록 신호 자체 구성 처리 소자)를 구성할 수 있는 방법을 보여준다. 주파수 fREF를 갖는 기준 클록 신호로부터 fOUT를 갖는 바람직한 내부 동작 클록 신호를 도출 하는 주파수 어댑터(60)가 처리 소자(12)에 제공된다. 예를 들어, 위상 고정 루프(PLL)는 주파수 어댑터(60)로서 사용되어, 기준 클록 신호의 주파수 fREF를 인자로 승산하여, 처리 소자(12)의 내부 동작 주파수 fOUT를 생성한다. 들어오는 클록 신호 및 나가는 클록 신호 사이에 실질적인 위상 시프트를 가져오지 않는 임의의 다른 주파수 어댑터(60)가 또한 사용될 수 있다. 이 방식으로, 필드 구성가능한 동작 주파수를 갖는 처리 소자(12)가 제공된다. 내부적으로 생성된 클록 신호 fOUT의 위상은 이상적으로는 기준 클록 신호 fREF의 것과 동일하지만, 작은 결함이 허용될 수 있다.
생성된 내부 동작 클록 신호를 증폭하는 증폭기(62)는 컴퓨팅 및 통신 리소스(50)에 관련된 로드에 따라 선택적으로 도입된다.
기술된 실시예에 따른 각각의 처리 소자(12)는 필드 구성되어 특정한 클록 주파수 및/또는 전력 공급 레벨(VDD)을 사용할 수 있기 때문에 구성가능 클록 및 VDD 아일랜드라고 지칭된다.
그리드 내에서 서로 물리적으로 떨어져 있는 처리 소자(12)에 의해 수신된 주파수 fREF를 갖는 기준 클록 신호에 위상 시프트가 있을 수 있기 때문에, 배선 지연으로 인해, 이들 2개의 이격된 처리 소자(12)가 서로 직접 통신하는 경우에 동기화 문제가 발생할 수 있다. 그러나, 서로 물리적으로 가까운 처리 소자912)에 의해 수신되는 주파수 fREF를 갖는 기준 클록 신호에서의 위상 시프트는 무시될 수 있 어야 한다. 따라서, 그리드 내의 데이터 통신 네트워크는 더 장거리의 것보다는 국소적 근거리 데이터 통신 채널에서 더 바람직하다.
처리 소자(12)의 하위집합, 바람직하게는 인접한 PE(12)를 구성하여 공통의 전력 공급 레벨 및/또는 공통 클록 주파수를 갖는 클록 신호를 사용함으로써, 도메인이 형성된다. 다수의 클록 및 전력 공급 레벨(VDD) 도메인은 동적으로 구성될 수 있고, 그리드 내에서 장치 제조 후에 재구성될 수 있다. PE(12)의 하위 집합은 PE 중 적어도 하나를 포함한다. 따라서, 도메인은 공통의 전력 공급 레벨 및/또는 클록 주파수에서 실행되도록 구성된 시스템 내의 (예를 들어, 인접하는)처리 소자(12)의 하위 집합으로 구성된다. 그러나, 전력 공급 레벨 및/또는 클록 주파수의 구성은 개별적인 처리 소자 레벨에서 발생한다.
도 3에 관해 설명되는 실시예에서, 공급 전압 VDD 및 클록 주파수가 둘 다 재구성될 수 있다. 그러나, 본 발명에 따라 전력 공급 레벨 또는 클록 주파수 둘 중 하나가 재구성될 수 있는 프로세싱 소자(12)도 본 발명의 일부이다.
