JP4192822B2 - Method for producing grain-oriented electrical steel sheet having excellent magnetic properties and coating properties - Google Patents

Method for producing grain-oriented electrical steel sheet having excellent magnetic properties and coating properties Download PDF

Info

Publication number
JP4192822B2
JP4192822B2 JP2004105237A JP2004105237A JP4192822B2 JP 4192822 B2 JP4192822 B2 JP 4192822B2 JP 2004105237 A JP2004105237 A JP 2004105237A JP 2004105237 A JP2004105237 A JP 2004105237A JP 4192822 B2 JP4192822 B2 JP 4192822B2
Authority
JP
Japan
Prior art keywords
mass
annealing
water
magnesia
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004105237A
Other languages
Japanese (ja)
Other versions
JP2005290446A (en
Inventor
俊人 高宮
渡辺  誠
今村  猛
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004105237A priority Critical patent/JP4192822B2/en
Publication of JP2005290446A publication Critical patent/JP2005290446A/en
Application granted granted Critical
Publication of JP4192822B2 publication Critical patent/JP4192822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、磁気特性および被膜特性に優れる方向性電磁鋼板の製造方法に関し、特に、均一なフォルステライト被膜を工業的に安定して得ることができる方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet excellent in magnetic properties and film characteristics, and more particularly to a method for producing a grain-oriented electrical steel sheet capable of industrially stably obtaining a uniform forsterite film.

変圧器や発電機の鉄心材料として使用される方向性電磁鋼板は、磁束密度が高く、鉄損が低いことが求められる。そこで今日に至るまで、方向性電磁鋼板の低鉄損化を実現するために、種々の研究開発が行なわれてきた。中でも最も重視されてきた開発課題は、最終仕上焼鈍後の鋼板の結晶方位を、ゴス方位と呼ばれる{110}<001>方位に高度に集積させることである。というのは、鉄結晶の磁化容易軸方向である結晶方位<001>を圧延方向に高度に集積させることにより、圧延方向への磁化に要する磁化力が小さくなり、保磁力が低下する結果、ヒステリシス損が低下し、鉄損が低減されるからである。   A grain-oriented electrical steel sheet used as a core material for transformers and generators is required to have high magnetic flux density and low iron loss. So far, various research and development have been carried out in order to realize low iron loss of grain-oriented electrical steel sheets. Among them, the development issue that has been most emphasized is to highly accumulate the crystal orientation of the steel sheet after the final finish annealing in the {110} <001> orientation called goth orientation. This is because, by highly accumulating the crystal orientation <001>, which is the easy axis direction of the iron crystal, in the rolling direction, the magnetizing force required for magnetization in the rolling direction is reduced, and the coercive force is reduced, resulting in hysteresis. This is because the loss is reduced and the iron loss is reduced.

方向性電磁鋼板に求められる他の重要な特性としては、磁化した際の騒音が小さいことが挙げられる。しかしこの特性も、結晶方位をゴス方位に揃えることにより改善される。すなわち、変圧器から生じる騒音は、鉄心素材の磁歪振動や電磁振動に起因することが知られているが、結晶方位のゴス方位への集積度を高めることにより、磁歪振動の原因となる90°磁区の生成が抑制され、励磁電流が低下して電磁振動が抑制される結果、騒音が低減される。   Another important characteristic required for grain-oriented electrical steel sheets is low noise when magnetized. However, this characteristic is also improved by aligning the crystal orientation with the Goth orientation. That is, the noise generated from the transformer is known to be caused by magnetostrictive vibration and electromagnetic vibration of the iron core material, but by increasing the degree of integration of the crystal orientation in the Goss orientation, it causes 90 ° Generation of magnetic domains is suppressed, excitation current is reduced, and electromagnetic vibration is suppressed. As a result, noise is reduced.

上記のように、方向性電磁鋼板にとって、結晶方位<001>の圧延方向への集積度を高めることは、最も重要な開発課題である。結晶方位の集積度の指標としては、B8(磁化力800A/mにおける磁束密度)が用いられる場合が多く、方向性電磁鋼板の開発はB8の向上を大きな目標として推進されていると言っても過言ではない。また、鉄損の代表的な値としては、励磁磁束密度1.7T、励磁周波数50Hzの場合のエネルギー損失であるW17/50が一般的に使用されている。 As described above, for the grain-oriented electrical steel sheet, increasing the degree of integration of the crystal orientation <001> in the rolling direction is the most important development issue. In many cases, B 8 (magnetic flux density at a magnetizing force of 800 A / m) is used as an index of the degree of integration of crystal orientation, and the development of grain-oriented electrical steel sheets is promoted with a major goal of improving B 8. It is no exaggeration. Further, as a typical value of the iron loss, W 17/50 which is an energy loss when the excitation magnetic flux density is 1.7 T and the excitation frequency is 50 Hz is generally used.

上記のような{110}<001>方位に高度に集積した結晶組織は、最終仕上焼鈍中に起こる二次再結晶と呼ばれる現象を通じて形成される。即ち、上記二次再結晶によってゴス方位の結晶粒を優先的に巨大成長させることにより、所望の磁気特性を有する製品を得ることができる。   The crystal structure highly accumulated in the {110} <001> orientation as described above is formed through a phenomenon called secondary recrystallization that occurs during final finish annealing. That is, a product having desired magnetic properties can be obtained by preferentially growing goss-oriented crystal grains preferentially through the secondary recrystallization.

二次再結晶粒のゴス方位への集積を効果的に促進するためには、一次再結晶粒の成長を選択的に抑制するインヒビターと呼ばれる析出分散相を、均一かつ適正なサイズで形成させることが重要である。このインヒビターの存在によって、一次再結晶粒の正常粒成長が抑制され、最終仕上焼鈍中に高温まで細かい一次再結晶粒の状態が維持されるとともに、磁気特性にとって好ましい方位の結晶粒成長に対する選択性が高まる結果、高磁束密度が実現される。一般に、インヒビターが強力で正常粒成長に対する抑制力が強いほど、高いゴス方位集積度が得られると考えられている。   In order to effectively promote the accumulation of secondary recrystallized grains in the Goss orientation, a precipitate dispersed phase called an inhibitor that selectively suppresses the growth of primary recrystallized grains is formed in a uniform and appropriate size. is important. The presence of this inhibitor suppresses normal grain growth of primary recrystallized grains, maintains the state of fine primary recrystallized grains up to high temperatures during final finish annealing, and selectivity for grain growth in the preferred orientation for magnetic properties As a result, a high magnetic flux density is realized. In general, it is believed that the stronger the inhibitor and the stronger the suppressive force on normal grain growth, the higher the degree of Goss orientation accumulation.

このような働きを有するインヒビターとしては、AlN,BN,MnS,MnSe,Cu2-XS,Cu2-XSe等、鋼への溶解度の小さい物質が用いられる。例えば、特許文献1や特許文献2には、素材中にAlを含有させ、最終冷延圧下率を81〜95%の高圧下とするとともに、最終冷延前の焼鈍で強力なインヒビターであるAlNを析出させる技術が開示されている。 Inhibitors having this work, AlN, BN, MnS, MnSe , Cu 2-X S, Cu 2-X Se etc., small substances solubility in steel used. For example, in Patent Document 1 and Patent Document 2, AlN is included in the raw material, the final cold rolling reduction rate is set to a high pressure of 81 to 95%, and annealing is a powerful inhibitor before final cold rolling. A technique for precipitating is disclosed.

また、上記のインヒビター成分に加えてさらに、Ni,Sn,Sb,P,Cr,Te,Bi,Pb等を補助的に添加することが、二次再結晶粒の方位集積度の向上に対して有効であることが知られている。これらの補助的なインヒビター元素は、結晶粒界や鋼板表面に偏析することで、析出型の主インヒビターであるAlN,BN,MnS,MnSe,Cu2-XS,Cu2-XSe等と共同して正常粒成長の抑制力を強化し、磁気特性を高める働きを有する。 In addition to the above inhibitor components, supplementary addition of Ni, Sn, Sb, P, Cr, Te, Bi, Pb, etc. can improve the orientation accumulation degree of secondary recrystallized grains. It is known to be effective. These auxiliary inhibitor elements segregate at the grain boundaries and the steel sheet surface, and collaborate with AlN, BN, MnS, MnSe, Cu 2-X S, Cu 2-X Se, etc. Thus, it has the function of enhancing the suppression of normal grain growth and enhancing the magnetic properties.

しかしながら、これらの偏析型の補助的なインヒビター(以下、「副インヒビター」と称する)を鋼中に含有する素材を用いた方向性電磁鋼板の製造において、最終仕上焼鈍中に鋼板表面に生じるフォルステライト被膜の形成が不良となったり、あるいは、製品の被膜外観や絶縁被膜の密着性が劣化したりすることが知られている。   However, in the production of grain-oriented electrical steel sheets using materials containing these segregation-type auxiliary inhibitors (hereinafter referred to as “sub-inhibitors”) in steel, forsterite generated on the steel sheet surface during final finish annealing. It is known that the formation of the coating film is poor, or the appearance of the coating film of the product and the adhesion of the insulating film are deteriorated.

このようなフォルステライト被膜の形成不良に対する対策に対しては数多くの改善策が提案されている。例えば、特許文献3には、最終仕上焼鈍の際に用いる焼鈍分離剤の含水率を0.3〜3%の範囲に調節する方法が、特許文献4には、脱炭焼鈍板の酸素目付量を550〜850ppmの範囲に調整する方法が、また、特許文献5には、焼鈍分離剤に用いるMgOのIg−Loss値を0.4〜1.5%に調整する方法が、さらに特許文献6には、最終仕上焼鈍における雰囲気ガス流量を適正に調整する方法などが提案されている。しかし、これらの技術はいずれも、従前の方向性電磁鋼板における製造条件を最適化するに留まるものであり、被膜の改善効果が必ずしも高いとは言えない。   Many countermeasures have been proposed for measures against such poor formation of a forsterite film. For example, Patent Document 3 discloses a method of adjusting the moisture content of an annealing separator used in final finish annealing to a range of 0.3 to 3%, and Patent Document 4 discloses an oxygen basis weight of a decarburized annealing plate of 550. A method of adjusting to the range of ˜850 ppm, Patent Document 5 discloses a method of adjusting the Ig-Loss value of MgO used in the annealing separator to 0.4 to 1.5%, and Patent Document 6 discloses final finish annealing. There has been proposed a method for appropriately adjusting the atmospheric gas flow rate. However, all of these techniques are limited to optimizing the manufacturing conditions in the conventional grain-oriented electrical steel sheet, and it cannot be said that the effect of improving the coating is necessarily high.

一方、上記の技術とは別に、焼鈍分離剤の主剤であるMgOに種々の添加物を添加することにより、従来技術の問題点を解決しようとすることが検討されている。例えば、特許文献7には、添加物としてアルカリ金属化合物を用いることにより、被膜外観や被膜密着性がある程度の改善されることが開示されている。
特公昭33−004710号公報 特公昭40−015644号公報 特開平11−229036号公報 特開平10−152725号公報 特開平10−025516号公報 特開平09−003542号公報 特開2003−342642号公報
On the other hand, apart from the above technique, it has been studied to solve the problems of the prior art by adding various additives to MgO, which is the main ingredient of the annealing separator. For example, Patent Document 7 discloses that by using an alkali metal compound as an additive, the coating appearance and coating adhesion are improved to some extent.
Japanese Patent Publication No.33-004710 Japanese Patent Publication No. 40-015644 Japanese Patent Laid-Open No. 11-229036 JP-A-10-152725 Japanese Patent Laid-Open No. 10-025516 JP 09-003542 A JP 2003-342642 A

しかし、最終仕上焼鈍においては、鋼板は、焼鈍分離剤を塗布・乾燥してコイル状に巻き取った状態で、かつ鋼板の幅方向の片側側面を下にした状態で焼鈍される。そのため、最終仕上焼鈍中におけるコイルの内巻、中巻、外巻およびコイル幅方向で、温度や鋼板と接する雰囲気等の熱処理条件に違いが発生する。例えば、コイルの内巻や外巻は、焼鈍雰囲気の影響を受けやすく、一方、コイルの中巻は、焼鈍分離剤に含まれる水分が抜けにくいため、部分的に高露点になったりする。そのためコイルの長手方向もしくは幅方向の位置によって、磁気特性や被膜特性にばらつきを生じる。この様な焼鈍条件のばらつきに対しては、添加物の量を精度良くコントロールする必要がある。しかし、これだけでは、磁気特性や被膜外観、被膜密着性のばらつきを解消することはできない。   However, in the final finish annealing, the steel sheet is annealed in a state where an annealing separator is applied and dried and wound in a coil shape, and with one side surface in the width direction of the steel sheet facing down. Therefore, a difference occurs in the heat treatment conditions such as the temperature and the atmosphere in contact with the steel plate in the inner winding, middle winding, outer winding and coil width direction of the coil during the final finish annealing. For example, the inner and outer windings of the coil are easily affected by the annealing atmosphere, while the middle winding of the coil has a high dew point in part because moisture contained in the annealing separator is difficult to escape. Therefore, magnetic characteristics and film characteristics vary depending on the position in the longitudinal direction or width direction of the coil. For such variations in annealing conditions, it is necessary to accurately control the amount of additive. However, this alone cannot eliminate variations in magnetic properties, film appearance, and film adhesion.

