KR20060020139A - 동물세포 내에서 LPS에 의하여 유도되는 활성산소종의생성 및 NF-κB의 활성화를 억제하는 방법 - Google Patents

동물세포 내에서 LPS에 의하여 유도되는 활성산소종의생성 및 NF-κB의 활성화를 억제하는 방법 Download PDF

Info

Publication number
KR20060020139A
KR20060020139A KR1020040068902A KR20040068902A KR20060020139A KR 20060020139 A KR20060020139 A KR 20060020139A KR 1020040068902 A KR1020040068902 A KR 1020040068902A KR 20040068902 A KR20040068902 A KR 20040068902A KR 20060020139 A KR20060020139 A KR 20060020139A
Authority
KR
South Korea
Prior art keywords
nox4
oxygen species
pflag
reactive oxygen
lps
Prior art date
Application number
KR1020040068902A
Other languages
English (en)
Other versions
KR100937230B1 (ko
Inventor
배윤수
박혜선
조정우
박인석
황선관
Original Assignee
에스케이 주식회사
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이 주식회사, 이화여자대학교 산학협력단 filed Critical 에스케이 주식회사
Priority to KR1020040068902A priority Critical patent/KR100937230B1/ko
Publication of KR20060020139A publication Critical patent/KR20060020139A/ko
Application granted granted Critical
Publication of KR100937230B1 publication Critical patent/KR100937230B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y106/00Oxidoreductases acting on NADH or NADPH (1.6)
    • C12Y106/03Oxidoreductases acting on NADH or NADPH (1.6) with oxygen as acceptor (1.6.3)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 동물세포 내에서 지질다당류(lipopolysaccharide: LPS)에 의하여 유도되는 활성산소종의 생성 및 NF-κB의 활성화를 억제하는 방법에 관한 것이다. 본 발명의 동물세포 내에서 LPS에 의하여 유도되는 활성산소종의 생성 및 NF-κB의 활성화를 억제하는 방법은 Nox4 유전자와 상보결합할 수 있는 siRNA를 세포 내로 도입시켜, Nox4 유전자의 발현을 억제하는 단계를 포함한다. 본 발명에 의하면, 그람 음성세균의 감염에 따른 LPS에 의해 유도되는 유해한 활성산소종의 과다생성과 염증유발인자로 알려진 NF-κB의 활성화를 억제할 수 있음으로써, 세균감염에 따른 염증치료에 널리 활용될 수 있을 것이다.
지질다당류(lipopolysaccharide: LPS), 활성산소종(reactive oxygen species), Nox4, NF-κB