위에서 기술하는 바와 같이, 본 발명에 따라 구성되는 2개의 서로 다른 전력 공급 레벨 VDD 도메인의 프로세싱 소자(12)가 데이터 통신 네트워크를 통해서 서로 통신할 필요가 있으면, 통신 중에 채널(30)의 양단에서의 서로 다른 전압 레벨이 일치될 수 있도록 구성 가능한 레벨 시프트 장치(70, 72)가 데이터 통신 채널(30) 내에 필요할 수 있다. 이는 도 4에 도시되어 있다. 따라서, 레벨 시프트 장치는 서로 다른 전력 공급 레벨 VDD에 대응하는 제한된 개수의 상황에 대해 구성 가능해 야 한다. 레벨 시프트 장치(70)는, 그리드 형태로 제공되는 서로 다른 전압 공급 레일(14, 16, 18)에 연관되어 있는 전압 범위를 처리할 수 있도록 구성될 수 있어야 한다. 예를 들어, 레벨 시프트 장치는 복수의 블록, 예를 들어, 3개의 블록을 포함할 수 있는데, 이들은 내부적으로는 재구성이 불가능하나, 이들간에 전환은 된다. 이와 다르게, 레벨 시프트 장치는 구성 가능한 바이어스 전류를 이용함으로써 재구성이 가능하게 될 수 있다. 예를 들어 이러한 바이어스 전류를 설정하기 위해 디지털 아날로그 컨버터(digital-analog converter)가 사용될 수 있다. 디지털 아날로그 컨버터는 레벨 시프트 장치 자체의 비용에 비해 다소 고가일 수 있으나, 이 제어는 레벨 시프트 장치들 그룹에 의해 공유될 수 있다. 또 다른 실시예에 따라, 예를 들어, 미국 특허 제 4,486,670호의 변형예인 레벨 시프트 장치가 사용될 수 있다. 이러한 레벨 시프트 장치는, 하이 VDD 레벨로부터 로우 VDD 레벨로 시프트하고 로우 VDD 레벨로부터 하이 VDD 레벨로 시프트하며 양 방향으로 작동한다. 예를 들어, 레벨 당 표준 12 트랜지스터 레벨 시프터 회로가 사용될 수 있다.
도 4에는 모든 데이터 채널(30)에 레벨 시프트 장치(70, 72)가 도시되어 있으나, 서로 다른 전압 공급 도메인들간에 단 하나의 레벨 시프트 장치만 활성 상태이다. 도 4에는, 2개의 전압 공급 도메인(80, 82)이 도시되어 있으며, 제 1 전압 공급 도메인(80)은 0.9 볼트인 제 1 전압 공급 레일을 이용하고, 제 2 전압 공급 도메인(82)은 1.1 볼트인 제 2 전압 공급 레일을 이용한다. 제 1 공급 도메인(80) 내의 모든 레벨 시프트 장치(70)는 비활성 상태인 반면, 제 1 전압 공급 도메인 (80)과 제 2 전압 공급 도메인(82) 사이의 통신 채널(30) 상의 레벨 시프트 장치(70)는 활성으로 구성된다.
바람직한 실시예에서, 본 발명에 따른 장치를 위한 특정 구성, 배열 및 재료가 개시되었으나, 본 발명의 사상 및 범주로부터 벗어나지 않으며 그 형태 및 세부사항이 다양하게 변경 및 수정될 수 있다는 것을 이해할 수 있을 것이다.