さらに近年では、方向性電磁鋼板は、自動車部品や小型モータの分野でも使用されるようになり、従来の鋼板以上に強加工がされるようになった。すなわち、従来、トランスに使用される場合には、スリットで切断される程度の軽度の加工であったのに対し、上記用途においては、20mmφ以下の曲げ加工やプレス加工などの強加工が行われるようになってきた。そのため、従来にも増して被膜密着性向上への要求が強まりつつある。   Furthermore, in recent years, grain-oriented electrical steel sheets have come to be used in the field of automobile parts and small motors, and have become harder than conventional steel sheets. In other words, when used in transformers, the conventional process was mild enough to be cut by a slit, but in the above application, strong processing such as bending or pressing of 20 mmφ or less is performed. It has become like this. For this reason, there is an increasing demand for improvement in coating film adhesion as compared with the prior art.

これらの課題に対しては、上記従来技術を適用することでいくらかの改善は可能である。しかし、副インヒビターを使用することにより被膜形成が阻害されるという弊害を完全に払拭するには至っておらず、被膜密着性の良好な製品を歩留まり良く製造するには多くの課題が残されているのが現状である。   For these problems, some improvement can be achieved by applying the above-described prior art. However, the adverse effect that the formation of the coating is inhibited by using the secondary inhibitor has not been completely wiped out, and many problems remain to produce a product with good coating adhesion with a high yield. is the current situation.

本発明の目的は、副インヒビターを含有する素材において生じる上記のような被膜欠陥の発生を防止し、もって、外観および被膜密着性に優れるフォルステライト被膜を有し、かつ磁気特性にも優れる方向性電磁鋼板を有利に製造する方法を提案することにある。   An object of the present invention is to prevent the occurrence of film defects as described above in a material containing a secondary inhibitor, to have a forsterite film having excellent appearance and film adhesion, and to have excellent magnetic properties. The object is to propose a method of advantageously producing an electromagnetic steel sheet.

発明者らは、従来技術が抱える上記問題点の解決に向けて鋭意検討を重ねた。その結果、最終仕上焼鈍の前に塗布される焼鈍分離剤スラリーの調製方法を適正化する、すなわち、マグネシアを主剤とする焼鈍分離剤スラリーを調製するに際して、添加物として水溶性化合物を添加する場合には、その添加方法を適正化することにより、副インヒビターを含有する素材における問題点を解決できることを見出し、本発明を完成するに至った。   The inventors have intensively studied to solve the above-described problems of the prior art. As a result, when preparing the annealing separator slurry applied before the final finish annealing, that is, when adding a water-soluble compound as an additive when preparing an annealing separator slurry mainly composed of magnesia Thus, the inventors have found that the problem in the material containing the secondary inhibitor can be solved by optimizing the addition method, and the present invention has been completed.

すなわち、本発明は、C:0.01〜0.10mass%、Si:1.0〜5.0mass%を含み、さらに主インヒビター成分と副インヒビター成分とを含有し、残部がFeおよび不可避的不純物からなる珪素鋼スラブを熱間圧延し、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚とし、次いで、一次再結晶焼鈍した後、マグネシアを主剤とする焼鈍分離剤を鋼板表面に塗布して最終仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
上記主インヒビター成分は、AlN,BN,MnS,MnSe,Cu 2−x SおよびCu 2−x Seのうちのいずれか1種以上で、かつ、MnS,MnSe,Cu 2−x SおよびCu 2−x Seを用いる場合には、CuとMnの合計量:0.03〜0.30mass%、SとSeの合計量:0.01〜0.03mass%であり、AlNを用いる場合には、Al:0.004〜0.04mass%、N:0.0030〜0.0120mass%であり、BNを用いる場合には、B:0.0010〜0.015mass%、N:0.0030〜0.0120mass%であり、
上記副インヒビター成分は、Ni:0.01〜1.50mass%、Sb:0.005〜0.50mass%、P:0.005〜0.50mass%、Cr:0.01〜1.50mass%、Te:0.003〜1.50mass%、Bi:0.003〜1.50mass%、Sn:0.01〜0.50mass%およびPb:0.003〜1.50mass%の中から選ばれる1種または2種以上であり、
上記焼鈍分離剤は、下記;
A群:水酸化ストロンチウム:マグネシア100質量部に対して0.1〜10質量部
B群:水酸化リチウム、水酸化ナトリウム、水酸化カリウムのうちの1種または2種以上:マグネシア100質量部に対して合計0.001〜1.5質量部
C群:塩化マグネシウム:マグネシア100質量部に対して0.001〜0.1質量部
のうちの少なくとも1群の水溶性化合物水溶液としてマグネシア100質量部に対して合計で0.001〜10質量部添加したものであることを特徴とする方向性電磁鋼板の製造方法である。
That is, the present invention includes C: 0.01 to 0.10 mass%, Si: 1.0 to 5.0 mass%, and further contains a main inhibitor component and a subinhibitor component, with the balance being Fe and inevitable impurities. A silicon steel slab made of the above material is hot-rolled to obtain a final sheet thickness by one or more cold rollings with one or more intermediate annealings, followed by primary recrystallization annealing, and an annealing separator containing magnesia as a main component In the method of manufacturing a grain-oriented electrical steel sheet comprising a series of steps of applying a final finish annealing to the surface,
The main inhibitor component, AlN, BN, MnS, MnSe , on any one or more kinds of the Cu 2-x S and Cu 2-x Se, and, MnS, MnSe, Cu 2- x S and Cu 2 When -x Se is used, the total amount of Cu and Mn: 0.03 to 0.30 mass%, the total amount of S and Se: 0.01 to 0.03 mass%, and when AlN is used, Al: 0.004 to 0.04 mass%, N: 0.0030 to 0.0120 mass%, and when BN is used, B: 0.0010 to 0.015 mass%, N: 0.0030 to 0.00. 0120 mass%,
The secondary inhibitor component is Ni: 0.01-1.50 mass%, Sb: 0.005-0.50 mass%, P: 0.005-0.50 mass%, Cr: 0.01-1.50 mass%, One selected from Te: 0.003-1.50 mass%, Bi: 0.003-1.50 mass%, Sn: 0.01-0.50 mass%, and Pb: 0.003-1.50 mass% Or two or more,
The annealing separator is as follows :
Group A: Strontium hydroxide: 0.1 to 10 parts by mass with respect to 100 parts by mass of magnesia
Group B: one or more of lithium hydroxide, sodium hydroxide and potassium hydroxide: 0.001 to 1.5 parts by mass in total with respect to 100 parts by mass of magnesia
Group C: Magnesium chloride: 0.001 to 0.1 parts by mass with respect to 100 parts by mass of magnesia
Is the manufacturing method of oriented electrical steel sheet towards you, characterized in that in total with respect to the magnesia 100 parts by weight was prepared by adding 0.001 to 10 parts by weight of at least one group of water-soluble compound as an aqueous solution of .

また、本発明において、上記水溶性化合物を添加する場合には、マグネシアと前記水溶性化合物以外の添加物と純水とを混合して得たスラリーに、水溶性化合物の水溶液を添加することを特徴とする。   In the present invention, when the water-soluble compound is added, an aqueous solution of the water-soluble compound is added to a slurry obtained by mixing magnesia, an additive other than the water-soluble compound, and pure water. Features.

さらに、本発明において、上記水溶性化合物を添加する場合には、水溶性化合物の水溶液と前記水溶性化合物以外の添加物とマグネシアと純水とを同時に混合することを特徴とする。   Furthermore, in the present invention, when the water-soluble compound is added, an aqueous solution of the water-soluble compound, an additive other than the water-soluble compound, magnesia, and pure water are mixed at the same time.

本発明によれば、被膜特性に優れかつ高い磁束密度を有する方向性電磁鋼板を安定的に製造すること可能であり、品質の向上、ひいては生産性の向上に大いに寄与する。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to manufacture stably the grain-oriented electrical steel plate which is excellent in a film characteristic, and has a high magnetic flux density, and contributes greatly to improvement of quality and by extension, productivity.

本発明を開発する契機となった実験について説明する。
表1に示したA〜Hの成分組成を有する鋼塊を素材とし、常法により製造した板厚0.23mmの冷延板を、加熱領域の雰囲気の露点を58℃、酸化性(PH2O/PH2)を0.38、均熱領域の雰囲気の露点を60℃、酸化性(PH2O/PH2)を0.41とし、840℃×2分の脱炭焼鈍を行った。この鋼板に、マグネシア(MgO)100質量部に対して、水に不溶な添加物として酸化チタン3質量部と、水に可溶な添加物として水酸化ストロンチウムを種々の量に変化させて添加して、水和を20℃×30分間行った焼鈍分離剤スラリーを、目付量12g/m2(両面)で塗布・乾燥し、その後、最終仕上焼鈍として、830℃までを46時間かけて昇温し、830℃で43時間保定したのち830〜1150℃を平均昇温速度25℃/hrで昇温し、1150℃〜1200℃の滞留時間を20時間とするヒートパターンの焼鈍を施した。
An experiment that triggered the development of the present invention will be described.
A steel ingot having a composition of components A to H shown in Table 1 is used as a raw material, and a cold-rolled sheet having a thickness of 0.23 mm manufactured by a conventional method is heated to 58 ° C. with a dew point of the atmosphere in the heating region, and an oxidizing property (P H2O / Decarburization annealing was performed at 840 ° C. for 2 minutes, with P H2 ) set to 0.38, the dew point of the atmosphere in the soaking area set to 60 ° C., and the oxidizing property (P H2O / P H2 ) set to 0.41. 3 parts by mass of titanium oxide as an insoluble additive and strontium hydroxide as an additive insoluble in water are added in various amounts to 100 parts by mass of magnesia (MgO). Apply and dry the annealing separator slurry that has been hydrated at 20 ° C for 30 minutes at a basis weight of 12 g / m 2 (both sides), then heat up to 830 ° C over 46 hours as final finish annealing. Then, after holding at 830 ° C. for 43 hours, the temperature was increased from 830 to 1150 ° C. at an average temperature increase rate of 25 ° C./hr, and annealing was performed in a heat pattern in which the residence time from 1150 ° C. to 1200 ° C. was 20 hours.

Figure 0004192822
Figure 0004192822

このようにして得た最終仕上焼鈍後の鋼板について、被膜の曲げ密着性と磁束密度B8を測定した。なお、曲げ密着性は、鋼板の表面にリン酸マグネシウムとコロイダルシリカを主成分とする絶縁被膜を形成した後、該鋼板を5mm間隔で直径を変化させた丸棒に巻き付け、被膜が剥離しない最小径(直径)を各鋼板3ヶ所の表裏面で調査し、その平均値で評価した。また、磁束密度B8は、エプスタイン試験法により測定した。図1は、被膜の曲げ密着性と磁束密度B8に及ぼす水酸化ストロンチウムの添加量の影響について示したものである。図1から、水酸化ストロンチウムの添加量によって被膜の密着性は変化し、ある範囲において被膜の密着性は良好となるが、その適正範囲は、鋼板ごと、即ち、成分組成によって異なること、また、その適正範囲においても、得られる被膜密着性は大きくばらついていることがわかる。 The steel sheet after this way the final obtained final annealing was measured bending adhesion and the magnetic flux density B 8 of the coating. The bending adhesion is determined by forming an insulating film mainly composed of magnesium phosphate and colloidal silica on the surface of the steel sheet, and then winding the steel sheet around a round bar whose diameter is changed at intervals of 5 mm so that the film does not peel off. The small diameter (diameter) was investigated on the front and back surfaces of each of the three steel plates, and the average value was evaluated. The magnetic flux density B 8 was measured by the Epstein test method. FIG. 1 shows the influence of the added amount of strontium hydroxide on the bending adhesion of the coating and the magnetic flux density B 8 . From FIG. 1, the adhesion of the film changes depending on the amount of strontium hydroxide added, and the adhesion of the film becomes good in a certain range, but the appropriate range varies depending on the steel sheet, that is, depending on the component composition, It can be seen that even in the proper range, the obtained film adhesion varies greatly.

そこで、被膜の密着性がばらつく原因について、水酸化ストロンチウムの添加量以外の要因について再度検討したところ、焼鈍分離剤の混合条件に差があることがわかった。すなわち、マグネシアと酸化チタンと水酸化ストロンチウムとを混合する際、その混合の順序により被膜密着性が異なる、具体的には、(1) 水酸化ストロンチウムを純水と混合し、その後、マグネシアを投入した場合、(2) マグネシアと純水とを混合し、その後、水酸化ストロンチウムを投入した場合、(3) マグネシアと水酸化ストロンチウムとを同時に純水を加えて混合した場合とでは、水酸化ストロンチウムの最適な添加量が異なること、特に、上記(3)の場合には、被膜密着性と磁気特性のバラツキが大きくなることが明らかになった。   Therefore, when the cause of the variation in the adhesion of the coating was examined again with respect to factors other than the amount of strontium hydroxide added, it was found that there was a difference in the mixing conditions of the annealing separator. That is, when mixing magnesia, titanium oxide and strontium hydroxide, film adhesion differs depending on the order of mixing. Specifically, (1) strontium hydroxide is mixed with pure water, and then magnesia is added. (2) When mixing magnesia and pure water and then adding strontium hydroxide, (3) When mixing and adding magnesia and strontium hydroxide simultaneously with pure water, strontium hydroxide It has been clarified that the optimum addition amount is different, in particular, in the case of (3) above, the variation in film adhesion and magnetic properties increases.

上記のような結果が得られた原因について、発明者らは、以下のように考えている。
主インヒビターおよび副インヒビターは、最終仕上焼鈍中における結晶粒界の移動度を低下させることにより、二次再結晶によるゴス方位の優先成長を促し、集積度を高めて磁束密度を向上させる。しかし、最終仕上焼鈍時には、マグネシアの水和水により露点が上昇し、高酸化性雰囲気下で鋼板が焼鈍されるため、鋼板表層ではインヒビターが酸化してしまい、この酸化物が脱炭焼鈍時に生成した内部酸化層中のSiO2を地鉄−被膜界面に凝集させてしまう。これにより、地鉄−被膜間の凹凸がなくなり、被膜が剥落し易くなり被膜の密着性の低下を引き起こすものと考えられる。
The inventors consider the cause of the above results as follows.
The main inhibitor and the secondary inhibitor promote the preferential growth of the Goth orientation by secondary recrystallization by reducing the mobility of the grain boundary during the final finish annealing, and increase the degree of integration to improve the magnetic flux density. However, at the time of final finish annealing, the dew point is increased by the hydration water of magnesia, and the steel sheet is annealed in a highly oxidizing atmosphere, so that the inhibitor is oxidized in the steel sheet surface layer, and this oxide is generated during decarburization annealing. The SiO 2 in the inner oxide layer is agglomerated at the base metal-coating interface. Thereby, the unevenness | corrugation between a base metal and a film is lose | eliminated, and it is thought that a film peels easily and causes the fall of the adhesiveness of a film.

上記実験結果では、焼鈍分離剤に水酸化ストロンチウムを添加した場合、被膜の密着性の改善効果には大きなバラツキがあった。従来、水酸化ストロンチウムは、被膜の凹凸を増加させ密着性を改善する効果を有することが知られているが、その効果にバラツキが有る原因については不明であった。しかし、本発明の知見によって、焼鈍分離剤のスラリーを調製する際の作業手順により、水酸化ストロンチウムの最適添加量が変化し、また被膜密着性の改善効果も大きく変化することが明らかとなった。   In the above experimental results, when strontium hydroxide was added to the annealing separator, there was a great variation in the effect of improving the adhesion of the coating. Conventionally, strontium hydroxide is known to have an effect of increasing the unevenness of the coating and improving the adhesion, but the cause of the variation in the effect has not been known. However, the knowledge of the present invention has revealed that the optimum addition amount of strontium hydroxide is changed and the effect of improving the film adhesion is greatly changed by the operation procedure when preparing the slurry of the annealing separator. .

スラリー調製手順により被膜密着性の改善効果に違いがでる理由は、次にように考えられる。まず、水酸化ストロンチウムは、一旦、水に溶解することで、スラリー乾燥時に鋼板表面に微細に析出し、最終仕上焼鈍における鋼板への被膜形成に寄与しやすくなる。ここで、マグネシアに純水を加えて攪拌しスラリーとすると、マグネシアの表面が水酸化マグネシウムに変化するとともに、水分子が水酸化マグネシウム表面に配位し、スラリー溶液はアルカリ性に変化する。一方、水酸化ストロンチウムは、純水には容易に溶けるが、アルカリ溶液には溶けにくく、また、水酸化マグネシウムに配位している水分子には溶けにくい。その結果、水酸化ストロンチウムの溶解が不十分となる。つまり、焼鈍分離剤のスラリーを調製する手順が変化すると、水酸化ストロンチウムの溶解量が変化し、その溶解量の差が最適添加量の変化として現れたものと考えられる。   The reason for the difference in the effect of improving the film adhesion depending on the slurry preparation procedure is considered as follows. First, strontium hydroxide is once dissolved in water, so that it finely precipitates on the surface of the steel sheet when the slurry is dried, and is likely to contribute to the formation of a film on the steel sheet in the final finish annealing. Here, when pure water is added to magnesia and stirred to form a slurry, the surface of magnesia changes to magnesium hydroxide, water molecules coordinate to the surface of magnesium hydroxide, and the slurry solution changes to alkaline. On the other hand, strontium hydroxide dissolves easily in pure water, but hardly dissolves in an alkaline solution and hardly dissolves in water molecules coordinated with magnesium hydroxide. As a result, strontium hydroxide is not sufficiently dissolved. That is, it is considered that when the procedure for preparing the slurry for the annealing separator is changed, the dissolved amount of strontium hydroxide is changed, and the difference in the dissolved amount appears as a change in the optimum added amount.

工業的に焼鈍分離剤スラリーを調製する手順は、攪拌容器に、主剤である粉体のマグネシアをホッパーから切り出し、次いで、必要な添加物を粉体の状態でホッパーから切り出し、最後に純水を投入し、その後、所定時間攪拌して水和し、スラリーとするのが一般的である。しかし、この方法では、投入された純水が、マグネシアと水酸化ストロンチウムとに同時に触れるため、純水が投入される際の水勢や攪拌条件、その他条件によって微妙に水酸化ストロンチウムの溶解量が異なってしまう。そのため、最適添加量がスラリーを調整するごとに異なることになり、製品の磁気特性、被膜特性の安定性を損ねることになる。   The procedure for industrially preparing an annealing separator slurry is to cut out the main powder magnesia from the hopper into a stirring vessel, then cut out the necessary additives from the hopper in powder form, and finally add pure water. In general, the slurry is hydrated by stirring for a predetermined time to make a slurry. However, in this method, since the pure water that is added contacts the magnesia and strontium hydroxide at the same time, the amount of dissolved strontium hydroxide slightly differs depending on the water force, stirring conditions, and other conditions when pure water is added. End up. Therefore, the optimum addition amount varies every time the slurry is adjusted, and the stability of the magnetic characteristics and film characteristics of the product is impaired.

鋼板に塗布した焼鈍分離剤スラリーは、その後、乾燥されるので、従来、上記のような水酸化ストロンチウムの微妙な溶解量の差は、方向性電磁鋼板の特性には影響しないものと考えられていた。しかし、乾燥後の焼鈍分離剤中に存在する水酸化ストロンチウムを観察したところ、水に一旦溶解した水酸化ストロンチウムの一部が炭酸ストロンチウムに変化していることが新たにわかった。つまり、スラリーの乾燥過程で、水酸化ストロンチウムの一部が、空気中の二酸化炭素と反応して炭酸ストロンチウムを形成し、被膜形成に有効な水酸化ストロンチウムの溶解量が実質的に少なくなってしまう。そのため、スラリー化したときの水酸化ストロンチウムの溶解量が、最終仕上焼鈍中のストロンチウムの被膜形成作用により強く影響したものと考えられる。なお、炭酸ストロンチウムは、それ自体は被膜改善効果を有するものの、最終仕上焼鈍中にその効果が発揮される温度域が水酸化ストロンチウムとは異なるため、炭酸ストロンチウムの比率が高くなると不安定要因となる。   Since the annealing separator slurry applied to the steel sheet is then dried, it is conventionally considered that the slight difference in the amount of dissolved strontium hydroxide does not affect the properties of the grain-oriented electrical steel sheet. It was. However, when strontium hydroxide present in the annealing separator after drying was observed, it was newly found that part of strontium hydroxide once dissolved in water was changed to strontium carbonate. That is, in the drying process of the slurry, a part of strontium hydroxide reacts with carbon dioxide in the air to form strontium carbonate, and the amount of strontium hydroxide effective for film formation is substantially reduced. . Therefore, it is considered that the dissolved amount of strontium hydroxide when slurryed is strongly influenced by the film forming action of strontium during final finish annealing. Although strontium carbonate itself has a coating improving effect, the temperature range in which the effect is exerted during final finish annealing is different from that of strontium hydroxide, so it becomes an unstable factor when the ratio of strontium carbonate becomes high .

以上の知見から、焼鈍分離剤に添加される水溶性化合物として、水酸化ストロンチウム以外の水酸化物についても、スラリーの混合手順が被膜特性・磁気特性に及ぼす影響について調査した。先ず、アルカリ金属の水酸化物として、水酸化リチウム、水酸化ナトリウム、水酸化カリウムについての実験を行った。これらの水酸化物はいずれも、マグネシアへの微量の添加により緻密なフォルステライトを主体とする被膜形成を促進すること、一方、過剰な添加は、フォルステライトが部分的に過剰に生成することによって引き起こされる点状の被膜欠陥を引き起こすこと、さらに、多量の添加により、フォルステライト被膜を最終的に全面剥離させることにも利用できることが知られている。このように微妙な添加量の差が被膜特性に大きな影響を与えることから、これらの水酸化物を利用するに際しては、鋼板の組成や脱炭工程で形成される内部酸化層の違い等に応じて、添加量を微妙に変化させる必要があると考えられるからである。   Based on the above findings, the effects of the slurry mixing procedure on the coating properties and magnetic properties were investigated for hydroxides other than strontium hydroxide as water-soluble compounds added to the annealing separator. First, experiments were conducted on lithium hydroxide, sodium hydroxide, and potassium hydroxide as alkali metal hydroxides. All of these hydroxides promote the formation of dense forsterite-based films by adding a small amount to magnesia. On the other hand, excessive addition is due to partial formation of forsterite. It is known that it can be used to cause a point-like film defect to be caused, and to finally peel off the forsterite film entirely by adding a large amount. Since these subtle differences in the amount of additive greatly affect the coating properties, the use of these hydroxides depends on the composition of the steel sheet and the difference in the internal oxide layer formed in the decarburization process. This is because it is considered necessary to slightly change the addition amount.

C:0.07mass%、Si:3.35mass%、Mn:0.07mass%、S:0.018mass%、Al:0.024mass%、N:0.0088mass%、Cu:0.15mass%および副インヒビター元素としてSn:0.080mass%、Mo:0.035%を含有し、残部が実質的にFeからなる成分組成を有する鋼塊を素材とし、常法により製造した板厚0.23mmの冷延板を、加熱および均熱領域の雰囲気の露点を60℃、酸化性(PH2O/PH2)を加熱帯0.40、均熱帯0.41とし、820℃×2分間の脱炭焼鈍を行った。その後、上記脱炭後の鋼板表面に、表2のA1〜F2に示す条件で、マグネシア100質量部に対するアルカリ金属水酸化物の添加量を変えて調製した焼鈍分離剤スラリーを、両面の目付量12g/m2で塗布、乾燥した。その後、860℃までを46時間かけて昇温し、860℃で20時間保定した後、860〜1150℃を平均昇温速度25℃/hrで昇温し、1150℃〜1200℃の滞留時間を20時間とするヒートパターンからなる最終仕上焼鈍を施した。 C: 0.07 mass%, Si: 3.35 mass%, Mn: 0.07 mass%, S: 0.018 mass%, Al: 0.024 mass%, N: 0.0088 mass%, Cu: 0.15 mass%, and Sn: 0.080 mass as a secondary inhibitor element %, Mo: 0.035%, steel ingot having the composition of which the balance is essentially composed of Fe, and a cold rolled sheet with a thickness of 0.23 mm manufactured by a conventional method is heated and soaked in the atmosphere. A decarburization annealing was performed at 820 ° C. for 2 minutes with a dew point of 60 ° C., an oxidizing property (P H2O / P H2 ) of heating zone 0.40 and soaking zone 0.41. Thereafter, an annealing separator slurry prepared by changing the addition amount of the alkali metal hydroxide to 100 parts by mass of magnesia on the surface of the steel plate after decarburization under the conditions shown in A1 to F2 of Table 2 is used. It was applied at 12 g / m 2 and dried. Then, after heating up to 860 ° C over 46 hours and holding at 860 ° C for 20 hours, the temperature was raised from 860 to 1150 ° C at an average heating rate of 25 ° C / hr, and the residence time from 1150 ° C to 1200 ° C was increased. A final finish annealing consisting of a heat pattern for 20 hours was applied.

Figure 0004192822
Figure 0004192822

図2は、最終仕上焼鈍後の鋼板における被膜の曲げ密着性と磁束密度に及ぼすスラリー調製方法の影響を示したものである。この図2から、アルカリ金属の水酸化物を、水で溶解して水溶液としてから添加することで、被膜密着性と磁気特性が共に良好となる添加量の範囲が広がることがわかる。なお、アルカリ土類金属の水酸化物としては、前記水酸化ストロンチウムの他に、水酸化バリウム、水酸化カルシウム等が挙げられる。   FIG. 2 shows the influence of the slurry preparation method on the bending adhesion of the coating and the magnetic flux density in the steel sheet after the final finish annealing. From FIG. 2, it can be seen that the range of the addition amount in which both the film adhesion and the magnetic properties are improved is widened by adding the alkali metal hydroxide after dissolving in water to form an aqueous solution. Examples of the alkaline earth metal hydroxide include barium hydroxide and calcium hydroxide in addition to the strontium hydroxide.

上記のような結果が得られた原因については、以下のように考えている。鋼板の素材中に、被膜の形成を阻害するような副インヒビター成分を添加した場合には、この副インヒビター成分の影響によってSiO2が地鉄−被膜界面に濃化し、粗雑な被膜が形成されやすくなる。そこで従来は、これを防止するために、焼鈍分離剤中にアルカリ金属やアルカリ土類金属の水酸化物を微量添加しているが、この効果を安定的に発揮させるためには、スラリー中および乾燥後の焼鈍分離剤中に存在するアルカリ金属やアルカリ土類金属の水酸化物の形態が安定しかつ均一、すなわち、マグネシアの表面等に析出する形状や粒度、量が所定の範囲であることが必要であるためと考えられる。 The cause of the above results is considered as follows. When a sub-inhibitor component that inhibits the formation of a coating is added to the steel sheet material, the effect of this sub-inhibitor component causes SiO 2 to concentrate at the base metal-coating interface, and a rough coating tends to be formed. Become. Therefore, conventionally, in order to prevent this, a trace amount of alkali metal or alkaline earth metal hydroxide is added to the annealing separator, but in order to exert this effect stably, in the slurry and The form of hydroxide of alkali metal or alkaline earth metal present in the annealing separator after drying is stable and uniform, that is, the shape, particle size, and amount deposited on the surface of magnesia are within a predetermined range. This is thought to be necessary.

上記アルカリ金属やアルカリ土類金属の水酸化物とよく似た働きをするものに、塩化物がある。特に、塩化マグネシウムは水溶性であるため、この塩化マグネシウムに対しても同様の実験を下記の要領で行った。
C:0.09mass%、Si:3.80mass%、Mn:0.08mass%、Se:0.024mass%、Al:0.027mass%、N:0.0082mass%、Cu:0.15mass%および副インヒビター元素として、Bi:0.020mass%、Ni:0.08%を含有し、残部が実質的にFeからなる成分組成を有する鋼塊を素材とし、常法により得た板厚0.30mmの冷延板を、加熱帯の雰囲気の露点を60℃、均熱帯の雰囲気の露点61℃とし、雰囲気酸化性(PH2O/PH2)を加熱帯0.40、均熱帯0.41として850℃×100秒の脱炭焼鈍を行い、その後、表2のG〜Iに示す条件で、マグネシア100質量部に対する塩化マグネシウムの添加量を変えて調製した焼鈍分離剤スラリーを両面目付量12g/m2として鋼板表面に塗布、乾燥した。その後、860℃までを46時間かけて昇温し、860℃で20時間保定した後、860〜1150℃を平均昇温速度25℃/hrで昇温し、1150℃〜1200℃の滞留時間を20時間とするヒートパターンで最終仕上焼鈍を施した。
Chloride is one that works much like the alkali metal or alkaline earth metal hydroxide. In particular, since magnesium chloride is water-soluble, the same experiment was performed on this magnesium chloride in the following manner.
C: 0.09 mass%, Si: 3.80 mass%, Mn: 0.08 mass%, Se: 0.024 mass%, Al: 0.027 mass%, N: 0.0082 mass%, Cu: 0.15 mass%, and Bi: 0.020 as an auxiliary inhibitor element A cold rolled sheet with a thickness of 0.30 mm obtained by a conventional method using a steel ingot having a composition of mass%, Ni: 0.08%, and the balance being substantially composed of Fe, has a dew point in the atmosphere of the heating zone. Was set to 60 ° C, the dew point of the soaking zone atmosphere was 61 ° C, and the deoxidation annealing was performed at 850 ° C for 100 seconds with the atmosphere oxidizing property (P H2O / P H2 ) set to 0.40 for the heating zone and 0.41 soaking zone. Under the conditions shown in GI, an annealing separator slurry prepared by changing the amount of magnesium chloride added to 100 parts by mass of magnesia was applied to the steel sheet surface with a double-sided basis weight of 12 g / m 2 and dried. Then, after heating up to 860 ° C over 46 hours and holding at 860 ° C for 20 hours, the temperature was raised from 860 to 1150 ° C at an average heating rate of 25 ° C / hr, and the residence time from 1150 ° C to 1200 ° C was increased. Final finish annealing was performed with a heat pattern of 20 hours.

図3は、最終仕上焼鈍後の鋼板における被膜の曲げ密着性と磁束密度に及ぼすスラリー調製方法の影響を示したものである。この図3から、塩化マグネシウム場合も、アルカリ金属やアルカリ土類金属の水酸化物と同様に、水で溶解して水溶液としてから添加することで、被膜密着性と磁気特性がともに良好となる、すなわち、純水で塩化物を溶解させてからスラリーに添加することで、その効果が少量で現れるとともに磁気特性と被膜特性の安定性が増すことがわかる。なお、従来から、主剤のマグネシアには塩素が不純物として存在し、それが被膜の形成に影響を及ぼすことが知られているが、その挙動は明確ではない。したがって、上記結果が得られる理由は十分解明されていないが、鋼板に塗布したスラリーの乾燥時における塩化マグネシウムのマグネシア表面への析出状態が、スラリー調製手順の違いによって大きく変化するためと考えられる。
本発明は、上記のような知見に基づき開発したものである。
FIG. 3 shows the influence of the slurry preparation method on the bending adhesion and magnetic flux density of the coating on the steel sheet after final finish annealing. From FIG. 3, also in the case of magnesium chloride, as in the case of alkali metal or alkaline earth metal hydroxide, both the film adhesion and the magnetic properties are improved by adding it as an aqueous solution after dissolving in water. That is, it can be seen that by adding chloride to the slurry after dissolving the chloride with pure water, the effect appears in a small amount and the stability of the magnetic properties and the coating properties increases. Conventionally, it is known that magnesia, the main agent, contains chlorine as an impurity, which affects the formation of a film, but its behavior is not clear. Therefore, the reason why the above results are obtained has not been fully elucidated, but it is considered that the precipitation state of magnesium chloride on the magnesia surface during the drying of the slurry applied to the steel sheet varies greatly depending on the difference in the slurry preparation procedure.
The present invention has been developed based on the above findings.

次に、本発明の方向性電磁鋼板の素材が有すべき好適な成分組成について説明する。
C:0.01〜0.10mass%
Cは、変態を利用して熱延組織を改善するのに有用な元素であるとともに、ゴス方位の結晶粒の発生に有用な元素であり、0.01%以上含有させる必要がある。しかし、0.10%を超えると、脱炭焼鈍において脱炭不良を起こす。よって、Cは、0.01〜0.10mass%の範囲に限定する。好ましくは、0.03〜0.08mass%である。
Next, the suitable component composition which the raw material of the grain-oriented electrical steel sheet of the present invention should have will be described.
C: 0.01-0.10mass%
C is an element useful for improving the hot-rolled structure using transformation, and is an element useful for generating goss-oriented crystal grains, and needs to be contained in an amount of 0.01% or more. However, if it exceeds 0.10%, decarburization failure occurs in the decarburization annealing. Therefore, C is limited to a range of 0.01 to 0.10 mass%. Preferably, it is 0.03-0.08 mass%.

Si:1.0〜5.0mass%
Siは、電気抵抗を高めて鉄損を低下させるとともに、鉄のα相を安定化させて高温の熱処理を可能とするために必要な元素であり、少なくとも1.0mass%を必要とする。しかし、5.0mass%を超す添加は、硬質化して冷間圧延が困難となる。よって、Siは1.0〜5.0mass%に限定する。好ましくは、2.0〜4.0mass%である。
Si: 1.0-5.0mass%
Si is an element necessary for increasing the electric resistance and reducing the iron loss, stabilizing the α phase of iron and enabling high-temperature heat treatment, and requires at least 1.0 mass%. However, addition exceeding 5.0 mass% hardens and makes cold rolling difficult. Therefore, Si is limited to 1.0 to 5.0 mass%. Preferably, it is 2.0-4.0 mass%.

主インヒビター
C,Siの他に、インヒビターを構成する成分を添加する必要がある。析出型である主インヒビターとしては、窒化物、硫化物もしくはセレン化物であるAlN,BN,MnS,MnSe,Cu2-XS,Cu2-XSe等がよく知られているが、これらのいずれを用いてもよく、また、これらの2種以上を複合して用いてもよい。主インヒビターに、MnS,MnSe,Cu2-XS,Cu2-XSeを用いる場合には、CuとMnの合計量:0.03〜0.30mass%、SとSeの合計量:0.01〜0.03mass%の範囲とするのが好ましい。また、AlNを主インヒビターに用いる場合には、Al:0.004〜0.04mass%、N:0.0030〜0.0120mass%、BNを主インヒビターに用いる場合には、B:0.0010〜0.015mass%、N:0.0030〜0.0120mass%にするのが好ましい。いずれの成分も、上記範囲よりも含有量が少ないと、インヒビターとして効果が得られず、逆に、高いと二次再結晶が不安定になる。
In addition to the main inhibitor C and Si, it is necessary to add a component constituting the inhibitor. As the precipitation type main inhibitor, nitride, sulfide or selenide such as AlN, BN, MnS, MnSe, Cu 2-X S, Cu 2-X Se, etc. are well known. These may be used, or two or more of these may be used in combination. The main inhibitor, MnS, MnSe, in the case of using Cu 2-X S, Cu 2 -X Se , the total amount of Cu and Mn: 0.03~0.30mass%, the total amount of S and Se: 0.01~0.03mass% It is preferable to be in the range. When AlN is used as the main inhibitor, Al: 0.004 to 0.04 mass%, N: 0.0030 to 0.0120 mass%, and when BN is used as the main inhibitor, B: 0.0010 to 0.015 mass%, N: 0.0030 to It is preferable to make it 0.0120 mass%. If any component is less than the above range, the effect as an inhibitor cannot be obtained. Conversely, if the content is too high, secondary recrystallization becomes unstable.

副インヒビター
主インヒビターの他に、副インヒビターとして、Ni:0.01〜1.50mass%、Sn:0.01〜0.50mass%、Sb:0.005〜0.50mass%、P:0.005〜0.50mass%、Cr:0.02〜1.50mass%、Te:0.003〜1.50mass%、Bi:0.003〜1.50mass%、Pb:0.003〜1.50mass%の中から選ばれる1種または2種以上を添加する必要がある。これらの副インヒビターは、一次再結晶粒の粒界に優先的に濃化して、焼鈍中の粒界の移動度を低下し二次再結晶開始温度を上昇させるので、磁束密度を向上させる作用がある。そこで、これらの成分を、AlN,BN,MnS,MnSe,Cu2-XS,Cu2-XSeのような析出型の主インヒビターと同時に鋼中に存在させることにより、相乗的に磁気特性の向上に有効に作用する。これらの副インヒビター成分の添加量が上記の量に満たないと、粒界への濃化による正常粒成長を抑制する効果が発揮されず、逆に、上記範囲を超える含有量では、本発明の技術をもってしても被膜外観の劣化を防止することができなくなる。なお、これら副インヒビターは、単独添加あるいは複合添加のいずれでも構わない。
Secondary inhibitor In addition to the primary inhibitor, as secondary inhibitor, Ni: 0.01-1.50 mass%, Sn: 0.01-0.50 mass%, Sb: 0.005-0.50 mass%, P: 0.005-0.50 mass%, Cr: 0.02-1.50 mass %, Te: 0.003 to 1.50 mass%, Bi: 0.003 to 1.50 mass%, Pb: 0.003 to 1.50 mass%, or one or more kinds must be added. These secondary inhibitors concentrate preferentially at the grain boundaries of the primary recrystallized grains, lower the mobility of the grain boundaries during annealing and raise the secondary recrystallization start temperature, and thus have the effect of improving the magnetic flux density. is there. Therefore, the presence of these components in the steel simultaneously with precipitation-type main inhibitors such as AlN, BN, MnS, MnSe, Cu 2-X S, and Cu 2-X Se synergistically improves the magnetic properties. It works effectively for improvement. If the addition amount of these sub-inhibitor components is less than the above amount, the effect of suppressing normal grain growth due to concentration at the grain boundary is not exhibited, conversely, if the content exceeds the above range, Even with the technology, it becomes impossible to prevent the appearance of the film from being deteriorated. These auxiliary inhibitors may be added alone or in combination.

なお、上述した主インヒビター、副インヒビター成分の他に、さらに磁気特性、被膜特性を改善するために、Mo,V,Nb等を添加してもよい。これらの元素の添加量が0.005mass%を下回ると、上記改善効果は得られず、一方、0.5mass%を超えて添加すると、却って製品の磁気特性、被膜特性の劣化を招く。よって、これらの元素はそれぞれ0.005〜0.50mass%の範囲で添加することが好ましい。   In addition to the main inhibitor and sub-inhibitor components described above, Mo, V, Nb, etc. may be added in order to further improve the magnetic properties and film properties. When the addition amount of these elements is less than 0.005 mass%, the above improvement effect cannot be obtained. On the other hand, when the addition amount exceeds 0.5 mass%, the magnetic properties and film properties of the product are deteriorated. Therefore, it is preferable to add these elements in the range of 0.005 to 0.50 mass%.

次に、本発明に係る方向性電磁鋼板の製造方法について説明する。
上記成分組成に調整された鋼スラブを、インヒビター成分の固溶温度以上の高温に加熱してから熱間圧延し、焼鈍処理と冷間圧延とを組み合わせて最終板厚とし、その後、脱炭焼鈍と最終仕上焼鈍を施した後、絶縁張力被膜を焼き付けて方向性電磁鋼板の製品とする。ここで、最終板厚とする方法には、1) 熱間圧延後、熱延板焼鈍を施してから中間焼鈍を含む2回以上の冷間圧延で最終板厚とする方法、2) 熱間圧延後、熱延板焼鈍を施してから1回の冷間圧延で最終板厚とする方法、3) 熱間圧延後、熱延板焼鈍を施すことなく中間焼鈍を含む2回の冷間圧延で最終板厚とする方法等があるが、本発明では、これらのいずれの方法を用いてもよい。また、熱延板焼鈍や中間焼鈍において焼鈍雰囲気を酸化性にして表層を弱脱炭処理したり、焼鈍の冷却過程で急冷して鋼中の固溶Cを増加させてから低温保持する処理を施して、鋼中に微細炭化物を析出させたり、さらには、冷間圧延を100〜300℃の温間で行ったり、圧延パス間で時効処理を施したりすることも、圧延での変形帯の量を増やしてゴス方位粒を増加させるので磁気特性の向上に有効である。さらに、最終冷延後、鋼板表面に圧延方向とほぼ直交する線状の溝を形成し磁区細分化することによって、鉄損の低減を図ることもできる。
Next, the manufacturing method of the grain-oriented electrical steel sheet according to the present invention will be described.
The steel slab adjusted to the above component composition is heated to a high temperature equal to or higher than the solid solution temperature of the inhibitor component, and then hot-rolled, and a final sheet thickness is obtained by combining annealing and cold rolling, followed by decarburization annealing. And after final finishing annealing, the insulation tension coating is baked to make a grain-oriented electrical steel sheet product. Here, the final sheet thickness can be obtained by 1) hot rolling, followed by hot-rolled sheet annealing and then the final sheet thickness by two or more cold rolling processes including intermediate annealing. 2) hot After rolling, hot-rolled sheet annealing is performed and then the final sheet thickness is obtained by one cold rolling. 3) After hot rolling, two cold rolling processes including intermediate annealing without performing hot-rolled sheet annealing. In the present invention, any of these methods may be used. Also, in hot-rolled sheet annealing and intermediate annealing, the annealing atmosphere is oxidized and the surface layer is weakly decarburized, or rapidly cooled in the cooling process of annealing to increase the solid solution C in the steel and then kept at low temperature To precipitate fine carbides in the steel, or to perform cold rolling at a temperature of 100 to 300 ° C. or to perform an aging treatment between rolling passes. This is effective for improving magnetic properties because the amount of goth grains is increased by increasing the amount. Furthermore, after the final cold rolling, iron loss can be reduced by forming a linear groove substantially orthogonal to the rolling direction on the surface of the steel sheet and subdividing the magnetic domain.

また、脱炭・一次再結晶焼鈍後から二次再結晶開始までの間に、鋼中に300ppm以下の範囲でNを含ませる窒化処理を施すことも、正常粒成長の抑制力を補強して磁気特性の向上を図るには有効な技術であり、本発明に適用することができる。なお、窒化処理を行う場合には、素材中にNを含有させておく必要はなく、0.0030mass%以下でも構わない。   In addition, after the decarburization / primary recrystallization annealing and after the start of secondary recrystallization, nitriding treatment containing N in the range of 300 ppm or less in the steel also reinforces the suppression of normal grain growth. This is an effective technique for improving the magnetic characteristics, and can be applied to the present invention. In addition, when performing a nitriding process, it is not necessary to contain N in a raw material, and 0.0030 mass% or less may be sufficient.

脱炭焼鈍工程は、水蒸気、H2を含む雰囲気中で行うことが好ましい。このとき、加熱領域の昇温速度は、室温から700℃までを5〜80℃/secとすることが好ましい。5℃/secより低いと、脱炭が加熱領域で進行しすぎて望ましい集合組織を得にくく、逆に、80℃/secより早いと、初期酸化が不安定となり良好な被膜が形成されにくくなる。また、加熱領域の雰囲気は、露点と酸化性(PH2O/PH2)とをそれぞれ別個に管理し、露点を40〜70℃、酸化性(PH2O/PH2)を0.25〜0.70とすることにより、磁気特性と被膜特性を効果的に改善することができる。露点や酸化性(PH2O/PH2)を上記の下限値よりも低下させると、初期酸化膜が粗雑となり、その後の均熱領域でこれがさらに助長される結果、良好な酸化被膜が得難くなる。一方、これらが上限値を超えると、酸化鉄を主体とする過酸化な被膜が形成され、却って被膜が粗雑となる。 The decarburization annealing step is preferably performed in an atmosphere containing water vapor and H 2 . At this time, it is preferable that the heating rate of the heating region is 5 to 80 ° C./sec from room temperature to 700 ° C. If it is lower than 5 ° C / sec, decarburization proceeds too much in the heating region and it is difficult to obtain a desired texture. Conversely, if it is faster than 80 ° C / sec, the initial oxidation becomes unstable and it becomes difficult to form a good film. . In addition, the atmosphere in the heating area shall be managed separately for dew point and oxidizing property (P H2O / P H2 ), with a dew point of 40 to 70 ° C and oxidizing property (P H2O / P H2 ) of 0.25 to 0.70. Thus, the magnetic characteristics and the film characteristics can be effectively improved. If the dew point and the oxidation property (P H2O / P H2 ) are lowered below the above lower limit values, the initial oxide film becomes coarse, and this is further promoted in the subsequent soaking area, so that it is difficult to obtain a good oxide film. . On the other hand, when these values exceed the upper limit, a peroxide film mainly composed of iron oxide is formed, and the film becomes rough on the contrary.

加熱領域に続く均熱領域の温度は750℃〜900℃の範囲が望ましい。900℃を超えると、一次再結晶粒の粒成長が進行しすぎて二次再結晶不良を起こしやすく、一方、750℃未満では、逆に一次再結晶粒の粒成長が進まず、二次再結晶粒方位が不安定になりやすい。均熱時間は20〜240秒が好ましい。20秒未満では脱炭不足となりやすく、一方、240秒以上では一次再結晶粒成長が進行し過ぎるため、いずれの場合も磁気特性を劣化させる可能性がある。均熱領域の雰囲気の酸化性(PH2O/PH2)は、0.3〜0.85とすることが好ましい。0.3未満では脱炭不良となって磁気特性が劣化しやすく、0.85以上ではFeOを主体とする過酸化な膜が形成されて、被膜劣化を引き起こす可能性がある。また、雰囲気の露点は、40〜80℃とすることが好ましい。40℃未満では脱炭不良となりやすく、80℃を超えると被膜不良となりやすい。均熱領域の露点と雰囲気酸化性(PH2O/PH2)を別々に管理することは、加熱領域の場合ほど大きい影響はないが、効果は認められるため、行うことが好ましい。 The temperature in the soaking area following the heating area is preferably in the range of 750 ° C to 900 ° C. If the temperature exceeds 900 ° C, the primary recrystallized grains will grow too much and easily cause secondary recrystallization failure.On the other hand, if the temperature is lower than 750 ° C, the primary recrystallized grains will not grow and the secondary recrystallization will not progress. Grain orientation tends to be unstable. The soaking time is preferably 20 to 240 seconds. If it is less than 20 seconds, decarburization tends to be insufficient. On the other hand, if it is 240 seconds or more, primary recrystallized grain growth proceeds excessively, and in any case, there is a possibility of deteriorating magnetic properties. The oxidizability (P H2O / P H2 ) of the atmosphere in the soaking region is preferably 0.3 to 0.85. If it is less than 0.3, decarburization is poor and the magnetic characteristics are likely to deteriorate, and if it is 0.85 or more, a peroxide film mainly composed of FeO is formed, which may cause deterioration of the film. Moreover, it is preferable that the dew point of atmosphere shall be 40-80 degreeC. Below 40 ° C, decarburization tends to be poor, and above 80 ° C, coating tends to be poor. It is preferable to separately manage the dew point and the atmospheric oxidizability (P H2O / P H2 ) in the soaking area because the effect is recognized as much as in the heating area.

なお、脱炭焼鈍の均熱段階を2つの領域に分けて、前段に比べて後段を低露点および/または高温にして内部酸化層をより緻密化することにより、より良好な被膜が得られることが知られている。本発明においても、この方法は有効であり適用してもよい。このときの焼鈍前段の条件は、前述した条件とするのが好ましく、一方、後段は、前段よりも温度を高める場合には、前段よりも10〜100℃高くするのが好ましい。10℃より低いと被膜改善効果がなく、100℃より高いと一時再結晶が進行しすぎる。また、前段に比べ後段をより低露点にする場合には、雰囲気酸化性(PH2O/PH2)を0.3以下とするのが好ましい。これより大きいと被膜改善効果が得られない。いずれの場合においても、後段の均熱時間は5〜60秒であるのが好ましい。5秒未満では効果がなく、60秒を超えると一次粒成長が進みすぎて二次再結晶不良となる。 In addition, by dividing the soaking stage of decarburization annealing into two regions and making the inner oxide layer more dense by setting the latter stage to a lower dew point and / or higher temperature than the former stage, a better film can be obtained. It has been known. In the present invention, this method is effective and may be applied. In this case, the pre-annealing conditions are preferably the above-described conditions. On the other hand, when the temperature of the subsequent stage is higher than that of the previous stage, it is preferably 10 to 100 ° C. higher than that of the previous stage. If it is lower than 10 ° C, there is no effect of improving the film, and if it is higher than 100 ° C, temporary recrystallization proceeds too much. Further, when the dew point is set lower in the subsequent stage than in the previous stage, it is preferable that the atmospheric oxidation property (P H2O / P H2 ) be 0.3 or less. If it is larger than this, the effect of improving the film cannot be obtained. In any case, the soaking time at the latter stage is preferably 5 to 60 seconds. If it is less than 5 seconds, there is no effect, and if it exceeds 60 seconds, primary grain growth proceeds too much, resulting in secondary recrystallization failure.