Description

동물세포 내에서 LPS에 의하여 유도되는 활성산소종의 생성 및 NF-κB의 활성화를 억제하는 방법{Method for Inhibiting Lipopolysaccharide-Induced Production of Reactive Oxygen Species and Activation of NF-κB from Animal Cell}
도 1a는 pFLAG-CMV-TLR4의 유전자 지도이다.
도 1b는 pFLAG-CMV-CD14의 유전자 지도이다.
도 1c는 pFLAG-CMV-MD2의 유전자 지도이다.
도 1d는 HEK293T 세포를 pNF-κB-Luc, pFLAG-CMV-TLR4, pFLAG-CMV-CD14, pFLAG-CMV-MD2 및 pCMV-βgal로 동시에 형질전환시킨 다음, LPS를 처리하였을 때, 베타-갈락토시다제 활성에 대한 루시퍼라제의 상대적 활성의 측정결과를 나타내는 그래프이다.
도 1e는 HEK293T 세포를 pNF-κB-Luc, pFLAG-CMV-TLR4, pFLAG-CMV-CD14, pFLAG-CMV-MD2 및 pCMV-βgal로 동시에 형질전환시킨 다음, LPS를 처리하였을 때, DCF 형광의 정도를 보여주는 형광현미경 사진이다.
도 2a는 pGEX4T1-TLR4-C의 유전자 지도이다.
도 2b는 pcDNA3.0-HA-Nox4-C의 유전자 지도이다.
도 2c는 GST-TLR4-C와 HA-Nox4-C의 상호작용을 나타내는 면역블롯 결과이다.
도 3a는 Nox4 유전자에 대한 siRNA 발현벡터 pSUPER-Nox4의 유전자 지도이다.
도 3b는 HEK293T 세포를 pSUPER-Nox4와 pNF-κB-Luc, pFLAG-CMV-TLR4, pFLAG-CMV-CD14, pFLAG-CMV-MD2 및 pCMV-βgal로 동시에 형질전환시킨 다음, LPS를 처리하였을 때, H2O2의 생성정도의 변화를 보여주는 형광현미경 사진이다.
도 3c는 HEK293T 세포를 pSUPER-Nox4와 pNF-κB-Luc, pFLAG-CMV-TLR4, pFLAG-CMV-CD14, pFLAG-CMV-MD2 및 pCMV-βgal로 동시에 형질전환시킨 다음, LPS를 처리하였을 때, 베타-갈락토시다제 활성에 대한 루시퍼라제의 상대적 활성의 측정결과를 나타내는 그래프이다.
본 발명은 세포 내에서 지질다당류(lipopolysaccharide: LPS)에 의하여 유도되는 활성산소종(reactive oxygen species: ROS)의 생성 및 NF-κB의 활성화를 억제하는 방법에 관한 것이다. 좀 더 구체적으로, 본 발명은 Nox4 유전자와 상보결합할 수 있는 siRNA를 세포 내로 도입시켜, Nox4 유전자의 발현을 억제하는 단계를 포함하는 세포 내에서 LPS에 의하여 유되되는 활성산소종의 생성 및 NF-κB의 활성 화를 억제하는 방법에 관한 것이다.
LPS는 그람 음성세균의 세포표면을 구성하는 일종의 세균독소로서, 병원성 세균과 진핵생물간의 상호작용에 다양한 역할을 하는 것으로 알려져 있으며, 포유동물에서 면역조절 물질, 염증유발 물질, 세포파괴 물질의 생산을 자극하는 것으로 알려져 있다. 포유동물이 그람 음성세균에 감염되면, 상기 LPS가 TLR4(toll-like receptor 4)와 직접 결합하여 세포 내 NF-κB를 활성화시킴으로써, 면역 및 염증반응이 유발되는데, 상기 LPS에 의한 세포 내 NF-κB의 활성화에는 MyD88(myeloid differentiation primary response protein), IRAK(interleukin receptor-associated kinase) 및 TRAF6(TNF receptor associated factor 6) 등이 관여하는 것으로 알려져 있다(참조: Akira et al., Nat. Immunol., 2:675-680, 2001). 최근 연구결과에 의하면, LPS에 의한 NF-κB의 활성화는 초과산화 음이온(superoxide anion: O2 -)과 과산화수소(H2O2)와 같은 활성산소종에 의하여 조절되는 것으로 밝혀졌으나(참조: Asehnoune et al., J. Immunol., 172:2522-2529, 2004), LPS에 의한 활성산소종의 생성의 자세한 기작은 아직까지 밝혀진 바 없다.
세포에 산화적 손상을 일으키는 요인이 되는 활성산소종은, 산소의 분압이 높을 때, 포유동물 등의 유산소호흡을 하는 생명체의 호기성 물질대사에서 발생하는 부산물이다. 이들은 반응성이 매우 커서, 생체 내의 여러 물질과 반응하여 산화적 손상을 일으키며, 이로 인해 세포의 기능이 저해되고, 세포사멸(apoptosis)이 초래될 수도 있다. 구체적으로, 활성산소종은 DNA, 단백질, 지질 및 작은 세포분자들의 산화적 손상을 통하여, 허혈성 재관류 손상(ischemic-reperfusion injury)과 같은 심장질환(참조: Peterson et al., Biochem. Biophys. Res. Commun., 127(1):87-93, 1985), 알츠하이머병과 같은 뇌신경계 장애(참조: Perry et al., J. Alzheimers Dis., 1(1):45-55, 1998), 돌연변이 또는 암(참조: Emerit I., Free Radic. Biol. Med., 16(1):99-109, 1994) 등과 같은 다양한 질병들과 노화현상을 일으키는 주된 원인이 되는 것으로 알려져 있으며, 상술한 연구결과와 같이 LPS에 의한 NF-κB의 활성화를 매개함으로써, 관절염 등의 염증에 의한 질병의 원인이 된다.
한편, 세포 내에는 자체적으로 활성산소종을 제거할 수 있는 항산화반응을 수행하는 물질들이 존재하는데, 항산화반응을 수행하는 효소, 활성산소종과 반응할 수 있는 효소 이외의 물질 등을 들 수 있다. 구체적으로, 항산화반응을 수행하는 효소로는 초과산화 음이온을 분해하는 수퍼옥사이드 디스뮤타아제(superoxide dismutase: SOD), 과산화수소를 물과 산소로 전환시키는 카탈라아제(catalase), 셀레늄을 효소활성 부위에 포함하고 과산화수소뿐만 아니라, 다른 과산화물들을 파괴하는 글루타티온 페록시다아제(glutathione peroxidase: GPX) 등이 있고, 활성산소종과 반응할 수 있는 효소 이외의 물질로는 글루타티온, 플라보노이드, 유비퀴놀-10, 포도당, 알부민 등이 있다.
아울러, 외부에서 섭취할 수 있는 물질을 이용하여 항산화 반응을 수행할 수도 있는데, 이러한 물질로는 비타민 C, E 및 A와 프로비타민A, 소량의 셀레늄과 아 연 등이 알려져 있으며, 보다 효과적인 항산화반응을 수행할 수 있는 물질 또는 산화를 방지할 수 있는 방법을 개발하려는 노력이 계속되고 있다. 예를 들어, 대한민국 특허공개 제 1989-14713호에는 공중합체-결합의 아민 항산화제가 개시되어 있고, 대한민국 특허 제 167559호에는 중합화시킬 수 있는 항산화제 및 결합된 항산화제를 함유하는 올레핀 중합체가 개시되어 있으며, 대한민국 특허 제 149453호에는 녹차추출물을 포함한 항산화제제 조성물 및 유지식품의 산화방지방법이 개시되어 있다.
상기 선행기술과 같이, 이미 생성된 활성산소종을 제거하는 것보다는 미리 활성산소종의 생성을 억제하는 것이 질병의 예방차원에서 더욱 바람직하나, 활성산소종의 생성을 억제하는 방법에 대한 연구개발은 아직까지 미진한 상황이다. 예를 들어, 미국 특허공개 US20040001818에는 NADPH 산화효소의 저해제를 이용한 혈관형성 억제방법이 개시되어 있고, 국제특허출원공개 WO0189517에는 항산화제와 NAD(P)H 산화효소의 저해제에 의한 세포증식과 기질생성의 억제방법이 개시되어 있으나, 상기 선행기술은 항암효과에 촛점이 맞추어져 있어, 본격적인 활성산소종 생성 억제방법으로 볼 수 없으며, 더구나, LPS에 의하여 생성되는 활성산소종의 생성과 활성산소종에 의한 NF-κB의 활성화만을 선택적으로 억제하는 방법은 개발되고 있지 않은 실정이다.
한편, 유전자의 억제방법과 관련하여, siRNA(small interfering RNA)는 선충(nematodes), 과실 파리, 식물에서 유전자를 조절하는 천연의 메카니즘 일부로 발견되었으나, 최근의 연구에 따르면, 포유동물 세포에서 디자인된 siRNA를 이용하여 서열(sequence) 특이적으로 mRNA(messenger RNA)의 분해를 유도하여 단백질 합성을 차단함으로써 유전자의 발현을 간섭(interference)할 가능성이 있음을 보여주고 있다. 이에 따라서, siRNA를 이용하여, 외생적(exogenous) 및 내생적(endogenous) 유전자의 in vitro 또는 in vivo에서의 발현억제를 통한 질병치료의 가능성이 제시되었다(참조: Xia et al., Nat. Biotechnol., 20(10):1006-1010, 2002). 그러나, 아직까지 siRNA를 이용하여 LPS에 의하여 유도되는 활성산소종의 생성 및 NF-κB의 활성화를 억제하는 방법은 개발되고 있지 않은 실정이다.
따라서, LPS에 의하여 유도되는 활성산소종의 생성 및 NF-κB의 활성화의 분자생물학적 기작을 규명하고, 그와 관련된 유전자에 대한 siRNA를 세포 내로 도입함으로써, LPS에 의하여 유도되는 활성산소종의 생성 및 NF-κB의 활성화만을 선택적으로 억제할 수 있는 방법을 개발하여야 할 필요성이 끊임없이 대두되었다.
이에, 본 발명자는 LPS에 의하여 유도되는 활성산소종의 생성 및 NF-κB의 활성화를 특이적으로 억제할 수 있는 방법을 개발하고자 예의 노력한 결과, Nox4 유전자와 상보결합할 수 있는 siRNA를 직접 세포에 함입시키거나, 전기 siRNA를 발현하는 벡터를 동물세포에 형질전환시켜서, Nox4 유전자의 발현을 억제할 경우, LPS에 의해 유도되는 활성산소종의 생성 및 NF-κB의 활성이 기저수준으로 억제됨을 확인하고, 본 발명을 완성하게 되었다.
결국, 본 발명의 주된 목적은 세포 내에서 LPS에 의하여 유도되는 활성산소종의 생성 및 NF-κB의 활성화를 특이적으로 억제하는 방법을 제공하는 것이다.
세포가 LPS에 노출되었을 때, 전자전달계의 NADPH 산화효소가 활성화되어 세포 내에서 초과산화 음이온(superoxide anion: O2 -) 또는 과산화수소(H20 2) 등의 활성산소종이 증가됨은 주지의 사실이나, 구체적인 세포 내에서 활성산소종의 증가 기작은 명확하게 알려져 있지 않다. 본 발명자들은 LPS의 수용체인 것으로 알려진 TLR4(toll-like receptor 4)과 이의 부속단백질인 CD14 및 MD2을 발현시키도록 형질전환된 HEK293T에 NADPH 산화효소의 저해제인 것으로 알려진 DPI(diphenyliodonium)를 처리한 결과, LPS에 의한 활성산소종의 생성이 완전히 감소됨을 확인하였는데, 이는 플라빈 함유 산화효소인 NADPH 산화효소가 LPS에 의한 ROS 생성 및 NF-κB 활성화에 관여하고 있음을 강력하게 시사하는 것이다. NADPH 산화효소의 주요한 일원인 Nox 동질효소(isozyme)는 카르복시 말단을 통하여, p47phox, p67phox 및 rac과 같은 부속 단백질과 상호작용하는 것으로 알려져 있고, TLR4의 TIR 도메인은 MyD88 및 IRAK를 포함하는 다양한 신호전달 분자와 상호작용하는 것으로 알려져 있다.
이에, 본 발명자들은 Nox 동질효소와 TLR4의 TIR 도메인간에 상호작용이 일 어나는지 알아보기 위하여, HEK293T 세포에서 주로 발현되는 Nox4의 카르복시 말단을 발현하는 발현벡터를 작제하고, 마찬가지로 TLR4의 TIR 도메인 부분을 발현하는 GST(glutathione S-transferase) 융합단백질 발현벡터를 작제하여 이들간의 상호작용 여부를 분석한 결과, Nox4의 카르복시 말단과 TLR4의 TIR 도메인이 상호작용한다는 간접증거를 얻을 수 있었다. 또한, 전기 결과로부터 Nox4의 유전자의 발현을 억제할 경우, LPS에 의하여 유도되는 활성산소종의 생성 및 NF-κB의 활성화를 억제할 수 있을 것이라는 가정하에, Nox4 유전자와 상보결합할 수 있는 siRNA를 직접 세포에 함입시키거나, 전기 siRNA를 발현시키는 siRNA 발현벡터를 도입시킬 경우, LPS에 의하여 유도되는 활성산소종의 생성 및 NF-κB의 활성화가 억제됨을 확인하였다.
본 발명의 세포 내에서 LPS에 의하여 유도되는 활성산소종의 생성을 억제하는 방법은 인간 Nox4 유전자(서열번호 1)와 상보결합할 수 있는 siRNA를 세포 내로 도입시켜, Nox4 유전자의 발현을 억제하는 단계를 포함한다: 이때, Nox4 유전자와 상보결합할 수 있는 siRNA의 세포 내로 도입은 특별히 이에 제한되지 않으나, siRNA를 직접 세포에 함입시키거나, 또는 siRNA를 발현하는 벡터로 세포를 형질전환시켜서 수행하는 것이 바람직하며, Nox4 유전자와 상보결합할 수 있는 siRNA는 특별히 이에 제한되지 않으나, 서열번호 2의 염기서열을 갖는 것이 바람직하고, siRNA 발현벡터는 특별히 이에 제한되지는 않는다.
한편, 전기 Nox4 유전자와 상보결합할 수 있는 siRNA를 직접 세포에 함입시 키는 방법은 특별히 이에 제한되지 않으나, siRNA 1㎍ 당 양이온성 리포좀을 2 내지 5㎍ 혼합하여, 15 내지 40분간 리포펙션(lipofection)하여 수행함이 바람직하다.
본 발명의 LPS에 의하여 유도되는 활성산소종의 생성 및 NF-κB의 활성화를 억제하는 방법은 Nox4 유전자에 대한 siRNA 또는 전기 siRNA를 발현하는 발현벡터는 주사용 조성물과 혼합하여 포유동물에서 세균감염에 의하여 염증이 발생한 부위에 주사형태로 투여하거나, 겔 조성물 또는 경피흡수용 점착 조성물과 혼합하여, 직접 환부에 바르거나 붙여서 투여함으로써 구현된다: 이때, 주사용 조성물은 등장성 수용액 또는 현탁액이 바람직하고, 언급한 조성물은 멸균되고/되거나 보조제(예를 들면, 방부제, 안정화제, 습윤제 또는 유화제 용액 촉진제, 삼투압 조절을 위한 염, 완충제 및/또는 리포좀 제제)를 함유하며, 겔 조성물은 카르복시메틸 셀룰로오즈, 메틸 셀룰로오즈, 아크릴산 중합체, 카르보폴(carbopol) 등의 젤제제와 약학적으로 허용되는 담체 및/또는 리포좀 제제를 함유하며, 경피흡수용 점착제제는 유효성분층이 점착제층, 피지흡수를 위한 흡착층 및 치료약물층을 포함하고, 치료약물층은 약학적으로 허용되는 담체 및/또는 리포좀 제제를 함유한다. 한편, 전기 Nox4 유전자에 대한 siRNA 또는 siRNA 발현벡터는 투여직전에, 약학적 제제화가 수행될 수 있는데, 필요에 따라, 리포좀 등의 물질에 캡슐화한 제형의 형태로도 사용될 수 있으며(참조: Nabel et al., Proc. Natl. Acad. Sci., USA., 90(23):11307-11311, 1993), 전기 siRNA 또는 siRNA 발현벡터의 투여량은 특별한 투여 형태, 투 여 경로 및 목적 및 치료하려는 포유동물의 연령, 체중 및 증상에 따라 적절하게 결정되는데, 일반적으로, 성체의 경우, 1일 투여량은 제제안에 함유된 활성성분의 양으로 10ng 내지 100mg/kg이다.
본 발명의 세포 내에서 LPS에 의하여 유도되는 활성산소종의 생성 및 NF-κB의 활성화를 억제하는 방법은, 그람 음성세균의 감염에 따른 LPS에 의해 유도되는 유해한 활성산소종의 과다생성과 염증유발인자로 알려진 NF-κB의 활성화를 억제할 수 있음으로써, 세균감염에 따른 염증치료에 널리 활용될 수 있을 것이다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당해 기술분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: LPS-의존 세포 신호전달과 세포 내 산화-환원 균형과의 관계 분석
LPS에 의존적인 세포 신호전달과 세포 내의 산화-환원 균형과의 관계를 분석하기 위하여, HEK293T 세포에서 LPS에 의하여 유도되는 NF-κB 활성화 정도와 활성산소종의 생성정도를 측정하였다.
실시예 1-1: 세포배양
먼저, HEK293T 세포(ATCC, USA)를 10%(v/v) 우태아혈청과 1%(v/v) 항생제-항진균제 용액(antibiotic-antimycotic solution, Life Technologies, USA)이 포함된 DMEM(Dulbecco's modified Eagle's medium, JBI, 대한민국)이 분주된 배양접시에서 37℃, 5%(v/v) CO2의 조건으로 배양하였다.
실시예 1-2: TLR4, CD14 및 MD2를 발현하는 발현벡터의 작제
신장 상피세포에서 유래된 HEK293T 세포는 TLR4를 발현하지 않으므로, TLR4 유전자와 TLR4의 보조 단백질인 CD14와 MD2를 HEK293T 세포에서 발현시키기 위하여 TLR4, CD14 및 MD2를 각각 발현시킬 수 있는 발현벡터를 작제하였다.