Claims (19)

  1. 복수의 도메인을 포함하는 내장형 컴퓨팅 시스템(10)으로서,
    각각의 도메인(80, 82)은 적어도 하나의 프로세싱 소자(12)를 포함하고,
    각각의 도메인(80, 82)은 유용 공급값(utility supply value)에서 동작하며,
    하나의 도메인(80, 82)은 제 1 유용 공급값을 가지고,
    상기 하나의 도메인의 각각의 프로세싱 소자(12)에는, 상기 유용 공급값을 상기 하나의 도메인을 위한 제 2 유용 공급값으로 독립적으로 변경하는 재구성 장치가 제공되는
    컴퓨팅 시스템.
  2. 제 1 항에 있어서,
    상기 유용 공급값은 전원 공급값인 컴퓨팅 시스템.
  3. 제 2 항에 있어서,
    복수의 전원 공급 레일(14, 16, 18)은 서로 다른 전원 공급값(VDD1, VDD2, VDD3)을 갖는 전력을 적어도 하나의 상기 도메인(80, 82)의 프로세싱 소자(12)에 공 급하며, 상기 적어도 하나의 도메인(80, 82)의 각각의 프로세싱 소자(12)에는, 상기 전원 공급 레일에 독립적으로 접속하여 상기 전원 공급값을 제 1 전원 공급값으로부터 제 2 전원 공급값으로 변경하는 스위칭 소자(40, 42, 44)가 제공되는
    컴퓨팅 시스템.
  4. 제 2 항에 있어서,
    상기 스위칭 소자는 트랜지스터인 컴퓨팅 시스템.
  5. 제 1 항에 있어서,
    상기 유용 공급값은 클록 신호인 컴퓨팅 시스템.
  6. 제 2 항에 있어서,
    상기 유용 공급값은 클록 신호인 컴퓨팅 시스템.
  7. 제 5 항에 있어서,
    상기 컴퓨팅 시스템은 기준 클록 신호(fREF)를 적어도 하나의 상기 도메인(80, 82)의 프로세싱 소자(12)에게로 전달하는 전역 기준 클록 라인(global reference clock line)(20)을 포함하며,
    적어도 하나의 상기 도메인(80, 82)의 각각의 프로세싱 소자(12)에는, 상기 기준 클록 신호(fREF)로부터 상기 하나의 도메인(80, 82)을 위한 제 1 내부 동작 클록 신호(fOUT)를 생성하는 주파수 어댑터(frequency adapter)(60)가 제공되고,
    상기 주파수 어댑터(60)는 상기 기준 클록 신호(fREF)로부터 제 2 내부 동작 클록 신호(fOUT)를 독립적으로 생성하도록 재구성 가능한
    컴퓨팅 시스템.
  8. 제 7 항에 있어서,
    상기 재구성 가능한 주파수 어댑터(60)는 PLL인 컴퓨팅 시스템.
  9. 제 7 항에 있어서,
    증폭기(62)는 생성된 상기 제 1 또는 제 2 내부 동작 클록 신호(fOUT)를 증폭하기 위해 제공되는 컴퓨팅 시스템.
  10. 제 1 항에 있어서,
    데이터 통신 채널(30)은 상기 프로세싱 소자(12)들 중 적어도 일부 사이에 제공되는 컴퓨팅 시스템.
  11. 제 10 항에 있어서,
    각각의 프로세싱 소자(12)는 데이터 통신 채널(30)에 의해 그 모든 최단 이웃(its nearest neighbors)에 접속되는 컴퓨팅 시스템.
  12. 제 10 항에 있어서,
    레벨 시프트 장치(70, 72)에는 2개의 프로세싱 소자(12)들 사이에 데이터 통신 채널(30)이 제공되는 컴퓨팅 시스템.
  13. 제 12 항에 있어서,
    상기 레벨 시프트 장치(72)는, 상기 컴퓨팅 시스템에서 제공되는 서로 다른 공급 레일과 연관되어 있는 전원 공급 레벨 범위를 처리할 수 있도록 구성 가능한 컴퓨팅 시스템.
  14. 내장형 컴퓨팅 시스템(10)을 구성하는 방법으로서,
    상기 내장형 컴퓨팅 시스템(10)은 복수의 도메인(80, 82)을 포함하고,
    각각의 도메인은 적어도 하나의 프로세싱 소자(12)를 포함하고,
    각각의 도메인은 유용 공급값에서 동작하고,
    하나의 도메인(80, 82)은 제 1 유용 공급값에서 동작하며,
    상기 컴퓨팅 시스템의 동작 동안에 재구성이 수행되고,
    상기 내장형 컴퓨팅 시스템 구성 방법은,
    상기 하나의 도메인(80, 82)을 위한 제 2 유용 공급값으로 독립적으로 변경하는 단계를 포함하는
    내장형 컴퓨팅 시스템 구성 방법.
  15. 제 14 항에 있어서,
    상기 유용 공급값은 전원 공급값인 내장형 컴퓨팅 시스템 구성 방법.
  16. 제 15 항에 있어서,
    서로 다른 전원 공급 레벨을 전달하는 복수의 전원 공급 레일(14, 16, 18)들간에 전환함으로써 제 1 전원 공급값을 상기 하나의 도메인(80, 82)을 위한 제 2 전원 공급값으로 독립적으로 변경하는 단계를 더 포함하는
    내장형 컴퓨팅 시스템 구성 방법.
  17. 제 14 항에 있어서,
    상기 유용 전원 공급값은 클록 주파수인 내장형 컴퓨팅 시스템 구성 방법.
  18. 제 15 항에 있어서,
    상기 유용값은 클록 주파수인 내장형 컴퓨팅 시스템 구성 방법.
  19. 제 17 항에 있어서,
    각각의 도메인에 대해서, 각각의 상기 도메인에 공급되는 기준 클록 신호(fREF)로부터 내부 동작 클록 신호(fOUT)를 생성하는 단계를 더 포함하며,
    적어도 2개의 도메인의 내부 동작 클록 신호(fOUT)는 서로 다르며,
    상기 내부 동작 클록 신호의 생성은 상기 내장형 컴퓨팅 시스템(10)의 수명 동안에 재구성될 수 있는
    내장형 컴퓨팅 시스템 구성 방법.
KR1020057023722A 2003-06-10 2004-05-28 컴퓨팅 시스템 및 내장형 컴퓨팅 시스템 구성 방법 KR20060021361A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03101677.7 2003-06-10
EP03101677 2003-06-10