脱炭焼鈍の後、焼鈍分離剤を鋼板表面に塗布する。本発明で用いる焼鈍分離剤は、マグネシア(MgO)を主成分とし、このマグネシア100質量部に対して添加物として水溶性化合物を0.001〜10質量部含有させたスラリーとして鋼板に塗布する。なお、添加物には、水に溶解する水溶性化合物とそれ以外の水に可溶でない化合物があるが、本発明は、上記スラリーを調製するに際して、水溶性化合物の少なくとも1種を水に一旦溶解して水溶液としたのちマグネシアと混合させるところに最大の特徴がある。具体的なスラリーの調製方法としては、水溶性化合物を純水に溶解させた水溶液を、マグネシアと前記水溶性化合物以外の添加物と純水とを混合して得たスラリーに添加する方法、あるいは、水溶性化合物の水溶液とマグネシアと前記水溶性化合物以外の添加物と純水とを同時に混合してスラリーとする方法があり、いずれの方法を用いてもよい。   After decarburization annealing, an annealing separator is applied to the steel sheet surface. The annealing separator used in the present invention is composed of magnesia (MgO) as a main component, and is applied to a steel sheet as a slurry containing 0.001 to 10 parts by mass of a water-soluble compound as an additive to 100 parts by mass of magnesia. The additives include water-soluble compounds that are soluble in water and other compounds that are not soluble in water. In the present invention, at the time of preparing the slurry, at least one water-soluble compound is temporarily added to water. The greatest feature is that it is dissolved in an aqueous solution and then mixed with magnesia. As a specific method for preparing the slurry, a method in which an aqueous solution in which a water-soluble compound is dissolved in pure water is added to a slurry obtained by mixing magnesia and an additive other than the water-soluble compound and pure water, or There is a method in which an aqueous solution of a water-soluble compound, magnesia, an additive other than the water-soluble compound, and pure water are simultaneously mixed to form a slurry, and any method may be used.

水溶性化合物の具体的な添加量は、水溶性化合物が水酸化ストロンチウムである場合には、マグネシア100質量部に対して0.1〜10質量部、水酸化リチウム、水酸化ナトリウム、水酸化カリウムである場合には0.001〜1.5質量部、また、塩化マグネシウムである場合には0.001〜0.1質量部とするのが好適である。なお、水溶性化合物は、単独あるいは複合して添加してもよい。上記の水溶性化合物を適量添加することにより、緻密なフォルステライトを主体とする被膜を形成することができる。しかし、添加量が上記下限値を外れると被膜改善効果がなく、一方、上記上限値を外れると、これらの金属を含む被膜が仕上焼鈍途中に形成され、副インヒビター成分によってこの被膜が損傷を受ける結果、点状の被膜欠陥や被膜密着性の低下などの不良が発生する。さらに、仕上焼鈍途中で粗雑な被膜となる結果、鋼板が雰囲気の影響を受けやすくなり、磁気特性についても改善効果は失われる。 When the water-soluble compound is strontium hydroxide, the specific addition amount of the water-soluble compound is 0.1 to 10 parts by mass, lithium hydroxide, sodium hydroxide, potassium hydroxide with respect to 100 parts by mass of magnesia. When it is, it is suitable to be 0.001 to 1.5 parts by mass , and when magnesium chloride is 0.001 to 0.1 parts by mass. In addition, you may add a water-soluble compound individually or in combination. By adding an appropriate amount of the above water-soluble compound, a dense film mainly composed of forsterite can be formed. However, if the added amount exceeds the lower limit, there is no effect of improving the film, whereas if the added amount exceeds the upper limit, a film containing these metals is formed during finish annealing, and this film is damaged by the secondary inhibitor component. As a result, defects such as point-like film defects and a decrease in film adhesion occur. Furthermore, as a result of forming a rough coating during the finish annealing, the steel sheet is easily affected by the atmosphere, and the effect of improving the magnetic properties is lost.

本発明の焼鈍分離剤に用いるマグネシアの粉体特性は、CaO含有量が0.2〜1.2mass%、ハロゲン元素含有量が合計で0.005〜0.10mass%、活性度分布CAA20%が20〜50sec、CAA40%が50〜110sec、CAA60%が70〜200secであることが好ましい。CaO含有量が0.2mass%未満では、過酸化な被膜が形成され、一方、1.2mass%を超えると被膜形成量が低下し、いずれの場合も被膜不良を起こし易い。また、活性度分布を上記範囲に制御することにより、被膜改善効果をさらに高めることが出来る。CAA20%、CAA40%が上記下限値よりも低いと、水と懸濁してスラリーとしたときの水和が進行しすぎて、最終仕上焼鈍中に水蒸気が発生し、被膜が損傷しやすい。一方、CAA20%、CAA40%が上記上限値より高いと、反応性が低下して、被膜形成が十分に行われにくい。さらに、CAA60%が上記上限値より高いと、焼結が進行し過ぎた粗大なMgO粒子がコイルに塗布される結果、押し疵や点状被膜欠陥のような外観不良が発生しやすく、逆に、CAA60%が上記下限値より低いと、水和が進行し過ぎて、上述したように被膜不良を起こしやすい。   The powder characteristics of magnesia used in the annealing separator of the present invention are as follows: CaO content is 0.2 to 1.2 mass%, halogen element content is 0.005 to 0.10 mass% in total, activity distribution CAA20% is 20 to 50 sec, CAA40% Is preferably 50 to 110 seconds, and CAA 60% is preferably 70 to 200 seconds. When the CaO content is less than 0.2 mass%, a peroxide film is formed. On the other hand, when the CaO content exceeds 1.2 mass%, the film formation amount is reduced, and in any case, the film is liable to be defective. Moreover, the film improvement effect can be further enhanced by controlling the activity distribution within the above range. When CAA 20% and CAA 40% are lower than the above lower limit values, hydration when suspended in water to form a slurry proceeds excessively, and water vapor is generated during final finish annealing, which easily damages the coating. On the other hand, when CAA 20% and CAA 40% are higher than the above upper limit values, the reactivity is lowered and it is difficult to sufficiently form a film. Furthermore, if CAA 60% is higher than the above upper limit value, coarse MgO particles that have undergone oversintering are applied to the coil, and as a result, appearance defects such as squeeze and point film defects are likely to occur. When CAA 60% is lower than the above lower limit, hydration proceeds excessively and the film is liable to be defective as described above.

なお、焼鈍分離剤に含有させることができる前記水溶性化合物以外の添加物としては、水に可溶でないMg,Ca,Sr,Ti,Mn,Fe,Cu,Sn,Sb,Zn,SiおよびAl等の化合物が挙げられ、公知の範囲で焼鈍分離剤に添加して用いることができる。それらの添加量は、マグネシア100質量部に対して0.5〜15質量部が適当である。なお、焼鈍分離剤の塗布量や水和量は、従来公知の5〜15g/m2(両面)、0.5〜5%程度の範囲であることが好ましい。 As additives other than the water-soluble compounds that can be contained in the annealing separator, Mg, Ca, Sr, Ti, Mn, Fe, Cu, Sn, Sb, Zn, Si and Al that are not soluble in water And the like, and can be used by adding to an annealing separator within a known range. The addition amount is suitably 0.5 to 15 parts by mass with respect to 100 parts by mass of magnesia. The application amount and the hydration amount of the annealing separator are preferably in the range of about 5 to 15 g / m 2 (both sides) and about 0.5 to 5%.

上記のようにして調製した焼鈍分離剤スラリーを鋼板表面に塗布・乾燥し、公知の方法で最終仕上焼鈍を行ったのち、必要に応じて張力付与被膜や絶縁被膜を塗布し、焼き付けを兼ねた平坦化焼鈍を施して方向性電磁鋼板の製品とする。また、絶縁被膜形成後、磁区細分化による鉄損低減を目的として、平坦化焼鈍後の鋼板にプラズマジェットやレーザー照射を線状に施したり、突起ロールにより線状に凹みを設けたりする処理を施してもよい。また、最終仕上焼鈍後、ゾルゲル法やTiN蒸着などにより張力被膜を形成させる技術を組み合わせることも鉄損低減のためには有効である。   The annealing separator slurry prepared as described above was applied to the steel sheet surface and dried, and after final finish annealing was performed by a known method, a tension-imparting coating or an insulating coating was applied as necessary to double the baking. Planarized annealing is performed to produce a grain-oriented electrical steel sheet. In addition, for the purpose of reducing iron loss due to magnetic domain subdivision after the formation of the insulation coating, the steel plate after flattening annealing is subjected to a plasma jet or laser irradiation in a linear manner, or a dent is provided in a linear shape by a protruding roll. You may give it. It is also effective to reduce iron loss by combining a technique for forming a tension film by sol-gel method or TiN vapor deposition after final finish annealing.

C:0.08mass%、Si:3.15mass%、Mn:0.075mass%、P:0.003mass%、S:0.003mass%、Al:0.023mass%、Se:0.016mass%、Cu:0.05mass%、N:0.0085mass%および副インヒビターとしてNi:0.020mass%、Sb:0.030mass%を含有し、残部が主としてFeからなる鋼スラブを、ガス加熱炉に装入して1230℃まで加熱し、20分間保定してから、さらに誘導加熱により1400℃で30分間加熱した後、熱間圧延して板厚2.5mmの熱延板とした。その後、この熱延板を1000℃×20秒の均熱後、室温まで30℃/secで冷却する熱延板焼鈍を施し、酸洗し、一次冷間圧延して厚さ1.6mmとし、さらに、1000℃×1分間の均熱後、室温まで25℃/secで冷却する中間焼鈍をしてから酸洗し、最高到達温度220℃の二次冷間圧延により最終板厚0.23mmの冷延板とした。続いて、加熱領域の雰囲気の露点を58℃、酸化性(PH2O/PH2)を0.40とし、また均熱領域の雰囲気の露点を60℃、酸化性(PH2O/PH2)を0.45として、850℃×100秒の脱炭焼鈍をしたのち、焼鈍分離剤を鋼板表面に両面の塗布量14g/m2で塗布し、コイルに巻き取った。このときの焼鈍分離剤には、主剤としてマグネシアを用い、さらにマグネシア100質量部に対して、酸化チタンを4質量部、水溶性の水酸化ストロンチウムを5質量部含有させたものを用いた。その際、水酸化ストロンチウムの添加を、(a) 水酸化ストロンチウムの水溶液を、マグネシアと酸化チタンとを純水で混合したスラリーに添加する、(b) 水酸化ストロンチウムの粉体を、そのままマグネシアと酸化チタンと同時に純水に添加してスラリーにする、(c) 水酸化ストロンチウムの水溶液を、マグネシアと酸化チタンと純水と同時に混合してスラリーにする、の3方法で行った。焼鈍分離剤を塗布した鋼板は、続いて、800℃までを46時間かけて昇温し、20時間保定した後、800〜1150℃を平均昇温速度25℃/hrで昇温し、1150℃〜1200℃で20時間滞留してから炉冷する最終仕上焼鈍を行い、その後、未反応の焼鈍分離剤を水洗して除去した後、コロイダルシリカを含有するリン酸マグネシウムを主成分とする絶縁張力被膜を塗布し、平坦化焼鈍して方向性電磁鋼板とした。 C: 0.08 mass%, Si: 3.15 mass%, Mn: 0.075 mass%, P: 0.003 mass%, S: 0.003 mass%, Al: 0.023 mass%, Se: 0.016 mass%, Cu: 0.05 mass%, N: A steel slab containing 0.0085mass% and Ni: 0.020mass%, Sb: 0.030mass% as a secondary inhibitor, the balance mainly consisting of Fe, is charged into a gas heating furnace and heated to 1230 ° C and held for 20 minutes. Then, after further heating at 1400 ° C. for 30 minutes by induction heating, hot rolling was performed to obtain a hot-rolled sheet having a thickness of 2.5 mm. Then, after soaking the hot-rolled sheet at 1000 ° C. for 20 seconds, it is subjected to hot-rolled sheet annealing to be cooled to room temperature at 30 ° C./sec, pickled, and primary cold-rolled to a thickness of 1.6 mm, After soaking at 1000 ° C for 1 minute, intermediate annealing to cool to room temperature at 25 ° C / sec, pickling, and cold rolling to a final sheet thickness of 0.23mm by secondary cold rolling at a maximum temperature of 220 ° C A board was used. Subsequently, the dew point of the atmosphere in the heating region is 58 ° C., the oxidizing property (P H2O / P H2 ) is 0.40, the dew point of the atmosphere in the soaking region is 60 ° C., and the oxidizing property (P H2O / P H2 ) is 0.45. After decarburization annealing at 850 ° C. for 100 seconds, an annealing separator was applied to the steel sheet surface at a coating amount of 14 g / m 2 on both sides and wound around a coil. The annealing separator used here was magnesia as a main ingredient, and further containing 4 parts by mass of titanium oxide and 5 parts by mass of water-soluble strontium hydroxide with respect to 100 parts by mass of magnesia. At that time, addition of strontium hydroxide is performed by adding (a) an aqueous solution of strontium hydroxide to a slurry obtained by mixing magnesia and titanium oxide with pure water, and (b) adding strontium hydroxide powder as it is to magnesia. Simultaneously with titanium oxide, it was added to pure water to form a slurry. (C) An aqueous solution of strontium hydroxide was mixed with magnesia, titanium oxide and pure water simultaneously to form a slurry. The steel sheet coated with the annealing separator was subsequently heated to 800 ° C. over 46 hours, held for 20 hours, and then heated to 800 to 1150 ° C. at an average heating rate of 25 ° C./hr to 1150 ° C. After the final annealing, which is held at ~ 1200 ° C for 20 hours and then cooled in the furnace, the unreacted annealing separator is washed away with water, and then the insulation tension is composed mainly of magnesium phosphate containing colloidal silica. A film was applied and flattened and annealed to obtain a grain-oriented electrical steel sheet.

上記のようにして得た方向性電磁鋼板について、被膜外観と曲げ密着性の評価とエプスタイン試験法による磁束密度B8の測定および鉄損W17/50の測定を行い、結果を図4に示した。図4から、水酸化ストロンチウムの水溶液をマグネシアと酸化チタンと純水で混合したスラリーに添加した場合(a)と水酸化ストロンチウム水溶液とマグネシアと酸化チタンと純水とを混合しスラリーにした場合(c)にのみ、被膜外観、密着性および磁気特性が共に優れた製品を安定して得られることがわかる。 For the grain- oriented electrical steel sheet obtained as described above, the coating appearance and bending adhesion were evaluated, the magnetic flux density B 8 was measured by the Epstein test method, and the iron loss W 17/50 was measured. The results are shown in FIG. It was. From FIG. 4, when an aqueous solution of strontium hydroxide is added to a slurry mixed with magnesia, titanium oxide and pure water (a), when an aqueous strontium hydroxide solution, magnesia, titanium oxide and pure water are mixed to form a slurry ( Only in c), it can be seen that a product excellent in coating appearance, adhesion and magnetic properties can be obtained stably.

C:0.05mass%、Si:3.45mass%、Mn:0.06mass%、P:0.002mass%、S:0.027mass%、Al:0.025mass%、Cu:0.10mass%、N:0.0082mass%および副インヒビターとしてCr:0.06mass%、Pb:0.010mass%、Sn:0.23mass%を含有し、残部が主としてFeからなる珪素鋼スラブを、ガス加熱炉で1270℃×30分加熱した後、誘導加熱により1430℃×45分加熱してから熱間圧延して板厚2.2mmの熱延板とし、950℃×60秒の均熱後、室温まで40℃/secで冷却する熱延板焼鈍を施した。この熱延板を、酸洗し、一次冷間圧延して板厚1.5mmとした後、1120℃×45秒の均熱後、室温まで35℃/secで冷却する中間焼鈍を施してから酸洗し、最高板温185℃の二次冷間圧延により最終板厚0.23mmの冷延板とした。次に、レジストエッチング処理により圧延方向との角度75°、圧延方向の間隔3.5mm、深さ18μm、幅70μmの線状溝を形成する磁区細分化処理を施した後、加熱領域の雰囲気の露点を59℃、酸化性(PH2O/PH2)を0.44、均熱領域の雰囲気の露点を62℃、酸化性(PH2O/PH2)を0.46として820℃×100秒間保定し、引き続き、雰囲気の酸化性(PH2O/PH2)を0.15として880℃×20秒間保定する脱炭焼鈍を行った。その後、この鋼板表面に、主剤としてマグネシアを用い、他の添加物を表3のJ〜Oの6条件で投入して調整した焼鈍分離剤のスラリーを、目付量14g/m2(両面)で塗布し乾燥した後、700℃までを40時間かけて昇温し、700〜1150℃を平均昇温速度25℃/hrで昇温し、1150℃〜1200℃の滞留時間を20時間とする最終仕上焼鈍を施し、続いて、未反応の分離剤を水洗により除去した後、コロイダルシリカを含有するリン酸マグネシウムを主成分とする絶縁張力被膜を塗布し、平坦化焼鈍して方向性電磁鋼板とした。 C: 0.05 mass%, Si: 3.45 mass%, Mn: 0.06 mass%, P: 0.002 mass%, S: 0.027 mass%, Al: 0.025 mass%, Cu: 0.10 mass%, N: 0.0082 mass% and secondary inhibitors As a silicon steel slab containing Cr: 0.06 mass%, Pb: 0.010 mass%, Sn: 0.23 mass%, and the balance mainly consisting of Fe, 1430 ° C. for 30 minutes in a gas heating furnace, and then induction heating to 1430 After heating at 45 ° C. for 45 minutes, hot rolling was performed to obtain a hot-rolled sheet having a thickness of 2.2 mm. After soaking at 950 ° C. for 60 seconds, hot-rolled sheet annealing was performed to cool to room temperature at 40 ° C./sec. This hot-rolled sheet is pickled and subjected to primary cold rolling to a sheet thickness of 1.5 mm, after soaking at 1120 ° C. for 45 seconds, and then subjected to intermediate annealing to cool to room temperature at 35 ° C./sec. The sheet was washed and subjected to secondary cold rolling at a maximum sheet temperature of 185 ° C. to obtain a cold-rolled sheet having a final sheet thickness of 0.23 mm. Next, after applying a magnetic domain refinement process to form linear grooves with an angle of 75 ° to the rolling direction, an interval of 3.5 mm in the rolling direction, a depth of 18 μm, and a width of 70 μm by resist etching, the dew point of the atmosphere in the heating region Was maintained at 820 ° C for 100 seconds with 59 ° C, oxidative property (P H2O / P H2 ) of 0.44, dew point in the soaking area of 62 ° C, and oxidative property (P H2O / P H2 ) of 0.46. Decarburization annealing was performed by maintaining the oxidizability (P H2O / P H2 ) of 0.15 at 880 ° C. for 20 seconds. Thereafter, a slurry of an annealing separator prepared by using magnesia as a main agent and adding other additives under the conditions J to O in Table 3 on the surface of the steel sheet was adjusted at a basis weight of 14 g / m 2 (both sides). After applying and drying, the temperature is raised to 700 ° C over 40 hours, the temperature is raised from 700 to 1150 ° C at an average heating rate of 25 ° C / hr, and the residence time from 1150 ° C to 1200 ° C is 20 hours. After finishing annealing, and subsequently removing the unreacted separating agent by washing with water, applying an insulating tension film mainly composed of magnesium phosphate containing colloidal silica, and performing planarization annealing to obtain a grain-oriented electrical steel sheet and did.

Figure 0004192822
Figure 0004192822

上記のようにして得た方向性電磁鋼板について、被膜外観と曲げ密着性の評価とエプスタイン試験法による磁束密度B8の測定および鉄損W17/50の測定を行い、結果を図5に示した。図5から、水酸化物を純水に溶解し、水溶液にしてから混ぜることで、被膜外観・密着性および磁気特性が共に優れる製品が得られることがわかる。 For the grain- oriented electrical steel sheet obtained as described above, the coating appearance and bending adhesion were evaluated, the magnetic flux density B 8 was measured by the Epstein test method, and the iron loss W 17/50 was measured. The results are shown in FIG. It was. From FIG. 5, it can be seen that a product having excellent coating appearance, adhesion and magnetic properties can be obtained by dissolving the hydroxide in pure water and mixing it in an aqueous solution.

C:0.08mass%、Si:3.35mass%、Mn:0.08mass%、S:0.003mass%、B:0.008mass%、Se:0.020mass%、N:0.0082mass%および副インヒビターとして、Bi:0.022mass%、P:0.08mass%、Sn:0.03%を含有し、残部が主としてFeからなる珪素鋼スラブを、ガス加熱炉で1430℃×60分間加熱した後、熱間圧延して板厚2.2mmの熱延板とした後、1150℃×35秒の均熱後、室温まで35℃/secで冷却する熱延板焼鈍を施した。次いで、酸洗し、最高温度220℃の冷間圧延を施して最終板厚0.27mmの冷延板とした後、加熱領域の雰囲気の露点を55℃、酸化性(PH2O/PH2)を0.37、均熱領域の雰囲気の露点を61℃、酸化性(PH2O/PH2)を0.43とする条件で、845℃×120秒間保定する脱炭焼鈍を行った。この鋼板に対し、主剤としてマグネシアを用いて、表3のP〜Rの3条件で調製した焼鈍分離剤スラリーを、両面目付量14g/m2として塗布・乾燥し、その後、800℃までを46時間かけて昇温し、800℃で20時間保定したのち、800〜1150℃を平均昇温速度25℃/hrで昇温し、1150℃〜1200℃の滞留時間を20時間とする最終仕上焼鈍を施した。続いて、未反応の分離剤を水洗により除去してから、コロイダルシリカを含有するリン酸マグネシウムを主成分とする絶縁張力被膜を塗布し、平坦化焼鈍し、方向性電磁鋼板とした。 C: 0.08 mass%, Si: 3.35 mass%, Mn: 0.08 mass%, S: 0.003 mass%, B: 0.008 mass%, Se: 0.020 mass%, N: 0.0082 mass%, and Bi: 0.022 mass %, P: 0.08 mass%, Sn: 0.03%, and the remainder mainly composed of Fe is heated in a gas heating furnace at 1430 ° C for 60 minutes and then hot rolled to a thickness of 2.2 mm After forming a hot-rolled sheet, after soaking at 1150 ° C. for 35 seconds, it was subjected to hot-rolled sheet annealing that was cooled to room temperature at 35 ° C./sec. Next, pickling and cold rolling at a maximum temperature of 220 ° C to make a cold rolled sheet with a final thickness of 0.27mm, the dew point of the atmosphere in the heating region is 55 ° C, and the oxidizing property (P H2O / P H2 ) Decarburization annealing was performed by holding at 845 ° C. for 120 seconds under the conditions of 0.37, a dew point in the soaking region atmosphere of 61 ° C., and an oxidizing property (P H2O / P H2 ) of 0.43. This steel sheet was coated with an annealing separator slurry prepared under three conditions P to R in Table 3 using magnesia as the main agent, and coated and dried at a double-sided weight of 14 g / m 2. The temperature is increased over time, held at 800 ° C for 20 hours, then heated to 800-1150 ° C at an average rate of increase of 25 ° C / hr, and final finish annealing is performed at a residence time of 1150 ° C-1200 ° C for 20 hours. Was given. Subsequently, after removing the unreacted separating agent by washing with water, an insulating tension coating containing magnesium phosphate containing colloidal silica as a main component was applied and planarized and annealed to obtain a grain-oriented electrical steel sheet.

上記のようにして得た方向性電磁鋼板について、被膜外観と曲げ密着性の評価と、エプスタイン試験法による磁束密度B8の測定および鉄損W17/50の測定を行い、結果を図6に示した。図6から、水酸化物を純水に溶解して水溶液にしてから混ぜることで、被膜外観・密着性および磁気特性が共に優れる製品が得られることがわかる。 With respect to the grain- oriented electrical steel sheet obtained as described above, the coating appearance and bending adhesion were evaluated, the magnetic flux density B 8 was measured by the Epstein test method, and the iron loss W 17/50 was measured. Indicated. From FIG. 6, it can be seen that a product having excellent coating appearance / adhesion and magnetic properties can be obtained by dissolving hydroxide in pure water to make an aqueous solution and mixing.

鋼板Aにおける被膜の曲げ密着性と磁束密度に及ぼす水酸化ストロンチウムの添加量の影響を示すグラフである。It is a graph which shows the influence of the addition amount of the strontium hydroxide which acts on the bending adhesiveness and magnetic flux density of the film in the steel plate A. 鋼板B,Cにおける被膜の曲げ密着性と磁束密度に及ぼす水酸化ストロンチウムの添加量の影響を示すグラフである。It is a graph which shows the influence of the addition amount of strontium hydroxide which acts on the bending adhesiveness and magnetic flux density of the film in steel plates B and C. 鋼板D,Eにおける被膜の曲げ密着性と磁束密度に及ぼす水酸化ストロンチウムの添加量の影響を示すグラフである。It is a graph which shows the influence of the addition amount of strontium hydroxide on the bending adhesiveness and magnetic flux density of the film in steel plates D and E. 鋼板F,Gにおける被膜の曲げ密着性と磁束密度に及ぼす水酸化ストロンチウムの添加量の影響を示すグラフである。It is a graph which shows the influence of the addition amount of the strontium hydroxide which acts on the bending adhesiveness and magnetic flux density of the film in the steel plates F and G. 鋼板Hにおける被膜の曲げ密着性と磁束密度に及ぼす水酸化ストロンチウムの添加量の影響を示すグラフである。3 is a graph showing the influence of the amount of strontium hydroxide added on the bending adhesion and magnetic flux density of a coating on steel plate H. 最終仕上焼鈍後の被膜の曲げ密着性と磁束密度に及ぼすスラリー調製方法の影響を示すグラフである。It is a graph which shows the influence of the slurry preparation method on the bending adhesiveness and magnetic flux density of the film after final finish annealing. 最終仕上焼鈍後の被膜の曲げ密着性と磁束密度に及ぼすスラリー調製方法の影響を示すグラフである。It is a graph which shows the influence of the slurry preparation method on the bending adhesiveness and magnetic flux density of the film after final finishing annealing. 被膜の外観と曲げ密着性、磁束密度B8および鉄損W17/50に及ぼすスラリー調製方法の影響を示すグラフである。Appearance and bending adhesion of the coating is a graph showing the effect of slurry preparation method on the magnetic flux density B 8 and iron loss W 17/50. 被膜の曲げ密着性、磁束密度B8および鉄損W17/50に及ぼすスラリー調製方法の影響を示すグラフである。Bending adhesion of the coating is a graph showing the effect of slurry preparation method on the magnetic flux density B 8 and iron loss W 17/50. 被膜の曲げ密着性、磁束密度B8および鉄損W17/50に及ぼすスラリー調製方法の影響を示すグラフである。Bending adhesion of the coating is a graph showing the effect of slurry preparation method on the magnetic flux density B 8 and iron loss W 17/50.

Claims (3)

C:0.01〜0.10mass%、Si:1.0〜5.0mass%を含み、さらに主インヒビター成分と副インヒビター成分とを含有し、残部がFeおよび不可避的不純物からなる珪素鋼スラブを熱間圧延し、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚とし、次いで、一次再結晶焼鈍した後、マグネシアを主剤とする焼鈍分離剤を鋼板表面に塗布して最終仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
上記主インヒビター成分は、AlN,BN,MnS,MnSe,Cu 2−x SおよびCu 2−x Seのうちのいずれか1種以上で、かつ、MnS,MnSe,Cu 2−x SおよびCu 2−x Seを用いる場合には、CuとMnの合計量:0.03〜0.30mass%、SとSeの合計量:0.01〜0.03mass%、AlNを用いる場合には、Al:0.004〜0.04mass%、N:0.0030〜0.0120mass%、BNを用いる場合には、B:0.0010〜0.015mass%、N:0.0030〜0.0120mass%であり、
上記副インヒビター成分は、Ni:0.01〜1.50mass%、Sb:0.005〜0.50mass%、P:0.005〜0.50mass%、Cr:0.01〜1.50mass%、Te:0.003〜1.50mass%、Bi:0.003〜1.50mass%、Sn:0.01〜0.50mass%およびPb:0.003〜1.50mass%の中から選ばれる1種または2種以上であり、
上記焼鈍分離剤は、下記A〜C群のうちの少なくとも1群の水溶性化合物水溶液としてマグネシア100質量部に対して合計で0.001〜10質量部添加したものであることを特徴とする方向性電磁鋼板の製造方法。

A群:水酸化ストロンチウム:マグネシア100質量部に対して0.1〜10質量部
B群:水酸化リチウム、水酸化ナトリウム、水酸化カリウムのうちの1種または2種以上:マグネシア100質量部に対して合計0.001〜1.5質量部
C群:塩化マグネシウム:マグネシア100質量部に対して0.001〜0.1質量部
A silicon steel slab containing C: 0.01 to 0.10 mass%, Si: 1.0 to 5.0 mass%, further containing a main inhibitor component and a secondary inhibitor component, the balance being Fe and inevitable impurities After hot rolling, the final sheet thickness is obtained by one or two or more cold rollings sandwiching intermediate annealing, followed by primary recrystallization annealing, and then an annealing separator containing magnesia as a main ingredient is applied to the steel sheet surface. In the manufacturing method of grain-oriented electrical steel sheet consisting of a series of steps for performing finish annealing,
The main inhibitor component is at least one of AlN, BN, MnS, MnSe, Cu 2-x S, and Cu 2-x Se , and MnS, MnSe, Cu 2-x S, and Cu 2− x When using Se, the total amount of Cu and Mn: 0.03 to 0.30 mass%, the total amount of S and Se: 0.01 to 0.03 mass%, and when using AlN, Al: 0 .004 to 0.04 mass%, N: 0.0030 to 0.0120 mass%, when BN is used, B: 0.0010 to 0.015 mass%, N: 0.0030 to 0.0120 mass%,
The secondary inhibitor component is Ni: 0.01-1.50 mass%, Sb: 0.005-0.50 mass%, P: 0.005-0.50 mass%, Cr: 0.01-1.50 mass%, One selected from Te: 0.003-1.50 mass%, Bi: 0.003-1.50 mass%, Sn: 0.01-0.50 mass%, and Pb: 0.003-1.50 mass% Or two or more,
Said annealing separating agent, to characterized in that the addition from 0.001 to 10 parts by weight in total with respect to the magnesia 100 parts by weight aqueous solution of at least one group of water-soluble compounds of the following A~C group method of manufacturing oriented electrical steel sheet towards that.
Record
Group A: Strontium hydroxide: 0.1 to 10 parts by mass with respect to 100 parts by mass of magnesia
Group B: one or more of lithium hydroxide, sodium hydroxide and potassium hydroxide: 0.001 to 1.5 parts by mass in total with respect to 100 parts by mass of magnesia
Group C: Magnesium chloride: 0.001 to 0.1 parts by mass with respect to 100 parts by mass of magnesia
上記水溶性化合物を添加する場合には、マグネシアと前記水溶性化合物以外の添加物と純水とを混合して得たスラリーに、水溶性化合物の水溶液を添加することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 In the case of adding the water-soluble compound, according to claim, characterized in that the slurry obtained by mixing the additives and pure water other than the magnesia water-soluble compound, adding an aqueous solution of a water-soluble compound 1 method for producing oriented electrical steel sheet according to. 上記水溶性化合物を添加する場合には、水溶性化合物の水溶液と前記水溶性化合物以外の添加物とマグネシアと純水とを同時に混合することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 The grain-oriented electrical steel sheet according to claim 1, wherein when the water-soluble compound is added, an aqueous solution of the water-soluble compound, an additive other than the water-soluble compound, magnesia and pure water are mixed at the same time. Manufacturing method.
JP2004105237A 2004-03-31 2004-03-31 Method for producing grain-oriented electrical steel sheet having excellent magnetic properties and coating properties Expired - Lifetime JP4192822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004105237A JP4192822B2 (en) 2004-03-31 2004-03-31 Method for producing grain-oriented electrical steel sheet having excellent magnetic properties and coating properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004105237A JP4192822B2 (en) 2004-03-31 2004-03-31 Method for producing grain-oriented electrical steel sheet having excellent magnetic properties and coating properties

Publications (2)

Publication Number Publication Date
JP2005290446A JP2005290446A (en) 2005-10-20
JP4192822B2 true JP4192822B2 (en) 2008-12-10

Family

ID=35323714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004105237A Expired - Lifetime JP4192822B2 (en) 2004-03-31 2004-03-31 Method for producing grain-oriented electrical steel sheet having excellent magnetic properties and coating properties

Country Status (1)

Country Link
JP (1) JP4192822B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101594601B1 (en) * 2013-12-23 2016-02-16 주식회사 포스코 Oriented electrical steel sheets and method for manufacturing the same
KR101610361B1 (en) * 2013-12-23 2016-04-07 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
JP6485554B2 (en) 2015-10-26 2019-03-20 新日鐵住金株式会社 Directional electrical steel sheet and method for producing the same, and method for producing decarburized steel sheet for directionally oriented electrical steel sheet
KR101947026B1 (en) * 2016-12-22 2019-02-12 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same
EP3910079A4 (en) 2019-01-08 2022-09-28 Nippon Steel Corporation Grain-oriented magnetic steel sheet, method for manufacturing grain-oriented magnetic steel sheet, and annealing separating agent used for manufacturing grain-oriented magnetic steel sheet
KR102550567B1 (en) 2019-01-08 2023-07-04 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet, steel sheet for finish annealing, annealing separator, method for producing grain-oriented electrical steel sheet, and method for producing steel sheet for finish annealing
EP3910081A4 (en) 2019-01-08 2022-10-05 Nippon Steel Corporation Grain-oriented electromagnetic steel sheet, method for manufacturing same, and annealing separator
EP3910077A4 (en) 2019-01-08 2022-09-28 Nippon Steel Corporation Grain-oriented magnetic steel sheet, method for manufacturing grain-oriented magnetic steel sheet, and annealing separating agent used for manufacturing grain-oriented magnetic steel sheet
CN113260719B (en) 2019-01-08 2023-01-20 日本制铁株式会社 Grain-oriented electromagnetic steel sheet, annealing separator, and method for producing grain-oriented electromagnetic steel sheet
US20220056551A1 (en) 2019-01-08 2022-02-24 Nippon Steel Corporation Grain-oriented electrical steel sheet, method for manufacturing grain-oriented electrical steel sheet, and annealing separator utilized for manufacture of grain-oriented electrical steel sheet
JP7463976B2 (en) * 2020-02-28 2024-04-09 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP7338511B2 (en) * 2020-03-03 2023-09-05 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2005290446A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
CN107849656B (en) Method for producing grain-oriented electromagnetic steel sheet
WO2013058239A1 (en) Oriented electromagnetic steel sheet and method for manufacturing same
KR102579758B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4192822B2 (en) Method for producing grain-oriented electrical steel sheet having excellent magnetic properties and coating properties
JP4653266B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3873489B2 (en) Method for producing grain-oriented silicon steel sheet having excellent coating properties and magnetic properties
JP3921806B2 (en) Method for producing grain-oriented silicon steel sheet
JP5287641B2 (en) Method for producing grain-oriented electrical steel sheet
JP2953978B2 (en) Thick grain-oriented electrical steel sheet having no glass coating with excellent insulating coating properties and method for producing the same
JP4259037B2 (en) Method for producing grain-oriented electrical steel sheet
KR100259401B1 (en) Production of grain oriented silicon steel sheet capable of stably providing excellent magnetic property
JPH09249916A (en) Production of grain-oriented silicon steel sheet and separation agent for annealing
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP3928275B2 (en) Electrical steel sheet
JP4345302B2 (en) Method for producing grain-oriented electrical steel sheet
JP2002194445A (en) Method for manufacturing grain-oriented electrical steel sheet having high magnetic flux density and excellent film characteristic
JP3716608B2 (en) Method for producing grain-oriented electrical steel sheet
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JP2006316314A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property and film property
JP3463417B2 (en) Method for producing grain-oriented silicon steel sheet stably obtaining excellent magnetic properties
JP2003253334A (en) Method for manufacturing grain-oriented magnetic steel sheet superior in magnetic property and stamping property
JP3921807B2 (en) Method for producing grain-oriented silicon steel sheet
JP2000096149A (en) Manufacture of grain oriented silicon steel sheet excellent in film characteristic and magnetic property
JP3536776B2 (en) Magnesia for annealing separator of grain-oriented electrical steel and method for producing grain-oriented electrical steel sheet with excellent magnetic and coating properties
WO1991019825A1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

R150 Certificate of patent or registration of utility model

Ref document number: 4192822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term