먼저, 전기 TLR4, CD14 및 MD2의 cDNA를 클로닝하기 위하여, RNA 추출키트(Trizol, Invitrogen, USA)를 이용하여 사람의 대식세포(macrophage)로부터 전RNA(total RNA)를 추출하고, 전기 전RNA를 주형으로 하여 mRNA에 대한 역전사반응과, 이에 이은 PCR 반응을 RT-for-PCR Kit(Promega, USA)를 이용하여 수행하였는데, TLR4의 경우, 센스프라이머 5'-ctagcggccgcaggatgatgtctgcctcgcg-3'(서열번호 3)와 안티센스프라이머 5'-gtggtcgacctcttcagatagatgttgc-3'(서열번호 4)을, CD14의 경우 센스프라이머 5'-ctagcggccgcatggagcgcgcgtcctgcttg-3'(서열번호 5)와 안 티센스프라이머 5'-gtggtcgacatcttaggcaaagccccgg-3'(서열번호 6)을, 그리고, MD2의 경우 센스프라이머 5'-ctagcggccgcatcatgttaccatttctgtt-3'(서열번호 7)와 안티센스프라이머 5'-gtggtcgacattctaatttgaattaggttgg-3'(서열번호 8)을 사용하였다. 이어, 전기 PCR반응 산물들을 1%(w/v) 아가로스겔 상에서 전기영동하여, 전기 TLR4, CD14 및 MD2유전자의 크기에 해당되는 DNA 띠를 각각 절단한 다음, PCR 산물 추출키트(Wizard PCR Prep Kit, Promega, USA)를 이용하여 전기 유전자의 cDNA 단편을 추출하였다. 그런 다음, 전기 cDNA 단편 및 pFLAG-CMV1 벡터를 각각 제한효소 Not I 및 Sal I으로 완전히 절단하고, 전기 절단된 각각의 cDNA 단편 및 4.7kb 크기의 선형화된 벡터를 리가제를 이용하여 연결하여, 전기 유전자에 대한 각각의 발현벡터 pFLAG-CMV-TLR4, pFLAG-CMV-CD14 및 pFLAG-CMV-MD2를 작제하였다(참조: 도 1a, 도 1b 및 도 1c). 도 1a는 pFLAG-CMV-TLR4의 유전자 지도이고, 도 1b는 pFLAG-CMV-CD14의 유전자 지도이며, 도 1c는 pFLAG-CMV-MD2의 유전자 지도이다.
실시예 1-3: LPS 처리에 따른 NF-κB의 활성분석
HEK293T 세포를 배양접시 바닥 면적의 50% 정도를 차지할 정도로 배양한 다음, Effectene(Qiagen, USA)을 이용하여 NF-κB 유도 루시퍼라제 발현벡터인 pNF-κB-Luc(Stratagene, USA), 전기 실시예 1-2에서 작제한 pFLAG-CMV-TLR4, pFLAG-CMV-CD14 및 pFLAG-CMV-MD2 그리고 베타-갈락토시다제 발현벡터인 pCMV-βgal(Life Technologies, USA)로 동시에 형질전환시켰다. 한편, 대조군으로는 pFLAG-CMV1을 사용하였다. 형질전환시킨 후 48시간이 경과한 다음, 전기 형질전환된 HEK293T 세포에 LPS(E. coli 055:B5, Sigma, USA)를 1㎍/ml의 농도로 처리하였다. LPS 처리 후 6시간이 경과한 다음, 루시퍼라제 분석 키트(Dual Luciferase Assay System, Promega, USA)를 이용하여 루시퍼라제 활성을 측정하였으며, 측정값은 베타-갈락토시다제 활성에 대한 상대값으로 표준화하였다(참조: 도 1d). 도 1d는 HEK293T 세포를 pNF-κB-Luc, pFLAG-CMV-TLR4, pFLAG-CMV-CD14, pFLAG-CMV-MD2 및 pCMV-βgal로 동시에 형질전환시킨 다음, LPS를 처리하였을 때, 베타-갈락토시다제 활성에 대한 루시퍼라제의 상대적 활성의 측정결과를 나타내는 그래프이다. 도 1d에서 보듯이, HEK293T 세포를 전기 pFLAG-CMV1 벡터로만 형질전환시키고 LPS를 처리한 경우에는 루시퍼라제의 활성이 거의 보이지 않는 반면, pFLAG-CMV-TLR4, pFLAG-CMV-CD14 및 pFLAG-CMV-MD2로 형질전환시킴으로써, TLR4, CD14 및 MD2를 발현시킨 경우에는, LPS에 의하여 NF-κB이 활성화되었음을 확인할 수 있었다.
실시예 1-4: LPS 처리후의 세포 내 H2O2 생성분석
전기 형질전환된 HEK293T 세포를 대상으로 LPS를 처리하고, 30분 경과 후의 H2O2의 생성정도를 분석하였다.
먼저, 전기 형질전환된 HEK293T 세포를 완충용액(Hank's balanced salt solution, pH 7.8)으로 세척하고, 37℃의 암조건에서 5μM의 2',7'-이염화 플루오 레세인 이아세트산(2',7'-dichlorofluorescein diacetate: DCF-DA, Molecular Probes, USA)을 함유한 전기 완충용액에 침지하고 5분간 정치하여, DCF-DA를 H2O2에 의하여 산화되어 강한 형광을 나타내는 2',7'-이염화플루오레세인(2',7'-dichlorofluorescein: DCF)으로 전환시켰다. 그런 다음, 488nm의 파장에서 여기되도록 조정된 아르곤 가스, 515 내지 540nm의 파장을 선택적으로 투과시키는 LP505 방사필터(Carl Zeiss, Germany) 및 ×100 대물렌즈(Carl Zeiss, Germany)가 구비된 레이져 스캐닝 콘포칼 현미경(모델 LSM 510, Carl Zeiss, Germany)을 이용하여 관찰하였다(참조: 도 1e). 도 1e는 HEK293T 세포를 pNF-κB-Luc, pFLAG-CMV-TLR4, pFLAG-CMV-CD14, pFLAG-CMV-MD2 및 pCMV-βgal로 동시에 형질전환시킨 다음, LPS를 처리하였을 때, DCF 형광의 정도를 보여주는 형광현미경 사진이다. 도 1e에서 보듯이, pFLAG-CMV-TLR4, pFLAG-CMV-CD14 및 pFLAG-CMV-MD2로 형질전환된 HEK293T 세포에 LPS를 처리한 경우, DCF 형광이 강하게 나타남을 확인할 수 있었으며, 이는 세포에 LPS를 처리할 때, TLR4, CD14 및 MD2를 경유한 세포 신호전달 과정을 통하여 활성산소종의 생성이 증가됨을 의미한다.
실시예 2: TLR4와 Nox4 단백질의 상호작용여부 분석
TLR4와 NADPH 산화효소의 일원인 Nox4가 상호작용하는지 확인하기 위하여, GST 풀다운(glutathione S-transferase pull-down) 분석을 다음과 같이 수행하였 다.
실시예 2-1: GST-TLR4 C말단 융합단백질의 발현벡터 및 Nox4 C말단 발현벡터의 작제
실시예 2-1-1: GST-TLR4 C말단 융합단백질의 발현벡터의 작제
인간 TLR4의 아미노산 서열 676 내지 835를 포함하는 글루타티온 S-전이효소(glutathione S-transferase: GST) 융합단백질을 암호화하는 플라스미드를 다음과 같은 방법에 의하여 작제하였다.
전기 실시예 1-2에서 추출한 대식세포 전RNA를 주형으로 하여 역전사반응과, 이에 이은 PCR 반응을 RT-for-PCR Kit(Promega, USA)를 이용하여 수행하였는데, 이때 프라이머로는 센스프라이머 5'-cgaattcgcctttgtatctactcaag-3'(서열번호 9)와 안티센스프라이머 5'-cggcggccgcttcctgccaattgcatcctg-3'(서열번호 10)을 사용하였으며, PCR반응을 수행한 다음, 전기 PCR 산물을 제한효소 EcoR I과 Not I으로 절단하여 대략 480bp 크기의 유전자 절편을 수득하고, EcoR I과 Not I으로 절단한 pGEX4T1(Pharmacia Biotech, USA)에 리가제를 이용하여 삽입하여, GST 융합단백질을 암호화하는 플라스미드 pGEX4T1-TLR4-C를 작제하였다(참조: 도 2a). 이어, 전기 플라스미드 pGEX4T1-TLR4-C를 대장균주 DH5α에 도입하고, 열충격요법으로 형질전환시켜서 형질전환체를 수득하였다. 이어, 전기 형질전환체를 배양하여 수득하 고, 세포를 용혈시킨 다음, 용혈체로부터 GST-TLR4-C 융합단백질을 글루타티온 부착 세파로즈 비드를 이용하여 분리하였다.
실시예 2-1-2: Nox4 C말단 발현벡터의 작제
인간 Nox4의 아미노산 서열 248 내지 575에 대한 발현벡터를 다음과 같은 방법으로 작제하였다.
먼저, 헤마글루티닌(hemagglutinin: HA) N 말단에 해당되는 아미노산 서열(MYPYDVPDYA: 서열번호 11)에 대응되고, 제한효소 Hind III 및 EcoR I에 의하여 절단된 벡터와 결합할 수 있는 DNA 절편을 만들기 위하여, 센스 올리고뉴클레오티드 5'-gacctatgtacccctacgacgtgcccgactacgccg-3'(서열번호 12) 및 안티센스 올리고뉴클레오티드 5'-aattcggcgtagtcgggcacgtcgtaggggtacata-3'(서열번호 13)를 합성하였으며, 전기 센스 올리고뉴클레오티드 및 안티센스 올리고뉴클레오티드를 각각 90℃에서 5분간 가열하여 변성시키고, 혼합하여 60℃에서 30분간 상보결합시켰다. 이렇게 생성된 DNA 절편을 제한효소 Hind III 및 EcoR I으로 절단한 pcDNA3.0(Invitrogen, USA) 벡터에 삽입하여, pcDNA3.0-HA를 작제하였다. 그런 다음, 전기 실시예 1-2에서 추출한 대식세포 전RNA를 주형으로 하여 역전사반응과, 이에 이은 PCR 반응을 RT-for-PCR Kit(Promega, USA)를 이용하여 수행하였는데, 이때 프라이머로는 센스프라이머 5'-gcgaattccatgaacctttccctgaagg-3'(서열번호 14)와 안티센스프라이머 5'-gcgcggccgctcatttattgtattcaaatccttgt-3'(서열번호 15)을 사용하였다. 이어, 전기 PCR 산물을 제한효소 EcoR I과 Not I으로 절단하여 대략 980bp 크기의 유전자 절편을 수득하고, 제한효소 EcoR I과 Not I으로 절단한 전기 pcDNA3.0-HA에 리가제를 이용하여 삽입하여, 인간 Nox4의 아미노산 서열 248 내지 575에 대한 발현벡터 pcDNA3.0-HA-Nox4-C를 작제하였다(참조: 도 2b).
실시예 2-2: GST-풀다운 분석
전기 실시예 2-1-2에서 작제한 pcDNA3.0-HA-Nox4-C로 HEK293T 세포를 Lipofectamine(Life Technologies, USA)을 사용하여 형질전환시킨 다음, 전기 형질전환된 HEK293T 세포를 용혈시켜 수득한 용혈체를 전기 실시예 2-1-1에서 분리한 GST-TLR4-C 융합단백질이 부착된 세파로즈 비드와 반응시켰다. 전기 세파로즈 비드를 원심분리하여 분리하고, 3회 세척한 다음, 항-헤마글루티닌(hemagglutinin: HA) 항체(Roche, USA)로 면역블롯 분석을 수행하였다(참조: 도 2c). 도 2c는 GST-TLR4-C와 HA-Nox4-C의 상호작용을 나타내는 면역블롯 결과이다. 도 2c에서 보듯이, GST-TLR4-C 융합단백질과 HA-Nox4-C 융합단백질이 결합한 반면, 순수 GST 단백질은 HA-Nox4-C와 결합하지 않았음을 확인할 수 있었는 바, 이는 TLR4의 카르복시 말단과 Nox4의 카르복시 말단이 직접 상호작용하고 있음을 시사한다.
실시예 3: Nox4 유전자와 상보결합할 수 있는 siRNA의 세포로의 도입 및 그에 따른 활성산소종의 생성과 NF-κB의 활성화 억제여부 분석
전기 실시예 2의 Nox4의 카르복시 말단과 TLR4의 TIR 도메인이 서로 상호작용한다는 간접증거로부터, LPS에 의하여 유도되는 세포 신호전달 과정에 Nox4가 관여하고 있다는 가정하에, Nox4 유전자의 발현을 억제하면, LPS에 의하여 유도되는 활성산소종의 생성 증가를 저해할 수 있는지를 확인하기 위하여, Nox4 유전자의 발현을 억제한 후, 활성산소종의 생성정도와 NF-κB의 활성화 억제여부를 분석하였다: 이때, Nox4 유전자의 발현을 억제하기 위하여, Nox4의 mRNA와 상보결합할 수 있는 각각의 siRNA를 직접 세포에 도입하거나 또는 전기 siRNA를 발현할 수 있는 발현벡터를 세포에 도입하는 방법을 사용하였다.
실시예 3-1: siRNA의 세포로의 직접 함입 및 그에 따른 활성산소종의 생성여부 분석
Nox4의 mRNA와 상보결합할 수 있는 siRNA를 작제한 다음, 이를 직접 pFLAG-CMV-TLR4, pFLAG-CMV-CD14 및 pFLAG-CMV-MD2와 함께 HEK293T 세포로 직접 함입시켰으며, 그에 따른 활성산소종의 생성여부를 분석하였다.
실시예 3-1-1: Nox4의 mRNA와 상보결합할 수 있는 siRNA의 작제
Nox4 cDNA(서열번호 1)로부터 19 뉴클레오티드의 특정 염기서열을 siRNA 및 전기 siRNA를 발현시킬 수 있는 siRNA 발현벡터의 작제를 위하여 선택하였다. 전기 19 뉴클레오티드의 특정 염기서열은 5'-gtcaacatccagctgtacc-3'(서열번호 16)이고, 상기 센스 서열, 루프구조 서열 및 전기 센스 서열과 상보결합할 수 있는 안티센스서열을 순차적으로 포함하는 5'-gucaacauccagcuguaccuucaagagagguacagcuggauguugacuu-3'(서열번호 2)의 서열을 가지는 siRNA를 올리고뉴클레오티드 합성을 통해 작제하였다.
실시예 3-1-2: siRNA의 세포 내로의 함입
HEK293T 세포를 37℃ 및 5%(v/v) CO2의 조건으로 10%(v/v)의 우태아혈청(FBS) 및 1%(v/v)의 항생제-항진균제 용액(antibiotic-antimycotic solution, Life Technologies, USA)이 보충된 DMEM(Dulbecco's modified Eagle's medium, JBI, 대한민국)을 함유한 35mm 직경의 배양접시에서 배양하여, 배양접시의 면적의 60%를 점유할 정도로 성장하였을 때, 전기 실시예 3-1-1에서 작제한 siRNA를 전기 실시예 1-2에서 작제한 pFLAG-CMV-TLR4, pFLAG-CMV-CD14 및 pFLAG-CMV-MD2와 함께, 하기와 같은 방법으로 세포에 직접 함입시켰다.
먼저, 리포좀 제제(siFECTORTM, 1mg/ml, B-Bridge International, USA) 0 내지 8㎕를 1㎕ 단위로 초소형 원심분리튜브에 분주하고, 전기 튜브에 우태아혈청 및 항생제-항진균제 용액이 제거된 DMEM을 첨가하여, 전체 부피를 100㎕로 조정한 다음, 잘 혼합하였다. 전기 혼합물에 siRNA가 용해되어 있는 수용액(10㎍/ml) 100㎕를 첨가하고 피펫으로 잘 혼합하여 상온에서 30분간 방치하였다. 한편, 1㎍/㎕ 농도로 희석된 pFLAG-CMV-TLR4, pFLAG-CMV-CD14 및 pFLAG-CMV-MD2를 1㎕씩 분주하고, 여기에 전기 실시예 1-3에서 사용한 Effectene(Qiagen, USA)을 6㎕를 혼합하여, 전기 Nox4 유전자에 대한 siRNA 및 siEFCTOR 리포좀 제제 혼합액과 혼합하였다. 그런 다음, 전기 배양세포가 들어 있는 배양접시를 우태아혈청 및 항생제-항진균제 용액이 제거된 DMEM으로 세척하고, 우태아혈청 및 항생제-항진균제 용액이 제거된 DMEM 0.8ml을 첨가한 다음, 전기 배양접시에 전기 siFECTOR 리포좀 제제/siRNA/pFLAG-CMV-TLR4/pFLAG-CMV-CD14/pFLAG-CMV-MD2/Effectene/DMEM 혼합물 200㎕를 피펫으로 적가하여 배양접시 전체에 골고루 덮이도록 하고, 37℃ 및 5%(v/v)의 조건으로 10시간동안 배양하였다. 이어, 전기 배양접시에 우태아혈청 20%(v/v) 및 전기 항생제-항진균제 용액 2%(v/v)가 함유된 DMEM 1ml을 첨가하고, 추가적으로 24시간동안 배양하였다.
실시예 3-1-3: H2O2 생성분석
LPS를 전기 실시예 3-1-2의 방법으로 Nox4 유전자에 대한 siRNA와 pFLAG-CMV-TLR4, pFLAG-CMV-CD14 및 pFLAG-CMV-MD2를 동시에 함입시킨 HEK293T 세포에 처리한 다음, 세포 내의 H2O2의 농도를 측정하였다.
먼저, 배양접시 표면의 80% 이상을 차지하도록 성장한 세포를 완충용액(Hank's balanced salt solution, pH 7.8)으로 세척하고, LPS(Sigma, USA)를 1㎍/ml의 농도로 처리한 다음, 37℃에서 30분 동안 배양하였다. 이어, 전기 완충용액으로 세척하고, 37℃의 암조건에서 5μM의 DCF-DA(Molecular Probes, USA)을 함유한 전기 완충용액에 침지하여 5분간 정치한 다음, 488nm의 파장에서 여기되도록 조정된 아르곤 가스, 515 내지 540nm의 파장을 선택적으로 투과시키는 LP505 방사필터(Carl Zeiss, Germany) 및 ×100 대물렌즈(Carl Zeiss, Germany)가 구비된 레이져 스캐닝 콘포칼 현미경(모델 LSM 510, Carl Zeiss, Germany)을 이용하여 관찰하였으며, 관찰된 이미지는 512×512(pixel×pixel)의 해상도로 저장하고, 이미지 분석프로그램(Zeiss vision system, LSM510, version 2.3, Carl Zeiss, Germany)을 이용하여, 각 그룹의 평균 상대 형광강도(mean relative fluorescence intensity)를 측정하였다. 이 때, LPS를 처리하지 않고, 전기 siRNA를 함입시키지 않은 세포로부터 측정한 H2O2의 농도에 해당되는 DCF 형광 측정값을 100으로 환산하여, DCF 형광강도를 상대농도로서 계측하였다(참조: 표 1).
Nox4 유전자에 대한 siRNA를 직접 함입시킨 HEK293T 세포에서 측정된 H2O2의 상대농도
리포좀/siRNA(㎍/㎍) H2O2 생성정도(%control)
0 526
1 211
2 135
3 132
4 121
5 106
6 112
7 122
8 114

상기 표 1에서 보듯이, Nox4 유전자에 대한 siRNA를 pFLAG-CMV-TLR4, pFLAG-CMV-CD14 및 pFLAG-CMV-MD2와 함께 HEK293T 세포에 함입시키고, LPS를 세포에 처리한 결과, 리포좀의 농도가 증가할수록 H2O2의 생성량이 대체적으로 감소함을 알 수 있었다.
한편, siRNA의 도입시, 리포좀을 siRNA 1㎍당 2㎍ 이상의 양으로 사용할 경우, H2O2의 생성량이 효과적으로 감소함을 알 수 있었으나, 6㎍이상의 리포좀을 처리한 경우에는 H2O2의 생성의 감소정도는 크게 향상되지 않고 세포사멸(apoptosis) 등의 부작용이 나타났으므로, siRNA 1㎍당 2 내지 5㎍의 리포좀을 사용함이 바람직함을 확인할 수 있었다.
실시예 3-2: Nox4에 대한 siRNA를 발현할 수 있는 발현벡터의 HEK293T 세로로의 형질전환 및 그에 따른 활성산소종의 생성과 NF-κB의 활성화 억제여부 분석
Nox4 유전자의 발현을 억제하기 위하여, Nox4의 유전자에 대한 siRNA를 발현 할 수 있는 발현벡터로 HEK293T 세포를 형질전환시키고, 그에 따른 활성산소종의 생성 및 NF-κB의 활성화 억제여부를 분석하였다.
실시예 2-2-1: Nox4 유전자의 mRNA에 상보적으로 결합할 수 있는 siRNA 발현벡터의 작제
제한효소 Bgl II의 인식부위, 전기 실시예 3-1-1에서 작제한 서열번호 2의 siRNA 염기서열에 대응하는 DNA 염기서열 및 제한효소 Hind III 인식부위를 순차적으로 포함하는 60개의 뉴클레오티드로 구성된 센스 올리고뉴클레오티드 및 전기 센스 올리고뉴클레오티드와 상보결합할 수 있는 60개의 뉴클레오티드로 구성된 안티센스 올리고뉴클레오티드를 합성하였다. 전기 뉴클레오티드는 센스 올리고뉴클레오티드 및 안티센스 올리고뉴클레오티드가 각각 5'-gatccccgtcaacatccagctgtaccttcaagagaggtacagctggatgttgacttttta-3'(서열번호 17) 및 5'-agcttaaaaagtcaacatccagctgtacctctcttgaaggtacagctggatgttgacggg-3'(서열번호 18)이었다. 전기 센스 및 안티센스 올리고뉴클레오티드를 혼성화하여 이중가닥 DNA로 전환시킨 다음, 폴리뉴클레오티드 인산화효소(polynucleotide kinase)와 알칼리성 탈인산화효소(alkaline phosphatase)를 이용하여 인산화시켰다. 이어, 전기 인산화된 이중가닥 올리고뉴클레오티드를 선형화된 pSUPER 벡터(OligoEngine, USA)에 삽입한 다음, 리가제를 이용하여 전기 뉴클레오티드와 전기 벡터를 연결하여, Nox4에 대한 siRNA의 발현벡터 pSUPER-Nox4를 작제하였다(참조: 도 3a).
실시예 3-2-2: siRNA 발현벡터의 동물세포로의 형질전환
HEK293T 세포를 37℃ 및 5%(v/v) CO2의 조건으로 10%(v/v) 우태아혈청(FBS) 및 1%(v/v)의 항생제-항진균제 용액(antibiotic-antimycotic solution, Life Technologies, USA)이 보충된 DMEM을 함유한 배양접시에서 배양하고, 전기 실시예 2-2-1에서 작제된 Nox4에 대한 siRNA 발현벡터 pSUPER-Nox4를 다음과 같은 방법으로 pNF-κB-Luc, pFLAG-CMV-TLR4, pFLAG-CMV-CD14, pFLAG-CMV-MD2 및 pCMV-βgal과 함께 HEK293T 세포에 동시에 형질전환시켰다. 즉, 대략 2 ×105개의 HEK293T 세포를 원심분리하여 수득한 다음, NucleofectorTM 용액(Amaxa Biosystems, Germany)에 재부유시키고, 전기 siRNA 발현벡터 pSUPER-Nox4와 pNF-κB-Luc, pFLAG-CMV-TLR4, pFLAG-CMV-CD14, pFLAG-CMV-MD2 및 pCMV-βgal를 각각 1㎍을 100㎕의 세포 현탁액과 혼합하여, 2.0mm의 간격을 가진 Amaxa 보증 큐벳(Amaxa Biosystems, Germany)으로 옮긴 후, 전기충격을 가하여, 형질전환을 수행하고, 전기 형질전환된 세포를 즉시 완전배지(completed medium)가 담긴 35mm 직경의 배양접시로 이동시켰으며, 37℃에서 배양하였다.
실시예 3-2-3: H2O2 생성분석
전기 3-2-2의 방법으로 동시 형질전환시킨 HEK293T 세포를 배양접시의 바닥면적의 80% 정도가 차지하도록 배양한 다음, 완충용액(Hank's balanced salt solution, pH 7.8)으로 세척하고, LPS를 1㎍/ml의 농도로 처리한 다음, 37℃에서 30분 동안 배양하였다. 이어, 전기 완충용액으로 세척하고, 37℃의 암조건에서 5μM의 DCF-DA(Molecular Probes, USA)을 함유한 전기 완충용액에 침지하여 5분간 정치한 다음, 488nm의 파장에서 여기하도록 조정된 아르곤 가스, 515 내지 540nm의 파장을 선택적으로 투과시키는 LP505 방사필터(Carl Zeiss, Germany) 및 ×100 대물렌즈(Carl Zeiss, Germany)가 구비된 레이져 스캐닝 콘포칼 현미경(모델 LSM 510, Carl Zeiss, Germany)을 이용하여 관찰하였다(참조: 도 3b). 도 3b는 HEK293T 세포를 pSUPER-Nox4와 pNF-κB-Luc, pFLAG-CMV-TLR4, pFLAG-CMV-CD14, pFLAG-CMV-MD2 및 pCMV-βgal로 동시에 형질전환시킨 다음, LPS를 처리하였을 때, H2O2의 생성정도의 변화를 보여주는 형광현미경 사진이다. 도 3b에서 보듯이, HEK293T 세포를 pSUPER-Nox4와 pNF-κB-Luc, pFLAG-CMV-TLR4, pFLAG-CMV-CD14, pFLAG-CMV-MD2 및 pCMV-βgal로 동시에 형질전환시킨 다음, LPS를 처리하였을 때, 활성산소종의 생성이 억제되는 반면, pSUPER 벡터 자체만 형질전환시킨 HEK293T 세포의 경우 LPS에 의하여 활성산소종의 생성이 증가함을 확인할 수 있었다.
실시예 3-2-4: LPS 처리에 의한 NF-κB의 활성화 정도 분석
전기 pSUPER-Nox4와 pNF-κB-Luc, pFLAG-CMV-TLR4, pFLAG-CMV-CD14, pFLAG-CMV-MD2 및 pCMV-βgal로 동시 형질전환시킨 HEK293T 세포에 LPS를 처리하였을 때, NF-κB에 의하여 유도되는 루시퍼라제 활성을 측정하였다.
형질전환은 전기 실시예 3-2-2과 동일한 방법을 사용하였으며, 루시퍼라제 활성측정은 전시 실시예 1-3과 동일한 방법으로 수행하였다(참조: 도 3c). 도 3c는 HEK293T 세포를 pSUPER-Nox4와 pNF-κB-Luc, pFLAG-CMV-TLR4, pFLAG-CMV-CD14, pFLAG-CMV-MD2 및 pCMV-βgal로 동시에 형질전환시킨 다음, LPS를 처리하였을 때, 베타-갈락토시다제 활성에 대한 루시퍼라제의 상대적 활성의 측정결과를 나타내는 그래프이다. 도 3c에서 보듯이, 상기 실시예 3-2-3의 결과와 일치하게, Nox4의 유전자 발현을 억제함으로써 LPS에 의하여 유도되는 NF-κB의 활성화가 억제됨을 확인할 수 있었다.
전기 실시예 3의 결과를 종합하면, Nox4 유전자의 발현을 억제시킬 경우, LPS에 의해 유도되는 활성산소종의 생성 및 NF-κB의 활성화를 효과적으로 억제할 수 있음을 확인할 수 있었다.
이상에서 상세히 설명하고 입증하였듯이, 본 발명은 Nox4 유전자와 상보결합할 수 있는 siRNA를 세포 내로 도입시켜, Nox4 유전자의 발현을 억제하는 단계를 포함하는 세포 내에서 LPS에 의하여 유도되는 활성산소종의 생성 및 NF-κB의 활성화를 억제하는 방법을 제공한다. 본 발명의 세포 내에서 LPS에 의하여 유도되는 활성산소종의 생성 및 NF-κB의 활성화를 억제하는 방법은, 그람 음성세균의 감염에 따른 LPS에 의해 유도되는 유해한 활성산소종의 과다생성과 염증유발인자로 알려진 NF-κB의 활성화를 억제할 수 있음으로써, 세균감염에 따른 염증치료에 널리 활용될 수 있을 것이다.
<110> BAE, Yoon Soo <120> Method for Inhibiting Lipopolysaccharide-Induced Production of Reactive Oxygen Species and Activation of NF-kappa B from Animal Cell <160> 18 <170> KopatentIn 1.71 <210> 1 <211> 2416 <212> DNA <213> Homo sapiens <400> 1 tgagtgggca gagctgaccc ggtgcgggtg ggagtcaggg cgcccggaaa acccggctct 60 gggtagcaga ccccgcccgg gctggctcgg cgccgggcct tcgggcttcc actcagtctt 120 tgaccctcgg tcctcgctca gcggcccggc aggccgcaca actgtaaccg ctgccccggc 180 cgccgcccgc tccttctcgg gccggcgggc acagagcgca gcgcggcggg gccggcggca 240 tggctgtgtc ctggaggagc tggctcgcca acgaaggggt taaacacctc tgcctgttca 300 tctggctctc catgaatgtc ctgcttttct ggaaaacctt cttgctgtat aaccaagggc 360 cagagtatca ctacctccac cagatgttgg ggctaggatt gtgtctaagc agagcctcag 420 catctgttct taacctcaac tgcagcctta tccttttacc catgtgccga acactcttgg 480 cttacctccg aggatcacag aaggttccaa gcaggagaac caggagattg ttggataaaa 540 gcagaacatt ccatattacc tgtggtgtta ctatctgtat tttctcaggc gtgcatgtgg 600 ctgcccatct ggtgaatgcc ctcaacttct cagtgaatta cagtgaagac tttgttgaac 660 tgaatgcagc aagataccga gatgaggatc ctagaaaact tctcttcaca actgttcctg 720 gcctgacagg ggtctgcatg gtggtggtgc tattcctcat gatcacagcc tctacatatg 780 caataagagt ttctaactat gatatcttct ggtatactca taacctcttc tttgtcttct 840 acatgctgct gacgttgcat gtttcaggag ggctgctgaa gtatcaaact aatttagata 900 cccaccctcc cggctgcatc agtcttaacc gaaccagctc tcagaatatt tccttaccag 960 agtatttctc agaacatttt catgaacctt tccctgaagg attttcaaaa ccggcagagt 1020 ttacccagca caaatttgtg aagatttgta tggaagagcc cagattccaa gctaattttc 1080 cacagacttg gctttggatt tctggacctt tgtgcctgta ctgtgccgaa agactttaca 1140 ggtatatccg gagcaataag ccagtcacca tcatttcggt cataagtcat ccctcagatg 1200 tcatggaaat ccgaatggtc aaagaaaatt ttaaagcaag acctggtcag tatattactc 1260 tacattgtcc cagtgtatct gcattagaaa atcatccatt taccctcaca atgtgtccaa 1320 ctgaaaccaa agcaacattt ggggttcatc ttaaaatagt aggagactgg acagaacgat 1380 ttcgagattt actactgcct ccatctagtc aagactccga aattctgccc ttcattcaat 1440 ctagaaatta tcccaagctg tatattgatg gtccttttgg aagtccattt gaggaatcac 1500 tgaactatga ggtcagcctc tgcgtggctg gaggcattgg agtaactcca tttgcatcaa 1560 tactcaacac cctgttggat gactggaaac catacaagct tagaagacta tactttattt 1620 gggtatgcag agatatccag tccttccgtt ggtttgcaga tttactctgt atgttgcata 1680 acaagttttg gcaagagaac agacctgact atgtcaacat ccagctgtac ctcagtcaaa 1740 cagatgggat acagaagata attggagaaa aatatcatgc actgaattca agactgttta 1800 taggacgtcc tcggtggaaa cttttgtttg atgaaatagc aaaatataac agaggaaaaa 1860 cagttggtgt tttctgttgt ggacccaatt cactatccaa gactcttcat aaactgagta 1920 accagaacaa ctcatatggg acaagatttg aatacaataa agagtctttc agctgaaaac 1980 ttttgccatg aagcaggact ctaaagaagg aatgagtgca atttctaaga ctttgaaact 2040 cagcggaatc aatcagctgt gttatgccaa agaatagtaa ggttttctta tttatgatta 2100 tttaaaatgg aaatgtgaga atgtggcaag atgaccgtca cattacatgt ttaatctgga 2160 aaccaaagag accctgaaga atatttgatg tgatgattca cttttcagtt ctcaaattaa 2220 aagaaaactg ttagatgcac actgttgatt ttcatggtgg attcaagaac tccctagtga 2280 ggagctgaac ttgctcaatc taaggctgat tgtcgtgttc ctctttaaat tgtttttggt 2340 tgaacaaatg caagattgaa caaaattaaa aattcattga agctgaaaaa aaaaaaaaaa 2400 aaaaaaaaaa aaaaaa 2416 <210> 2 <211> 49 <212> RNA <213> Artificial Sequence <220> <223> siRNA for Nox4 <400> 2 gucaacaucc agcuguaccu ucaagagagg uacagcugga uguugacuu 49 <210> 3 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Sense Primer for TLR4 <400> 3 ctagcggccg caggatgatg tctgcctcgc g 31 <210> 4 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Antisense Primer for TLR4 <400> 4 gtggtcgacc tcttcagata gatgttgc 28 <210> 5 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Sense Primer for CD14 <400> 5 ctagcggccg catggagcgc gcgtcctgct tg 32 <210> 6 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Antisense Primer for CD14 <400> 6 gtggtcgaca tcttaggcaa agccccgg 28 <210> 7 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Sense Primer for MD2 <400> 7 ctagcggccg catcatgtta ccatttctgt t 31 <210> 8 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Antisense Primer for MD2 <400> 8 gtggtcgaca ttctaatttg aattaggttg g 31 <210> 9 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Sense Primer for Cloning of TLR4-C <400> 9 cgaattcgcc tttgtatcta ctcaag 26 <210> 10 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Antisense Primer for Cloning of TLR4-C <400> 10 cggcggccgc ttcctgccaa ttgcatcctg 30 <210> 11 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Hemagglutinin N-terminal Sequence <400> 11 Met Tyr Pro Tyr Asp Val Pro Asp Tyr Ala 1 5 10 <210> 12 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Sense Oligonucleotide for Hemagglutinin N-terminal <400> 12 gacctatgta cccctacgac gtgcccgact acgccg 36 <210> 13 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Antisense Oligonucleotide for Hemagglutinin N-terminal <400> 13 aattcggcgt agtcgggcac gtcgtagggg tacata 36 <210> 14 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Sense Primer for Cloning of Nox4-C <400> 14 gcgaattcca tgaacctttc cctgaagg 28 <210> 15 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Antisense Primer for Cloning of Nox4-C <400> 15 gcgcggccgc tcatttattg tattcaaatc cttgt 35 <210> 16 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> DNA Sequence Selected from Nox4 cDNA for Construction of siRNA Expression Vector <400> 16 gtcaacatcc agctgtacc 19 <210> 17 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Sense Oligonucleotide for Construction of Nox4 siRNA Expression Vector <400> 17 gatccccgtc aacatccagc tgtaccttca agagaggtac agctggatgt tgacttttta 60 60 <210> 18 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Antisense Oligonucleotide for Construction of Nox4 siRNA Expression Vector <400> 18 agcttaaaaa gtcaacatcc agctgtacct ctcttgaagg tacagctgga tgttgacggg 60 60

Claims (4)

  1. Nox4 유전자(서열번호 1)와 상보결합할 수 있는 siRNA를 세포 내로 도입시켜, Nox4 유전자의 발현을 억제하는 단계를 포함하는 동물세포 내에서 지질다당류에 의하여 유도되는 활성산소종의 생성 및 NF-κB의 활성화를 억제하는 방법.
  2. 제 1항에 있어서,
    siRNA의 세포 내로의 도입은 siRNA를 직접 세포에 함입시키거나 또는 siRNA를 발현하는 벡터로 세포를 형질전환시켜서 수행하는 것을 특징으로 하는
    동물세포 내에서 지질다당류에 의하여 유도되는 활성산소종의 생성 및 NF-κB의 활성화를 억제하는 방법.
  3. 제 1 항에 있어서,
    Nox4 유전자에 대한 siRNA는 서열번호 2인 것을 특징으로 하는
    동물세포 내에서 지질다당류에 의하여 유도되는 활성산소종의 생성 및 NF-κB의 활성화를 억제하는 방법.
  4. 제 2항에 있어서,
    Nox4 유전자에 대한 siRNA 발현벡터는 도 2a의 유전자 지도를 갖는 갖는 pSUPER-Nox4인 것을 특징으로 하는
    동물세포 내에서 지질다당류에 의하여 유도되는 활성산소종의 생성 및 NF-κB의 활성화를 억제하는 방법.
KR1020040068902A 2004-08-31 2004-08-31 Nox4 유전자와 상보결합할 수 있는 siRNA를 유효성분으로 포함하는 염증치료제 KR100937230B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040068902A KR100937230B1 (ko) 2004-08-31 2004-08-31 Nox4 유전자와 상보결합할 수 있는 siRNA를 유효성분으로 포함하는 염증치료제