Publications (1)

Publication Number Publication Date
KR20060021361A true KR20060021361A (ko) 2006-03-07

Family

ID=33495637

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020057023722A KR20060021361A (ko) 2003-06-10 2004-05-28 컴퓨팅 시스템 및 내장형 컴퓨팅 시스템 구성 방법

Country Status (7)

Country Link
US (1) US20060152087A1 (ko)
EP (1) EP1636685A2 (ko)
JP (1) JP2006527444A (ko)
KR (1) KR20060021361A (ko)
CN (1) CN1802622A (ko)
TW (1) TW200511000A (ko)
WO (1) WO2004109485A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150146029A (ko) * 2014-06-20 2015-12-31 에스케이하이닉스 주식회사 반도체 장치 및 그의 글로벌 동기형 동적 전압 주파수 스케일링 방법

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7386704B2 (en) 2002-10-31 2008-06-10 Lockheed Martin Corporation Pipeline accelerator including pipeline circuits in communication via a bus, and related system and method
US8006115B2 (en) * 2003-10-06 2011-08-23 Hewlett-Packard Development Company, L.P. Central processing unit with multiple clock zones and operating method
US7487302B2 (en) * 2004-10-01 2009-02-03 Lockheed Martin Corporation Service layer architecture for memory access system and method
US7568115B2 (en) * 2005-09-28 2009-07-28 Intel Corporation Power delivery and power management of many-core processors
DE102005051451A1 (de) * 2005-10-19 2007-05-03 Universität Tübingen Verfahren zum Steuern einer digitalen Schaltung und digitale Schaltung, Verfahren zum Konfigurieren einer digitalen Schaltung, digitales Speichermedium und Computerprogrammprodukt
KR101229508B1 (ko) * 2006-02-28 2013-02-05 삼성전자주식회사 복수의 파워도메인을 포함하는 반도체 집적 회로
KR100867640B1 (ko) * 2007-02-06 2008-11-10 삼성전자주식회사 다중 접근 경로를 가지는 이미지 프로세싱 메모리를포함하는 시스템 온 칩
KR100857826B1 (ko) 2007-04-18 2008-09-10 한국과학기술원 지그재그 파워 게이팅을 적용한 파워 네트워크 회로 및 이를 포함하는 반도체 장치
US8402418B2 (en) * 2009-12-31 2013-03-19 Nvidia Corporation System and process for automatic clock routing in an application specific integrated circuit
US8648500B1 (en) * 2011-05-18 2014-02-11 Xilinx, Inc. Power supply regulation and optimization by multiple circuits sharing a single supply
WO2014144493A2 (en) 2013-03-15 2014-09-18 Ushahidi, Inc. Devices, systems and methods for enabling network connectivity

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4486670A (en) * 1982-01-19 1984-12-04 Intersil, Inc. Monolithic CMOS low power digital level shifter
US5623647A (en) * 1995-03-07 1997-04-22 Intel Corporation Application specific clock throttling
US5958056A (en) * 1995-05-26 1999-09-28 Intel Corporation Method and apparatus for selecting operating voltages in a backplane bus
US6175952B1 (en) * 1997-05-27 2001-01-16 Altera Corporation Technique of fabricating integrated circuits having interfaces compatible with different operating voltage conditions
US6047383A (en) * 1998-01-23 2000-04-04 Intel Corporation Multiple internal phase-locked loops for synchronization of chipset components and subsystems operating at different frequencies
US6789207B1 (en) * 1998-07-02 2004-09-07 Renesas Technology Corp. Microprocessor
US6366061B1 (en) * 1999-01-13 2002-04-02 Carnegie Mellon University Multiple power supply circuit architecture
US6448672B1 (en) * 2000-02-29 2002-09-10 3Com Corporation Intelligent power supply control for electronic systems requiring multiple voltages
US6384628B1 (en) * 2000-03-31 2002-05-07 Cypress Semiconductor Corp. Multiple voltage supply programmable logic device
US6664775B1 (en) * 2000-08-21 2003-12-16 Intel Corporation Apparatus having adjustable operational modes and method therefore
US6845457B1 (en) * 2000-09-26 2005-01-18 Sun Microsystems, Inc. Method and apparatus for controlling transitions between a first and a second clock frequency
US7111178B2 (en) * 2001-09-28 2006-09-19 Intel Corporation Method and apparatus for adjusting the voltage and frequency to minimize power dissipation in a multiprocessor system
US6614283B1 (en) * 2002-04-19 2003-09-02 Lsi Logic Corporation Voltage level shifter
US7085945B2 (en) * 2003-01-24 2006-08-01 Intel Corporation Using multiple thermal points to enable component level power and thermal management
US7069459B2 (en) * 2003-03-10 2006-06-27 Sun Microsystems, Inc. Clock skew reduction technique based on distributed process monitors
US7030678B1 (en) * 2004-02-11 2006-04-18 National Semiconductor Corporation Level shifter that provides high-speed operation between power domains that have a large voltage difference

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150146029A (ko) * 2014-06-20 2015-12-31 에스케이하이닉스 주식회사 반도체 장치 및 그의 글로벌 동기형 동적 전압 주파수 스케일링 방법

Also Published As

Publication number Publication date
JP2006527444A (ja) 2006-11-30
WO2004109485A3 (en) 2005-04-14
EP1636685A2 (en) 2006-03-22
WO2004109485A2 (en) 2004-12-16
TW200511000A (en) 2005-03-16
CN1802622A (zh) 2006-07-12
US20060152087A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
US9059696B1 (en) Interposer with programmable power gating granularity
US5416446A (en) Digital programmable frequency generator
US7176717B2 (en) Programmable logic and routing blocks with dedicated lines
US7154299B2 (en) Architecture for programmable logic device
US8159263B1 (en) Programmable integrated circuit with voltage domains
KR20060021361A (ko) 컴퓨팅 시스템 및 내장형 컴퓨팅 시스템 구성 방법
US20070063735A1 (en) Semiconductor integrated circuit device
KR20080069332A (ko) 전원제어 장치 및 전원제어 방법
US11444624B2 (en) Power management for multi-dimensional programmable logic devices
US20080094105A1 (en) Programmable multiple supply regions with switched pass gate level converters
US9246492B1 (en) Power grid architecture for voltage scaling in programmable integrated circuits
JP5462703B2 (ja) 順序回路におけるリーク電流の低減システム
US20190028104A1 (en) FPGA having Programmable Powered-Up/Powered-Down Logic Tiles, and Method of Configuring and Operating Same
US11799485B2 (en) Techniques for reducing uneven aging in integrated circuits
US6879185B2 (en) Low power clock distribution scheme
US7549139B1 (en) Tuning programmable logic devices for low-power design implementation
US20140028366A1 (en) Method and Apparatus of Digital Control Delay Line
US7893712B1 (en) Integrated circuit with a selectable interconnect circuit for low power or high performance operation
Bsoul et al. An FPGA with power-gated switch blocks
US20040036500A1 (en) Semiconductor devices
US10545556B2 (en) Fine-grained dynamic power and clock-gating control
CN110463042B (zh) 能够实现电路选择的电路和方法
JP5046142B2 (ja) 再構成可能集積回路
US7345520B2 (en) Delay control in semiconductor device
US10148270B2 (en) Switchable power islands having configurably on routing paths

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid