KR20060013177A - Method for making forsterite film of grain-oriented electrical steel sheets - Google Patents

Method for making forsterite film of grain-oriented electrical steel sheets Download PDF

Info

Publication number
KR20060013177A
KR20060013177A KR1020040062030A KR20040062030A KR20060013177A KR 20060013177 A KR20060013177 A KR 20060013177A KR 1020040062030 A KR1020040062030 A KR 1020040062030A KR 20040062030 A KR20040062030 A KR 20040062030A KR 20060013177 A KR20060013177 A KR 20060013177A
Authority
KR
South Korea
Prior art keywords
temperature
mgo
annealing
grain
less
Prior art date
Application number
KR1020040062030A
Other languages
Korean (ko)
Other versions
KR101089303B1 (en
Inventor
최규승
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020040062030A priority Critical patent/KR101089303B1/en
Publication of KR20060013177A publication Critical patent/KR20060013177A/en
Application granted granted Critical
Publication of KR101089303B1 publication Critical patent/KR101089303B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/125Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with application of tension
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

본 발명은 방향성 전기강판의 그라스피막 형성방법에 관한 것으로, 중량%로 Si:3.0∼3.3%, C:0.040∼0.062%, 용존Al:0.023∼0.030%, N:0.006∼0.009%, S:0.010% 이하, Mn:0.008∼0.016%, Cr:0.04-0.12%를 기본으로 하고, 잔부 Fe 및 기타 불가피한 불순물로 조성된 슬라브를 1380℃ 이하에서 저온재가열후 열간압연하여 2.0 ~ 2.3mm의 열간압연판을 만들고, 이를 1100℃이하의 온도에서 열연판소둔을 하며, 산세 및 냉간압연으로 최종두께인 0.27~0.30mm두께로 조정하고, 이후 수소 및 질소 습윤분위기하의 840∼890℃부근에서 탈탄처리를 행한 다음 소둔분리제로 MgO 및 소량의 TiO2 및 Na2B44O7의 혼합물을 슬러리상태로 하여 도포, 건조한 다음 권취하여 대형코일로 만들고, 25% 이하 질소함유 수소분위기에서 700∼1200℃구간의 승온율을 15℃/hr 이상 유지하면서 승온하여 최고온도 1200℃에서 20시간 이상 균열한 후 냉각하는 열사이클을 거치는 최종 마무리 고온소둔을 행하는 방향성 전기강판 제조방법에 있어서; 상기 최종 마무리 고온소둔시 코일에 걸리는 장력은 2.5~4.5Kg/mm2로 유지하고, 판폭방향의 중심부 온도가 550℃에 도달할 때 까지는 30℃/hr 이하의 승온속도로 가열함과 동시에 폭방향 MgO의 수화수분은 0.12~0.45%로 유지시켜 대형코일의 조직노출결함을 억제하고 실수율을 향상시키도록 한 것이다.The present invention relates to a method for forming a glass film of a grain-oriented electrical steel sheet, by weight% Si: 3.0 to 3.3%, C: 0.040 to 0.062%, dissolved Al: 0.023 to 0.030%, N: 0.006 to 0.009%, S: 0.010 % Or less, Mn: 0.008 ~ 0.016%, Cr: 0.04-0.12%, Slabs composed of balance Fe and other unavoidable impurities are hot rolled after low temperature reheating at 1380 ℃ or lower and hot rolled plate of 2.0 ~ 2.3mm. Hot-rolled sheet annealing at a temperature of 1100 ℃ or less, adjusted to a final thickness of 0.27 ~ 0.30mm by pickling and cold rolling, and then decarburized near 840 ~ 890 ℃ under a humid atmosphere of hydrogen and nitrogen Next, a mixture of MgO and a small amount of TiO 2 and Na 2 B 4 4 O 7 is applied as a slurry, dried, and then wound up to form a large coil, and heated to a temperature of 700 to 1200 ° C. in a nitrogen atmosphere of 25% or less. The temperature is raised while maintaining the rate at 15 ° C / hr or more, and 20 hours at the maximum temperature of 1200 ° C. In the method for producing a grain-oriented electrical steel sheet subjected to the final finishing high temperature annealing through a heat cycle to cool after cracking over abnormal time; The tension applied to the coil during the final finishing high temperature annealing is maintained at 2.5 to 4.5Kg / mm 2 , and the heating is performed at a temperature rising rate of 30 ° C./hr or less until the central temperature of the plate width direction reaches 550 ° C. and at the same time in the width direction. Hydration moisture of MgO is maintained at 0.12 ~ 0.45% to suppress defects in tissue exposure of large coils and improve the error rate.

Description

방향성 전기강판의 그라스피막 형성방법{METHOD FOR MAKING FORSTERITE FILM OF GRAIN-ORIENTED ELECTRICAL STEEL SHEETS}Glass film formation method of grain-oriented electrical steel sheet {METHOD FOR MAKING FORSTERITE FILM OF GRAIN-ORIENTED ELECTRICAL STEEL SHEETS}

본 발명은 방향성 전기강판의 그라스피막 형성방법에 관한 것으로, 보다 상세하게는 그라스피막 형성 공정을 최적으로 관리함으로서 최종 마무리 고온소둔시 대형코일의 최외권부에서 발생되는 그라스피막 형성량 절대부족 문제인 조직노출결함 발생을 억제하여 실수율을 향상시키도록 한 방향성 전기강판의 그라스피막 형성방법에 관한 것이다.The present invention relates to a method for forming a glass film of a grain-oriented electrical steel sheet, and more particularly, by exposing optimally to the glass film forming process, the exposure of a tissue film which is an absolute shortage problem of the amount of glass film formed in the outermost part of a large coil during final finishing high temperature annealing. The present invention relates to a method for forming a glass film of a grain-oriented electrical steel sheet to suppress the occurrence of defects to improve the real error rate.

통상, 방향성 전기강판이란 3.1%의 Si성분을 함유하고, 결정립의 방위가 (110)[001] 방향으로 정열된 집합조직을 가지며, 압연방향으로 극히 우수한 자기적특성을 가지고 있어 변압기, 전동기, 발전기 및 기타 전자기기 등의 철심 재료로 사용되는 강판을 말한다.In general, oriented electrical steel sheet contains 3.1% of Si, has grain structure aligned in the direction of (110) [001], and has very good magnetic properties in the rolling direction. And steel sheets used as iron core materials such as electronic devices.

방향성 전기강판은 2-4%의 Si와 입성장억제제로 AlN 및 MnS를 함유하는 강을 이용하여 열간압연, 예비고둔, 1회 또는 소둔이 포함된 2회 냉간압연, 탈탄소둔, MgO 주성분의 소둔분리제 도포, 고온 마무리소둔, 장력코팅 등의 공정을 거처서 제조되며, 여기서 고온소둔공정은 소둔분리제로 도포된 MgO와 소재 표면에 형성된 철 감람석(Fayalite:Fe2SiO4) 및 이산화규소(SiO2)등과 반응하여 통상의 그라스피막(Forsterite:Mg2SiO4)을 형성하여 전기절연성 및 밀착성을 부여 할 뿐 만 아니라, 가장 중요한 목적인 자기적특성을 갖게 되는 2차재결정형성을 완성시켜 제품의 자기적특성을 부여하는 공정이다.A grain-oriented electrical steel sheet is made of 2-4% Si and grain growth inhibitor using AlN and MnS-containing steel, hot-rolled, pre-annealed, one-time or two-times cold rolled, decarbonized, and annealed with MgO. It is manufactured through processes such as separating agent application, high temperature finishing annealing, and tension coating, where the high temperature annealing process is made of MgO coated with annealing separator and iron olivine (Fayalite: Fe 2 SiO 4 ) and silicon dioxide (SiO 2 ) formed on the material surface. Reacts with ordinarily to form a conventional glass film (Forsterite: Mg 2 SiO 4 ) to not only provide electrical insulation and adhesion, but also to complete the secondary recrystallization that has the most important magnetic properties, the product's magnetic It is the process of giving a characteristic.

우수한 그라스피막특성은 기본적으로 소재 표면에 결함이 없는 균일한 색상을 가져야 하지만, 기능성을 부여하려는 여러가지 기술의 접목에 의하여 전기절연성을 향상시키고 피막의 밀착성을 강화시키는 것이 주로 이용되는 기술이었다.The excellent glass coating properties should basically have a uniform color without defects on the surface of the material, but the technique mainly used to improve electrical insulation and enhance film adhesion by incorporating various techniques to provide functionality.

그러나, 최근 고자속밀도급의 방향성 전기강판이 상용화되면서 최종 절연피막을 고장력코팅제를 적용하면서 하부의 그라스피막의 형성상태 및 형성량이 바로 최종제품의 자기적특성의 개선에 크게 기여함이 확인되어 그라스피막의 특성이 주로 외관 표면품질뿐 만 아니라 자기적특성 개선 측면까지 그 중요성이 확대되었다.However, with the recent commercialization of high magnetic flux oriented electrical steel sheets, it has been confirmed that the formation and amount of high-strength coating applied to the final insulating film greatly contributes to the improvement of the magnetic properties of the final product. The importance of the film is mainly extended not only to the appearance surface quality but also to the improvement of the magnetic properties.

지금까지 그라스피막의 특성 향상을 위해서 여러가지 공정인자의 제어기법이 응용되고 있었다.Until now, the control method of various process factors has been applied to improve the characteristics of the glass film.

예컨대, 한국특허출원 94-21390, 97-49226호에 개시된 탈탄소둔시의 분위기가스중의 산화능(PH2O/PH2)등의 적정 제어에 의해 최적의 조성을 갖는 산화물층을 형성시키는 기술이 그것이며, 일본특허 특개평6-184638호에 개시된 탈탄 산화물의 조성을 적정히 제어하여 그라스피막의 특성을 개선하고자 한 것이 그것이다.For example, the technique of forming an oxide layer having an optimum composition by appropriate control such as oxidation ability (PH 2 O / PH 2 ) in the atmosphere gas during decarbonization annealing disclosed in Korean Patent Application Nos. 94-21390 and 97-49226 is disclosed. This is to improve the characteristics of the glass film by appropriately controlling the composition of the decarburized oxide disclosed in Japanese Patent Laid-Open No. Hei 6-184638.

나아가, 일본특허 특개소 59-200670호에서는 MgO의 특성제어에 의한 그라스피막의 총괄적인 특성에 대하여 언급하고 있으나 대형코일 최외권부의 그라스피막 특성 개선을 위해서는 큰 도움이 되지 못하였다.Furthermore, Japanese Patent Laid-Open No. 59-200670 refers to the overall characteristics of the glass coating by controlling the characteristics of MgO, but it has not been very helpful for improving the glass coating characteristics of the outermost winding of a large coil.

이것은 그라스피막의 최외권부 형성의 그라스피막은 고온소둔시의 급열 승온부라는 특수한 조건에 의하여 결정되기 때문에 이러한 열등요인의 발견과 이에 대한 특별한 조업조건의 관리가 추가적으로 필요하기 때문이다.This is because the glass coating of the outermost portion of the glass coating is determined by the special condition of the rapid heating portion at the time of high temperature annealing, and thus, the inferior factors must be discovered and the management of the special operating conditions for this is necessary.

본 발명은 상술한 바와 같은 종래 기술이 갖는 제반 문제점을 감안하여 이를 해결하고자 창출한 것으로, 탈탄소둔 후 소둔분리제로 MgO 도포시 화학적반응성(활성화능)이 다소 늦은 저활성급을 사용하면서 함유 CaO성분량을 극히 낮게 관리하고, 또한 최종 마무리 고온소둔시 수화수분을 원활히 배출시키기 위하여 초기의 승온속도를 판온도 평균 550℃까지의 충분한 시간을 부여하여 함유 수화수분량을 적정량으로 제어관리함으로써 최외권부 소재에 조직노출결함이 전혀없는 그라스피막을 안정하게 형성시킬 수 있는 방법을 제공함에 그 목적이 있다.The present invention has been made in view of the above-described problems of the prior art, and has been created to solve this problem, and the amount of CaO content used while using a low activity star with a slightly late chemical reactivity (activation ability) when MgO is applied as an annealing separator after decarbonization annealing. In order to control the amount of hydration water contained in the outermost material by giving sufficient time to the initial temperature increase rate up to 550 ℃ for the average temperature in order to manage extremely low and smoothly discharge the hydrated water during the final high temperature annealing. It is an object of the present invention to provide a method for stably forming a glass film having no exposure defects.

본 발명은 상기한 기술적 과제를 달성하기 위하여, 중량%로 Si:3.0∼3.3%, C:0.04∼0.062%, 용존Al:0.023∼0.030%, N:0.006∼0.009%, S:0.010%이하, Mn:0.008∼0.016%, Cr:0.04-0.12%를 기본으로 하고, 잔부 Fe 및 기타 불가피하게 혼입되는 성분을 포함한 조성의 슬라브를 1380℃ 이하에서 저온재가열후 열간압연하여 2.0 ~ 2.3mm의 열간압연판을 만들고, 1100℃이하의 온도에서 열연판소둔을 하며, 산세 및 냉간압연으로 최종두께인 0.27~0.30 mm로 조정한 후 수소 및 질소 혼합가스의 습윤분위기하 840∼890℃ 부근에서 탈탄처리를 행한 다음 소둔분리제로 MgO 및 소량의 TiO2 및 Na2B4O7의 혼합 조성물을 슬러리 상태로 분산하여 도포, 건조하여 권취한 후 최종 마무리 고온소둔은 25%이하 질소 함유 수소분위기이고 700∼1200℃구간의 승온율을 15℃/hr이상 유지하면서 승온하여 최고온도 1200℃에서 20시간 이상 균열한 후 냉각하는 열사이클을 거치는 마무리고온소둔을 행하는 방향성전기강판 제조공정에 있어서, 대형코일 최외권부에 주로 생성되는 그라스피막 형성량 부족에 기인되어 나타나는 조직노출결함을 개선하기 위하여, 특히 2.5~4.5Kg/mm2의 장력하에서 권취된 코일의 마무리 고온소둔시 판폭방향의 중심부 온도가 550℃까지의 승온속도를 30℃/Hr이하로 가열하고, 이때의 폭방향 MgO의 수화수분을 0.12~0.45%로 관리함으로서 방향성전기강판의 고온소둔공정 외권부의 그라스피막을 안정하게 형성하는 제조방법을 제공함에 그 특징이 있다.The present invention, in order to achieve the above technical problem, Si: 3.0 to 3.3%, C: 0.04 to 0.062%, dissolved Al: 0.023 to 0.030%, N: 0.006 to 0.009%, S: 0.010% or less, Based on Mn: 0.008 to 0.016% and Cr: 0.04-0.12%, the slab of the composition containing the balance Fe and other unavoidable components is hot rolled after reheating at a temperature of 1380 ° C. or lower and hot rolled to 2.0 to 2.3 mm. Plates are made, hot-rolled sheet annealing is carried out at a temperature of 1100 ℃ or below, and the final thickness is adjusted to 0.27 ~ 0.30 mm by pickling and cold rolling, and then decarburization is performed near 840 ~ 890 ℃ under the wet atmosphere of mixed hydrogen and nitrogen gas. After performing the annealing separator, MgO and a small amount of TiO 2 and Na 2 B 4 O 7 are dispersed in a slurry, applied, dried, and wound up. The final finishing high temperature annealing is a hydrogen atmosphere containing nitrogen at 25% or less and 700 to 1200. While maintaining the temperature increase rate of 15 ℃ / hr or more, the temperature is raised to the maximum temperature of 1200 ℃. In the manufacturing process of oriented electrical steel sheet which finishes high temperature annealing after cracking for 20 hours or more and cools, it is necessary to improve texture exposure defects caused by the lack of glass film formation mainly generated in the outermost part of a large coil. In particular, when the coil is wound under a tension of 2.5 to 4.5 Kg / mm 2 , the temperature rise rate up to 550 ° C. is heated to 30 ° C./Hr or less at the time of high temperature annealing. It is characterized by providing a manufacturing method for stably forming a glass film of the outer peripheral part of the high-temperature annealing process of the grain-oriented electrical steel sheet by managing 0.12 to 0.45%.

이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 최근 코일의 중량 대형화에 따른 자성의 균일성과 표면품질특성의 저하요인이 고온소둔시 코일 외권부에 형성되는 그라스피막의 형성량 부족으로 기인된 것으로 파악하여 소둔분리제의 중심성분인 MgO의 화학적특성 제어와 수화수분의 마무리 고온소둔로 내부로의 혼입이 불가피한 상황에서 소둔공정진행중 산화물형성에 반응속도가 빠르고 그라스피막 형성에 극히 불리한 FeO계 산화물 생성을 억제하는 제어를 통해 대형코일의 외권부에 형성되는 그라스피막 형성량을 증대시켜 안정적인 그라스피막을 획득함으로써 대형코일의 자성 균일성과 표면품질특성을 향상시키도록 한 것이다. According to the present invention, the deterioration of magnetic uniformity and surface quality characteristics due to the weight increase of the coil is caused by the lack of the amount of formation of the glass film formed on the outer coil of the coil during high temperature annealing. Control of chemical properties and finishing of hydration moisture In the situation where incorporation into the high temperature annealing furnace is inevitable, the reaction rate is fast during the annealing process and the control to suppress the formation of FeO oxides, which is extremely unfavorable for forming glass films, is achieved. By increasing the amount of glass film formed on the winding part to obtain a stable glass film to improve the magnetic uniformity and surface quality characteristics of the large coil.                     

즉, 소둔분리제의 중심 성분인 MgO의 화학적특성 제어의 경우에는 MgO가 주로 해수속에 있는 Mg이온으로부터 MgO로 석출시켜 제조하기 때문에 다소의 해수중의 불순물 혼입이 불가피하며, 특히 수화수분 관리에 있어서 핵심 치명성분인 CaO량의 가능한 한 최저 관리가 필요함은 물론 MgO 자체의 화학적특성인 활성화도(CAA, 구연산활성화도라고도 함)를 조절하여 수화수분 증가를 적절히 억제시키는 방법으로서, 이를 만족하기 위하여 활성화도값 CAA 40%를 75 ~ 95초의 저활성 특성을 갖도록 한 것이다.That is, in the case of controlling the chemical properties of MgO, which is a central component of the annealing separator, since some MgO is produced by precipitating MgO from Mg ions in seawater, it is inevitable that some impurities are mixed in the seawater. It is necessary to control the minimum amount of CaO, which is a key fatal component, as well as a method of appropriately suppressing the increase of hydration moisture by controlling the activation property (also called CAA, citric acid activation degree), which is a chemical characteristic of MgO itself. The CAA 40% is intended to have a low activity of 75 to 95 seconds.

아울러, 그라스피막 형성에 극히 불리한 FeO계 산화물 생성을 제어에 관하여는 코일의 소재 판온도 기준 550℃에 유리한 산화물이 형성가능한 수화수분만을 함유하도록 로내 승온속도를 적절히 제어함에 의하여 이후 외권부의 그라스피막 형성량을 증가시키도록 한 것이다.In addition, in controlling the formation of FeO-based oxides, which are extremely disadvantageous in forming the glass film, the temperature in the furnace is controlled by appropriately controlling the temperature increase rate in the furnace so as to contain only hydrated moisture capable of forming an oxide which is advantageous to the coil's material sheet temperature of 550 ° C. It is to increase the amount of formation.

즉, 소둔분리제의 중심성분인 MgO의 특성제어시 불가피하게 혼입되는 주된 성분이 CaO이며, 이는 대기중에서 공기중의 수분 또는 이산화탄소 가스를 흡수, 반응하여 Ca(OH)2 또는 CaCO3의 화합물을 형성하고, 고온소둔공정시 수화수분의 일부가 되어 그라스피막형성시 악영향을 미친게 된다. 따라서, 이의 특성제어가 본 발명의 필수요건이 된다.That is, the main component that is inevitably incorporated in the control of the characteristics of MgO, which is a central component of the annealing separator, is CaO, which absorbs and reacts with water or carbon dioxide gas in the air to react with Ca (OH) 2 or CaCO 3 . And become part of the hydration moisture during the high temperature annealing process, which adversely affects the formation of the glass film. Therefore, its characteristic control becomes an essential requirement of the present invention.

또한, 본 발명은 MgO 자체의 화학적특성인 활성화도를 조절하여 수화수분 생성반응을 적절히 지연시키기 위하여 MgO 분말의 활성화도값(CAA 40%)을 75 ~ 95초의 저활성급의 화학적특성을 갖도록 하여 상대적으로 MgO혼합 및 건조공정중의 수 화수분 증가를 축소할 수 있고, 고온소둔공정에서 그라스피막 형성시 고활성급 MgO 대비 다소 높은 온도에서 반응이 개시될 수 있어 고온소둔중에서의 표면산화물층의 조정을 보다 유리하게 한 것이다.In addition, the present invention is to adjust the activation of the chemical properties of the MgO itself to appropriately delay the hydration of water production reaction to have a low activity star chemical properties of 75 ~ 95 seconds of the activation value (CAA 40%) of the MgO powder It is possible to reduce the increase of hydration water during the MgO mixing and drying process, and the reaction can be started at a slightly higher temperature than the high MgO during high temperature annealing, so that the surface oxide layer can be adjusted during hot annealing. Will be more advantageous.

특히, MgO중에 함유된 수화수분이 마무리 고온소둔로내 혼입은 불가피하므로 고온소둔중의 베이스코팅 형성에 극히 불리한 FeO산화물 생성을 억제하기 위하여 산화반응속도가 비교적 늦은 판온도 기준 550℃ 도달시까지 수화수분량을 제어하여 유리한 산화물의 형성가능한 수화수분만을 가질수 있도록 함이 바람직하다.Particularly, since hydration water contained in MgO is inevitably mixed in the finishing high temperature annealing furnace, hydration until the plate reaction rate is reached at 550 ° C., which is relatively slow, in order to suppress the formation of FeO oxide, which is extremely disadvantageous in forming the base coating during high temperature annealing. It is desirable to control the amount of water so that it can have only hydrated water that can form an advantageous oxide.

이때, 적정의 수화수분은 승온 550℃ 경에 0.12% 이상이고, 0.45%이하임이 실험을 통해 확인되었다.At this time, the hydration of the titration is 0.12% or more at a temperature of 550 ℃, it was confirmed through the experiment 0.45% or less.

본 발명에서의 수화수분 축소 제어기술은 저활성급의 MgO 사용에 더하여 마무리 고온소둔시의 저온구간 통기성 확보에 의한 함유 수화수분의 용이한 제거가 필요하다.Hydrated moisture reduction control technology in the present invention, in addition to the use of low activity star MgO, it is necessary to easily remove the contained hydration moisture by ensuring low-temperature section air permeability during finishing high temperature annealing.

따라서, 통기성 확보를 위해 코일의 권취장력을 일정량 이하까지 감소하여야 하고, 이때 통기성 및 형상불량을 고려한 최적조건은 2.5~3.5kg/mm2이다.Therefore, in order to secure breathability, the coiling tension of the coil should be reduced to a certain amount or less, and the optimum condition considering the breathability and poor shape is 2.5 to 3.5 kg / mm 2 .

또 하나의 방법은, 가능한 한 저속 승온에 의해 수화수분 제거의 배출시간을 확보하는 것에 있으며, 이때 경제성을 고려한 최저 승온속도는 30℃/Hr임이 바람직하였다.Another method is to secure the discharge time of hydration moisture removal by low temperature rising as much as possible, and at this time, it was preferable that the minimum temperature increase rate considering economical efficiency is 30 degreeC / Hr.

이하, 본 발명을 위한 슬라브의 조성비에 대한 한정이유를 설명한다.Hereinafter, the reason for limitation on the composition ratio of the slab for the present invention will be described.

[C:0.040~0.062%] [C: 0.040-0.062%]                     

C는 AlN석출물의 미세 고용분산, 압연조직을 형성하여 냉간압연시 가공에너지를 부여하는 등의 역활을 하므로 최소 0.040% 이상과 이후 탈탄공정의 어려움을 고려하여 0.062% 까지로 제한함이 타당하다.C plays a role of imparting fine solid dispersion of AlN precipitates and rolling structure to impart processing energy during cold rolling. Therefore, it is reasonable to limit C to 0.062% or more considering the difficulty of decarburization process.

[Si:3.0~3.3%][Si: 3.0 ~ 3.3%]

Si는 비저항치를 증가시켜 철심손실 즉 철손을 낮추는 역활을 하므로, 3.0% 이하에서는 철손특성이 나빠지고, 과잉 함유시에는 강이 취약해져 냉간압연성이 극히 나빠지므로 3.3% 이하로 관리해야 한다.Since Si plays a role of lowering iron loss or iron loss by increasing the resistivity, the iron loss property becomes worse at 3.0% or less, and the steel becomes vulnerable when the excess content is excessive, so cold rolling is extremely bad and should be managed at 3.3% or less.

[Mn:0.008~0.016%][Mn: 0.008-0.016%]

Mn은 재가열시 석출물의 고용온도를 낮추며, 열간압연시 소재의 양 끝부분에 생성되는 크랙을 방지하는 역할을 하므로 최소 0.08% 이상 첨가가 필요하며, 또한 Mn 산화물에 의해 철손을 악화시키므로 0.16% 이상은 억제되어야 한다.Mn lowers the solid solution temperature of the precipitate during reheating and prevents cracks formed at both ends of the material during hot rolling, so at least 0.08% or more is required, and Mn oxide deteriorates iron loss by more than 0.16%. Should be suppressed.

[Al:0.023~0.030%][Al: 0.023-0.030%]

Al은 N과 함께 AlN의 석출물을 형성하여 입성장억제력을 확보하는 중심원소이며 0.023% 이하에서는 2차재결정에 필요한 충분한 억제력을 갖지 못하기 때문에 결정립크기가 적고 불완전 미립자가 나타나며, 0.030% 이상에서는 억제력이 너무 강해 2차재결정 형성 자체를 어렵게 하여 자기적 특성이 급격히 열화되므로 중점관리가 요구되며 상기한 조성범위가 가장 타당하다.Al is the central element that forms the precipitate of AlN together with N to secure grain growth inhibitory power.In the case of 0.023% or less, Al has little grain size and incomplete fine grains, and in 0.030% or more, it suppresses the grain growth. This strength is so strong that it is difficult to form secondary recrystallization, so that the magnetic property is rapidly deteriorated, so the central management is required, and the above-mentioned composition range is most appropriate.

[N:0.006~0.009%][N: 0.006-0.009%]

N은 용존Al과 반응 석출물을 형성하여 2차재결정형성에 있어서 필수적인 성분이며, 0.006% 이하에서는 형성석출물이 부족하게 되고, 0.009% 이상에서는 추가 침질을 고려하여 상기 범위로 제한함이 바람직하다.N is an essential component in forming secondary reacted crystals with dissolved Al, and the amount of formed precipitates is insufficient at 0.006% or less, and is preferably limited to the above range in consideration of additional sedimentation at 0.009% or more.

다음은 본 발명의 제조공정에 대하여 설명한다.Next, the manufacturing process of the present invention will be described.

상기 조성의 강슬라브를 열간압연성과 자기적특성 확보를 고려하여 1150℃~1380℃의 범위에서 재가열한 후 열간압연하여 2.0∼2.3mm두께의 열간압연판을 만든다.The steel slab having the composition is reheated in the range of 1150 ° C. to 1380 ° C. in consideration of hot rolling and securing magnetic properties, and then hot rolled to form a hot rolled plate having a thickness of 2.0 to 2.3 mm.

이어, 1100℃이하의 온도에서 열연판소둔을 하고, 산세 및 냉간압연으로 최종두께인 0.23 ~ 0.35mm두께로 조정한다.Subsequently, hot-rolled sheet annealing is performed at a temperature of 1100 ° C. or lower, and adjusted to a final thickness of 0.23 to 0.35 mm by pickling and cold rolling.

이후, 수소 및 질소혼합의 습윤분위기하의 840∼890℃부근에서 탈탄처리를 행한다. 이러한 제조공정은 기존처리방법을 이용하므로 특별히 한정하지 않는다.Thereafter, decarburization is performed at about 840 to 890 ° C under a humid atmosphere of hydrogen and nitrogen mixture. This manufacturing process is not particularly limited because it uses an existing treatment method.

그런 후, 소둔분리제 도포시 주성분인 MgO에 보조첨가제로 TiO2분말을 3~5%, Na2B4O7을 0.2~1.0%첨가하며, 보조첨가제에 대해서는 특별히 한정하지 않는다. Then, when the annealing separator is applied, TiO 2 powder and Na 2 B 4 O 7 are added in an amount of 3 to 5% and Na 2 B 4 O 7 is added as an auxiliary additive to MgO, which is a main component, and the additive is not particularly limited.

이때, MgO는 본 발명의 특성을 발휘하기 위하여 수화수분에 영향이 가장 큰 CaO 성분량의 관리가 필요하며, 적을수록 그라스피막형성에 유리하나 제조공정에서의 적정관리를 위하여 본 발명에서는 최고 0.16% 이하로 그 관리목표를 정한다.At this time, MgO is required to manage the amount of CaO component having the greatest influence on the hydration moisture in order to exhibit the characteristics of the present invention, the less is advantageous to the glass film formation, but in the present invention up to 0.16% for proper management in the manufacturing process Set log management goals.

한편, MgO의 화학적반응성의 척도값인 활성화도(CAA)는 통상재 대비 저활성화가 필요하다.Meanwhile, activation degree (CAA), which is a measure of chemical reactivity of MgO, needs low activation compared to conventional materials.

이때, 적정 관리값은 75초이하에서는 수화수분관리가 어렵고, 95초이상에서는 고온소둔시의 반응성이 다소 늦어저서 간혹 피막이 얇게 형성되는 경우가 있으므로 그 사이의 시간을 관리값으로 한정한다. At this time, the proper management value is difficult to manage the hydration moisture at 75 seconds or less, and the reactivity at the time of high temperature annealing is slightly slower at 95 seconds or more, so that the film is sometimes formed thinly, so the time therebetween is limited to the management value.                     

상기 조성의 소둔분리제 조성물을 슬러리상태로 하여 코타롤로 도포하고 700℃이하의 온도에서 건조한 다음 권취하여 대형코일로 만든다.The annealing separator composition of the composition is applied in a slurry state and coated with cotarol, dried at a temperature of 700 ° C. or less, and then wound to make a large coil.

이때, 권취장력은 매우 중요한 영향인자로서, 2.5kg/mm2 이하에서는 에지프레아(Edge Flare) 결함이 생김은 물론 HCL 작업성이 불량해지고, 3.5kg/mm2 이상에서는 수화수분의 통기성이 불량하여 적정제어가 곤란하므로 그 사이값이 특히 바람직하다.At this time, winding tension is a very important influence factor, edge flare defects occur at 2.5kg / mm 2 or less, HCL workability is poor, and breathability of hydration moisture is poor at 3.5kg / mm 2 or more. Since proper control is difficult, the value between them is especially preferable.

최종 마무리 고온소둔은 25% 이하 질소 함유 수소분위기이고, 700∼1200℃ 구간의 승온율을 15℃/hr이상 유지하면서 승온하여, 최고온도 1200℃ 에서 20시간 이상 균열한 후 냉각하는 열사이클을 거치도록 한다.The final high temperature annealing is a hydrogen atmosphere containing nitrogen below 25%, and the temperature is raised while maintaining the temperature rising rate of 700 to 1200 ° C over 15 ° C / hr, and undergoes a heat cycle of cooling after cracking for 20 hours or more at the maximum temperature of 1200 ° C. To do that.

이때, 본 발명의 그라스피막 안정화를 위해 초기 승온과정에서 산화물 형성에 중요한 550℃까지의 온도에서 승온속도를 30℃/hr 이하로 관리할 것이 필요하며, 그 이상의 승온속도에서는 적정 수화수분관리가 불가능하다.At this time, it is necessary to manage the temperature increase rate to 30 ℃ / hr or less at a temperature up to 550 ℃ which is important for oxide formation in the initial temperature increase process for stabilizing the glass film of the present invention, the proper hydration moisture management is impossible at higher temperature increase rate Do.

동시에, 이때의 폭방향 MgO중 평균 수화수분량은 0.12~0.45%의 관리가 요구되며, 0.45% 이상 함유시 외권부의 과잉산화에 의한 조직노출결함이 생성되기 쉽고, 0.12% 이하에서는 900℃까지의 승온과정에서 표면산화물의 과잉환원에 의해 그라스피막 형성이 불량하여 역시 조직노출결함이 생성되므로 주의를 요한다.At the same time, the average amount of hydration in the width MgO is required to be 0.12 ~ 0.45%, and when it is contained more than 0.45%, tissue exposure defects are easily generated by over-oxidation of the outer outer region. It is necessary to pay attention because the excessive formation of the surface oxide during the temperature increase process results in poor formation of the glass film, resulting in defects in tissue exposure.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

중량%로 Si:3.1%, C:0.048%, 용존Al:0.028%, N:0.009%, S:0.007%이하, Mn:0.011%, Cr:0.10%를 기본으로 하고, 기타 불가피하게 혼입되는 성분을 포함한 나머지를 Fe로 구성한 슬라브를 1200℃에서 저온재가열 후 열간압연하여 2.2mm의 열간압연판을 만들었다.Si: 3.1%, C: 0.048%, Dissolved Al: 0.028%, N: 0.009%, S: 0.007% or less, Mn: 0.011%, Cr: 0.10% by weight, and other inevitable ingredients The slab composed of the remainder including Fe was hot-rolled after reheating at 1200 ° C. to make 2.2 mm hot rolled plate.

이어, 1100℃의 온도에서 열연판소둔을 행하고, 산세 및 냉간압연으로 최종두께인 0.30mm로 조정한 후 수소 및 질소 혼합가스의 습윤분위기하의 855℃에서 탈탄처리를 행하여 탈탄판의 [O]량을 720~780ppm으로 관리하였다.Subsequently, hot-rolled sheet annealing was performed at a temperature of 1100 ° C., and the final thickness was adjusted to 0.30 mm by pickling and cold rolling, followed by decarburization at 855 ° C. under a humid atmosphere of hydrogen and nitrogen mixed gas to give [O] content of the decarburized plate. Was administered at 720 ~ 780ppm.

그런 다음, 소둔분리제로 활성도가 CAA기준 85초의 저활성급 MgO 100중량부에 TiO2 5중량부 및 Na2B4O7 0.3중량부를 혼합한 소둔분리제 조성물을 슬러리 상태로 하여 코타롤로 11.0g/m2 기준으로 도포하고, 650℃의 온도에서 건조한 다음 단위장력을 3.5Kg/mm2로 권취하여 9톤중량의 대형코일로 만들었다.Then, annealing separator composition was mixed with 5 parts by weight of TiO 2 and 0.3 parts by weight of Na 2 B 4 O 7 to 100 parts by weight of low activity MgO of 85 seconds based on CAA as an annealing separator. / m 2 was applied, dried at a temperature of 650 ℃ and unit tension was wound to 3.5Kg / mm 2 to make a 9 ton weight large coil.

이후, 최종 마무리 고온소둔은 승온개시부터 1200℃까지는 25%의 질소 함유 수소분위기이고, 1200℃에서 20시간이상의 균열 및 이후 냉각분위기에서는 10% 이하의 질소함유 수소분위기이며, 700∼1200℃ 구간의 승온율은 15℃/hr 이상 유지하는 열사이클을 거치는 2차재결정소둔을 행하여 그라스피막 및 자기적특성을 완성하였다.Afterwards, the final finishing high temperature annealing is 25% of nitrogen-containing hydrogen atmosphere from the start of temperature rise to 1200 ° C, more than 20 hours of cracking at 1200 ° C, and 10% or less of nitrogen-containing hydrogen atmosphere in the cooling atmosphere thereafter. Secondary recrystallization annealing was carried out through a thermal cycle maintained at a temperature increase rate of 15 ° C./hr or more to complete the glass coating and the magnetic properties.

이때, 최종 마무리고온소둔시 판폭방향의 중심부 기준 550℃까지의 승온 속도를 10~300℃/Hr까지 조절하였고, 또한, MgO 도포조건 등을 조정하여 수화수분량을 0.05~2.32%까지 변화시킨 조건에 따른 코일 외권부의 그라스피막의 조직노출결함 발생정도를 비교하기 위하여 최외권부에서 1톤지점의 중심부면의 그라스피막 형 성량을 형광X선분석법으로 조사하여 표 1에 나타내었다.At this time, in the final finishing high temperature annealing, the temperature increase rate up to 550 ° C based on the center of the plate width direction was adjusted to 10 ~ 300 ° C / Hr, and the conditions for changing the water content of hydration to 0.05 ~ 2.32% by adjusting MgO coating conditions, etc. To compare the incidence of tissue exposure defects in the outer skin of the coil, the glass film formation of the central surface of the 1 ton point in the outermost region was investigated by fluorescence X-ray analysis.

여기서, 그라스피막 형성량이 통상 1.5g/m2인 경우를 조직노출결함이라 하며, 형성량이 적을수록 결함이 심하다고 할 수 있다.Here, the case where the glass film formation amount is usually 1.5 g / m 2 is referred to as a tissue exposure defect, and the smaller the formation amount, the more severe the defect.

구분 division 승온속도(℃/hr) Temperature increase rate (℃ / hr) 수화수분량(%) Hydration Moisture (%) 그라스피막 형성량(g/m2)Glass film formation amount (g / m 2 ) 조직노출결함정도  Organizational Exposure Defect 통상재1Normal Goods 1 200200 2.052.05 1.111.11 다소강한결함Somewhat stronger 통상재2Normal Goods 2 300300 2.422.42 0.750.75 강한결함Strong defect 비교재1Comparative Material 1 1010 0.050.05 1.561.56 약한결함Weak defect 비교재2Comparative Material 2 5050 0.750.75 1.481.48 약한결함Weak defect 비교재3Comparative Material 3 120120 1.731.73 1.321.32 약한결함Weak defect 발명재1Invention 1 1515 0.180.18 2.832.83 양호Good 발명재2Invention 2 2020 0.270.27 3.453.45 양호Good 발명재3Invention 3 2727 0.410.41 3.363.36 양호Good

상기 표 1에서와 같이, 비교재1 처럼 승온속도가 너무 늦고, 따라서 수화수분량이 본 발명의 범위보다 낮은 경우는 오히려 피막형성량이 부족하여 다소 약한 조직노출결함이 보임을 확인할 수 있었다.As shown in Table 1, the temperature increase rate is too slow, as in Comparative Material 1, and therefore, when the hydration water content is lower than the range of the present invention, it was confirmed that the film formation defects were rather weak due to the lack of the amount of film formation.

그러나, 승온속도가 본 발명의 범위내인 30℃/hr이고, 수화수분량도 발명의 범위인 0.12~0.45%의 경우인 발명재1,2,3의 경우는 피막형성량이 많고 동시에 그라스피막은 양호한 외관색상을 나타내고 있음을 확인할 수 있었다.However, in the case of the invention materials 1, 2, and 3, in which the temperature increase rate is 30 ° C / hr within the range of the present invention, and the amount of hydration water is 0.12 to 0.45%, which is the range of the invention, the amount of film formation is large and at the same time, the glass film is good. It was confirmed that the appearance color was shown.

반면, 승온속도와 수화수분량이 본 발명의 범위를 넘어간 경우인 비교재2,3 및 통상재1,2의 경우에는 역시 피막형성량이 부족하여 전체적인 소재의 조직(Grain)이 육안으로 까지 보이는 조직결함 노출을 나타내었다.On the other hand, in the case of the temperature increase rate and the hydration water amount exceeding the scope of the present invention, the comparative material 2, 3 and the normal material 1, 2 also lacks the amount of film formation, so that the texture (Grain) of the entire material is visible to the naked eye Exposure was indicated.

[실시예 2]Example 2

상기 실시예1의 탈탄소둔판을 이용하여 소둔분리제인 MgO중의 CaO 성분량 및 활성화도가 다른 MgO 7종을 이용하여 도포하고 실시예1의 조건으로 최종 마무리고온소둔후 형성된 그라스피막의 형성량 및 조직노출결함상태를 관찰하여 표2에 나타내었다.The amount and structure of the glass film formed after the final high temperature annealing was applied by using MgO 7 in the amount and activation degree of CaO in the annealing separator MgO using the decarbonized annealing plate of Example 1 The exposure defects were observed and shown in Table 2.

이때, 마무리 고온소둔에서 승온속도는 27℃/hr를 기준조건으로 행하였다.At this time, the temperature increase rate in the finish high temperature annealing was carried out under the reference conditions 27 ℃ / hr.

구분 division CaO함유량 (℃/hr) CaO content (℃ / hr) 활성화도(CAA) (초) Activation (CAA) (sec) 그라스피막 형성량(g/m2)Glass film formation amount (g / m 2 ) 조직노출결함정도  Organizational Exposure Defect 통상재Trade goods 0.240.24 6565 1.121.12 다소강한결함Somewhat stronger 비교재1Comparative Material 1 0.130.13 6565 1.831.83 약한결함Weak defect 비교재2Comparative Material 2 0.240.24 7777 1.751.75 약한결함Weak defect 비교재3Comparative Material 3 0.100.10 103103 2.322.32 아주약한결함Very weak 비교재4Comparative Material 4 0.240.24 103103 1.811.81 약한결함Weak defect 발명재1Invention 1 0.120.12 7777 3.033.03 양호Good 발명재2Invention 2 0.100.10 8585 3.283.28 양호Good 발명재3Invention 3 0.090.09 9393 3.313.31 양호Good

상기 표 2에서와 같이, 통상재나 비교재1,2의 경우는 MgO중의 CaO 성분량 및 활성화도가 본발명의 범위보다 높거나 낮으면 그라스피막 형성량이 적어서 소재의 조직이 관찰되는 노출결함이 나타남을 알 수 있었다.As shown in Table 2, in the case of the conventional material or the comparative material 1 and 2, when the amount of CaO component and the activation degree in the MgO is higher or lower than the range of the present invention, the amount of glass film formation is small, indicating that the defects in the texture of the material are observed. Could know.

그러나, 본 발명의 범위에 포함되는 발명재1,2,3의 경우는 그라스피막 형성량이 많아도 결함이 전혀없는 양호한 피막을 형성하고 있음을 알 수 있다.However, in the case of invention materials 1, 2, and 3 which are included in the scope of the present invention, it can be seen that a good film having no defects is formed even if a large amount of glass film is formed.

또한, 비교재3,4처럼 활성화도나 CaO함유량이 발명의 범위를 벗어난 경우에도 역시 조직노출결함이 보임을 확인하였다.In addition, it was confirmed that even when the activation degree or CaO content is out of the scope of the invention as in Comparative Materials 3 and 4, tissue exposure defects were also observed.

이상에서 상세히 설명한 바와 같이, 본 발명에 따르면 대형코일의 외권부에서 발생하는 그라스피막 미형성에 의한 조직노출결함 생성을 억제함으로써 방향성 전기강판의 그라스피막을 안정하게 형성시킬 수 있다.As described in detail above, according to the present invention, it is possible to stably form the glass coating of the grain-oriented electrical steel sheet by suppressing the generation of tissue exposure defects due to the glass coating not forming in the outer coil portion of the large coil.

Claims (2)

중량%로 Si:3.0∼3.3%, C:0.040∼0.062%, 용존Al:0.023∼0.030%, N:0.006∼0.009%, S:0.010% 이하, Mn:0.008∼0.016%, Cr:0.04-0.12%를 기본으로 하고, 잔부 Fe 및 기타 불가피한 불순물로 조성된 슬라브를 1380℃ 이하에서 저온재가열후 열간압연하여 2.0 ~ 2.3mm의 열간압연판을 만들고, 이를 1100℃이하의 온도에서 열연판소둔을 하며, 산세 및 냉간압연으로 최종두께인 0.27~0.30mm두께로 조정하고, 이후 수소 및 질소 습윤분위기하의 840∼890℃부근에서 탈탄처리를 행한 다음 소둔분리제로 MgO 및 소량의 TiO2 및 Na2B44O7의 혼합물을 슬러리상태로 하여 도포, 건조한 다음 권취하여 대형코일로 만들고, 25% 이하 질소함유 수소분위기에서 700∼1200℃구간의 승온율을 15℃/hr 이상 유지하면서 승온하여 최고온도 1200℃에서 20시간 이상 균열한 후 냉각하는 열사이클을 거치는 최종 마무리 고온소둔을 행하는 방향성 전기강판 제조방법에 있어서;Si: 3.0 to 3.3%, C: 0.040 to 0.062%, dissolved Al: 0.023 to 0.030%, N: 0.006 to 0.009%, S: 0.010% or less, Mn: 0.008 to 0.016%, Cr: 0.04-0.12 Based on%, the slab composed of the balance Fe and other unavoidable impurities is hot-rolled after low temperature reheating at below 1380 ℃ to make hot rolled sheet of 2.0 ~ 2.3mm, and hot-rolled annealing at below 1100 ℃. After pickling and cold rolling, the final thickness was adjusted to 0.27 ~ 0.30mm, and then decarburized near 840 ~ 890 ℃ under hydrogen and nitrogen wet atmosphere, and then MgO and a small amount of TiO 2 and Na 2 B 4 were used as annealing separator. The mixture of 4O 7 is applied in a slurry state, dried, and then wound up to make a large coil. The temperature is elevated at a temperature of 700 to 1200 ° C. in a hydrogen atmosphere containing 25% or less and maintained at a temperature of 700 ° C. to 1200 ° C. or higher, at a maximum temperature of 1200 ° C. Finishing hot station with thermal cycle to cool after cracking over 20 hours in In the method for producing a grain-oriented electrical steel sheet to dull; 상기 최종 마무리 고온소둔시 코일에 걸리는 장력은 2.5~4.5Kg/mm2로 유지하고,The tension applied to the coil during the final finishing high temperature annealing is maintained at 2.5 ~ 4.5Kg / mm 2 , 판폭방향의 중심부 온도가 550℃에 도달할 때 까지는 30℃/hr 이하의 승온속도로 가열함과 동시에 폭방향 MgO의 수화수분은 0.12~0.45%로 유지시키는 것을 특징으로 하는 방향성 전기강판의 그라스피막 형성방법.The glass film of the grain-oriented electrical steel sheet characterized by heating at a heating rate of 30 ° C./hr or lower until the central temperature in the sheet width direction reaches 550 ° C. and maintaining the hydration moisture in the width direction MgO at 0.12 to 0.45%. Formation method. 청구항 1에 있어서,The method according to claim 1, 상기 MgO중 CaO 성분은 0.16% 이하로 함유시키고, 활성화도(CAA)값은 75~95의 저활성급 MgO를 소둔분리제로 사용하는 것을 특징으로 하는 방향성 전기강판의 그라스피막 형성방법.The CaO component of the MgO is 0.16% or less, and activation degree (CAA) value of 75 ~ 95 low activity star MgO, characterized in that the annealing separator using a glass film of a grain-oriented electrical steel sheet, characterized in that.
KR1020040062030A 2004-08-06 2004-08-06 Method for making forsterite film of grain-oriented electrical steel sheets KR101089303B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040062030A KR101089303B1 (en) 2004-08-06 2004-08-06 Method for making forsterite film of grain-oriented electrical steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040062030A KR101089303B1 (en) 2004-08-06 2004-08-06 Method for making forsterite film of grain-oriented electrical steel sheets

Publications (2)

Publication Number Publication Date
KR20060013177A true KR20060013177A (en) 2006-02-09
KR101089303B1 KR101089303B1 (en) 2011-12-02

Family

ID=37122639

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040062030A KR101089303B1 (en) 2004-08-06 2004-08-06 Method for making forsterite film of grain-oriented electrical steel sheets

Country Status (1)

Country Link
KR (1) KR101089303B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762436B1 (en) * 2006-10-18 2007-10-02 주식회사 포스코 Annealing separating agent for grain oriented silicon steel sheet excellent in surface characteristic and production method of grain oriented silicon steel sheet using the same
WO2008047999A1 (en) * 2006-10-18 2008-04-24 Posco Annealing separating agent for grain oriented electrical steel sheet having uniform glass film and excellent magnetic properties and method of manufacturig the same
KR100865316B1 (en) * 2006-10-18 2008-10-27 주식회사 포스코 Annealing separating agent for grain oriented electrical steel sheet having uniform glass film and excellent magnetic properties
KR101243257B1 (en) * 2010-12-27 2013-03-13 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheets having excellent magnetic properties
WO2016085257A1 (en) * 2014-11-26 2016-06-02 주식회사 포스코 Annealing separator composition for oriented electrical steel sheet, and method for manufacturing oriented electrical steel sheet using same
WO2022186357A1 (en) * 2021-03-03 2022-09-09 Jfeスチール株式会社 Method for determining finish annealing conditions for oriented electromagnetic steel sheet, and method for manufacturing oriented electromagnetic steel sheet using said determination method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101909218B1 (en) 2016-12-21 2018-10-17 주식회사 포스코 Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
KR102080168B1 (en) * 2017-12-26 2020-02-21 주식회사 포스코 Annealing separating agent composition for grain oriented electrical steel sheet, method for manufacturing magnesium oxide for annealing separating agent, and method for manufacturing grain oriented electrical steel sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100268855B1 (en) 1996-12-21 2000-10-16 이구택 The manufacturing method of oriented steelsheet with low reheat treatment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762436B1 (en) * 2006-10-18 2007-10-02 주식회사 포스코 Annealing separating agent for grain oriented silicon steel sheet excellent in surface characteristic and production method of grain oriented silicon steel sheet using the same
WO2008047999A1 (en) * 2006-10-18 2008-04-24 Posco Annealing separating agent for grain oriented electrical steel sheet having uniform glass film and excellent magnetic properties and method of manufacturig the same
KR100865316B1 (en) * 2006-10-18 2008-10-27 주식회사 포스코 Annealing separating agent for grain oriented electrical steel sheet having uniform glass film and excellent magnetic properties
KR101243257B1 (en) * 2010-12-27 2013-03-13 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheets having excellent magnetic properties
WO2016085257A1 (en) * 2014-11-26 2016-06-02 주식회사 포스코 Annealing separator composition for oriented electrical steel sheet, and method for manufacturing oriented electrical steel sheet using same
WO2022186357A1 (en) * 2021-03-03 2022-09-09 Jfeスチール株式会社 Method for determining finish annealing conditions for oriented electromagnetic steel sheet, and method for manufacturing oriented electromagnetic steel sheet using said determination method
JP7168134B1 (en) * 2021-03-03 2022-11-09 Jfeスチール株式会社 METHOD FOR DETERMINING FINISH ANNEALING CONDITIONS FOR GRAIN-EDUCED ELECTRICAL STEEL AND METHOD FOR MANUFACTURING GRAY-ORIENTED ELECTRICAL STEEL USING THE DETERMINATION METHOD

Also Published As

Publication number Publication date
KR101089303B1 (en) 2011-12-02

Similar Documents

Publication Publication Date Title
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
KR101294624B1 (en) A method of manufacturing oriented si steel containing cu
KR100597772B1 (en) Grain-oriented silicon steel sheet having excellent coating film properties and magnetic properties and method for making the same
JP5479448B2 (en) Method for producing directional silicon steel with high electromagnetic performance
KR101480498B1 (en) Oriented electrical steel sheet and method for manufacturing the same
JP5245277B2 (en) Method for producing magnesia and grain-oriented electrical steel sheet for annealing separator
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
EP3128028B1 (en) Primary recrystallization annealed sheet for oriented electromagnetic steel sheet, and method for producing oriented electromagnetic steel sheet
JP5040131B2 (en) Manufacturing method of unidirectional electrical steel sheet
EP2940158A1 (en) Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
KR101651431B1 (en) Method of manufacturing oriented electrical steels
KR101296131B1 (en) Oriented-electrical sheets with excellent glass-coating adhesion force and magnetic properties and manufacturing method thereof
KR101089303B1 (en) Method for making forsterite film of grain-oriented electrical steel sheets
JP4192822B2 (en) Method for producing grain-oriented electrical steel sheet having excellent magnetic properties and coating properties
KR101796751B1 (en) Annealing separating agent composition, method for manufacturing the same, and method for manufacturing steel sheet using the same
JP2000144249A (en) Production of grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property
JP5857983B2 (en) Manufacturing method of grain-oriented electrical steel sheet and MgO for annealing separator
KR101410474B1 (en) Gran-oriented electrical steel sheet and manufacturing method for the same
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP4604827B2 (en) Manufacturing method of unidirectional electrical steel sheet
KR101059216B1 (en) Method for manufacturing oriented electrical steel sheet with excellent glass coating properties
WO1991019825A1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
KR102319831B1 (en) Method of grain oriented electrical steel sheet
JP2001123229A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet excellent in film characteristic
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141125

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151123

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161128

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171120

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181010

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191028

Year of fee payment: 9