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040068902A KR100937230B1 (ko) 2004-08-31 2004-08-31 Nox4 유전자와 상보결합할 수 있는 siRNA를 유효성분으로 포함하는 염증치료제

Publications (2)

Publication Number Publication Date
KR20060020139A true KR20060020139A (ko) 2006-03-06
KR100937230B1 KR100937230B1 (ko) 2010-01-15

Family

ID=37127330

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040068902A KR100937230B1 (ko) 2004-08-31 2004-08-31 Nox4 유전자와 상보결합할 수 있는 siRNA를 유효성분으로 포함하는 염증치료제

Country Status (1)

Country Link
KR (1) KR100937230B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100930282B1 (ko) * 2007-07-02 2009-12-09 숙명여자대학교산학협력단 NIK 유전자에 대한 siRNA 및 이를 포함하는 간질환치료제
KR101510993B1 (ko) * 2014-06-17 2015-04-09 충남대학교산학협력단 Nox4를 함유하는 톡소플라즈마증 예방 또는 치료용 조성물
US9227956B2 (en) 2013-04-17 2016-01-05 Pfizer Inc. Substituted amide compounds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573880B1 (ko) 2004-04-30 2006-04-26 이화여자대학교 산학협력단 동물세포 내에서 성장인자에 의하여 유도되는활성산소종의 생성을 억제하는 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100930282B1 (ko) * 2007-07-02 2009-12-09 숙명여자대학교산학협력단 NIK 유전자에 대한 siRNA 및 이를 포함하는 간질환치료제
US9227956B2 (en) 2013-04-17 2016-01-05 Pfizer Inc. Substituted amide compounds
KR101510993B1 (ko) * 2014-06-17 2015-04-09 충남대학교산학협력단 Nox4를 함유하는 톡소플라즈마증 예방 또는 치료용 조성물

Also Published As

Publication number Publication date
KR100937230B1 (ko) 2010-01-15

Similar Documents

Publication Publication Date Title
JP6898920B2 (ja) 光受容器のターゲッティングにより失明を治療するための新規な治療用ツールおよび方法
US7306944B2 (en) Advanced cell-transducing transport domain-target protein-transport domain fusion protein and uses thereof
US11519008B2 (en) Exosome delivery system
FR2723588A1 (fr) Adenovirus comprenant un gene codant pour la glutathion peroxydase
KR100937230B1 (ko) Nox4 유전자와 상보결합할 수 있는 siRNA를 유효성분으로 포함하는 염증치료제
US20110038922A1 (en) Compounds for treating or preventing amine oxidase related diseases or disorders
KR100676502B1 (ko) Ec sod 및 세포 침투성 ec sod와 이들의 용도
KR20040075236A (ko) 세포투과성 수송도메인 융합단백질과 그 용도
WO2010101301A1 (en) Prophylaxis and treatment of macular degeneration and retinopathy using a prdx protein
US20080249038A1 (en) Bone Morphogenetic Protein (Bmp) 2A and Uses Thereof
WO2021067613A1 (en) Compositions and methods for treating amyotrophic lateral sclerosis
CN113373176A (zh) 一种基因治疗载体构建方法及在阿尔兹海默症药物的应用
JP4704435B2 (ja) ニューロン再生
US20180140681A1 (en) Composition for preventing or treating autoimmune disease, containing ssu72 as active ingredient
KR20220022126A (ko) Tert 활성화 치료요법을 포함하는 방법 및 조성물
KR101229821B1 (ko) 그래뉼린-에피테린 전구체 유전자의 발현을 억제하는 안티센스 및 이를 함유하는 약제학적 조성물
KR100573880B1 (ko) 동물세포 내에서 성장인자에 의하여 유도되는활성산소종의 생성을 억제하는 방법
US7825101B2 (en) Modulation of MLCK-L expression and uses thereof
US20100111913A1 (en) Method of enhancing migration of neural precursor cells
Tsuda et al. The effect of TAO expression on PCD-like phenomenon development and drug resistance in Trypanosoma brucei
KR101127566B1 (ko) transgelin 2 유전자 발현을 억제하여 암세포의화합물 또는 방사선에 대한 민감도를 증진하는 방법
CN117045771A (zh) Trim16在制备预防或治疗sod1毒性蛋白质相关疾病药物中的应用
WO2023154729A2 (en) Compositions and methods for cardiac tissue regeneration
KR20140030934A (ko) 퍼옥시레독신 2 융합단백질을 함유하는 뇌 허혈손상 예방 및 치료용 약학 조성물
US9433659B2 (en) Enhanced glycemic control using Ad36E4orf1 and AKT1 inhibitor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130708

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140128

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150130

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee