KR20050105835A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
KR20050105835A
KR20050105835A KR1020040031107A KR20040031107A KR20050105835A KR 20050105835 A KR20050105835 A KR 20050105835A KR 1020040031107 A KR1020040031107 A KR 1020040031107A KR 20040031107 A KR20040031107 A KR 20040031107A KR 20050105835 A KR20050105835 A KR 20050105835A
Authority
KR
South Korea
Prior art keywords
region
substrate
low voltage
forming
high voltage
Prior art date
Application number
KR1020040031107A
Other languages
Korean (ko)
Other versions
KR101051956B1 (en
Inventor
홍대욱
Original Assignee
매그나칩 반도체 유한회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매그나칩 반도체 유한회사 filed Critical 매그나칩 반도체 유한회사
Priority to KR1020040031107A priority Critical patent/KR101051956B1/en
Publication of KR20050105835A publication Critical patent/KR20050105835A/en
Application granted granted Critical
Publication of KR101051956B1 publication Critical patent/KR101051956B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0405Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising semiconducting carbon, e.g. diamond, diamond-like carbon
    • H01L21/041Making n- or p-doped regions
    • H01L21/0415Making n- or p-doped regions using ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0928Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

본 발명은 소자의 크기를 감소시킬 수 있는 반도체 소자의 제조방법을 개시한다. 개시된 본 발명의 방법은, 고전압 영역과 저전압 영역으로 구성되는 반도체 기판을 제공하는 단계; 상기 기판의 고전압 영역에 N웰 및 P웰 영역 형성하는 단계; 상기 기판 내에 소자분리막을 형성하는 단계; 상기 기판의 고전압 영역 및 저전압 영역에 고전압용 게이트 산화막을 형성하는 단계; 상기 고전압 영역의 문턱전압을 조절하기 위해 이온주입 공정을 실시하는 단계; 상기 기판의 저전압 영역에 형성된 고전압용 게이트 산화막을 제거하는 단계; 상기 기판의 고전압 영역에 N형 불순물 이온을 주입하여 드리프트 영역을 형성하는 단계; 상기 기판의 저전압 영역에 N웰 영역을 형성하고, 문턱전압을 조절하기 위해 1차 이온주입 공정을 실시하는 단계; 상기 기판의 저전압 영역에 P웰 영역을 형성하고, 문턱전압을 조절하기 위해 2차 이온주입 공정을 실시하는 단계; 상기 기판의 저전압 영역 상에 저전압용 게이트 산화막을 증착하여 저전압용 게이트를 형성하는 단계; 상기 기판의 고전압 영역에 고전압용 게이트를 형성하는 단계; 상기 저전압용 게이트 양측 기판 상에 이온주입 공정을 실시하여 LDD 영역을 형성하는 단계; 및 상기 저전압용 게이트 양측 기판 상에 이온주입 공정을 실시하여 소오스/드레인 영역을 형성하는 단계를 포함하는 것을 특징으로 한다.The present invention discloses a method for manufacturing a semiconductor device capable of reducing the size of the device. The disclosed method includes providing a semiconductor substrate comprised of a high voltage region and a low voltage region; Forming N well and P well regions in the high voltage region of the substrate; Forming an isolation layer in the substrate; Forming a high voltage gate oxide film in a high voltage region and a low voltage region of the substrate; Performing an ion implantation process to adjust the threshold voltage of the high voltage region; Removing the high voltage gate oxide film formed in the low voltage region of the substrate; Implanting N-type impurity ions into the high voltage region of the substrate to form a drift region; Forming an N well region in a low voltage region of the substrate and performing a primary ion implantation process to adjust a threshold voltage; Forming a P well region in the low voltage region of the substrate and performing a secondary ion implantation process to adjust a threshold voltage; Depositing a low voltage gate oxide layer on the low voltage region of the substrate to form a low voltage gate; Forming a high voltage gate in a high voltage region of the substrate; Forming an LDD region by performing an ion implantation process on both substrates of the low voltage gate; And forming a source / drain region by performing an ion implantation process on both substrates of the low voltage gate.

Description

반도체 소자의 제조방법{METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE}Manufacturing method of semiconductor device {METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE}

본 발명은 반도체 소자의 제조방법에 관한 것으로, 보다 상세하게는, 소자의 크기를 감소시킬 수 있는 반도체 소자의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device capable of reducing the size of the device.

씨모스 로직(CMOS Logic) 소자 제조기술은 LCD 드라이버 칩과 같이 많은 분야에 적용되는 기술이며, 머지드 로직 회로(Merged Logic Circuit)와 함께 칩 제조에 사용된다. 따라서, 칩 크기를 감소시키기 위해 로직 제조 기술의 선폭이 지속적으로 미세화 되고 있다.CMOS logic device manufacturing technology is applied to many fields such as LCD driver chip, and is used in chip manufacturing together with merged logic circuit. As a result, the line width of logic fabrication techniques continues to be miniaturized to reduce chip size.

종래 30V용 이하 및 이상의 고전압 소자 제조기술은 고전압 영역(High Voltage Region : HVR)의 웰형성과 소오스/드레인 형성에서 내압특성을 확보하기 위해 고온 및 장시간의 어닐링 공정을 실시하게 되는데, 이때에 소오스/드레인 영역에 측면확산이 발생되며, 단채널 특성을 확보하기 위해 채널 길이(Channel Length)를 확대해야 했다. 이로 인해 소자의 크기가 커지는 단점이 있다.Conventional high voltage device manufacturing technology for 30V and above uses high temperature and long time annealing process to secure breakdown voltage characteristics in well voltage and source / drain formation of high voltage region (HVR). Side diffusion occurs in the drain region, and the channel length has to be enlarged to secure short channel characteristics. This has the disadvantage of increasing the size of the device.

또한, 고전압 소자 제조시 고전압 영역와 저전압 영역(Low Voltage Region : LVR)의 게이트 절연막 두께 차이로 인해 고전압 및 저전압 영역에 소오스/드레인 이온주입시 이온주입 깊이가 저전압 영역에 맞춰져 있으므로, 고전압 영역은 이미 증착된 두꺼운 산화막으로 인하여 도펀트(Dopant)가 차단되어 오믹 콘택(Ohmic Contact) 형성이 어려웠다.Also, due to the difference in gate insulating film thickness between the high voltage region and the low voltage region (LVR), the ion implantation depth is set to the low voltage region when source / drain ions are implanted in the high voltage region and the low voltage region. Due to the thick oxide film, dopants were blocked, making it difficult to form ohmic contacts.

그리고, 기존 공정에서는 LDD 스페이서 식각시 고전압 영역에 잔류된 게이트 산화막을 조절하여 소오스/드레인 이온주입을 실시하였으나, 소자 선폭의 감소 및 저전압 영역의 게이트 산화막이 얇게 증착됨으로 인해 LDD 스페이서 식각 조건을 조절하기가 어렵다.In the conventional process, the source / drain ion implantation was performed by controlling the gate oxide film remaining in the high voltage region during LDD spacer etching, but the LDD spacer etching condition was controlled due to the reduction of the device line width and the thin deposition of the gate oxide film in the low voltage region. Is difficult.

따라서, 본 발명은 상기와 같은 종래 문제점을 해결하기 위해 안출된 것으로서, 소자의 크기를 감소시킬 수 있는 반도체 소자의 제조방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for manufacturing a semiconductor device capable of reducing the size of the device, which is devised to solve the conventional problems as described above.

상기와 같은 목적을 달성하기 위한 본 발명의 방법은, 고전압 영역과 저전압 영역으로 구성되는 반도체 기판을 제공하는 단계; 상기 기판의 고전압 영역에 N웰 및 P웰 영역 형성하는 단계; 상기 기판 내에 소자분리막을 형성하는 단계; 상기 기판의 고전압 영역 및 저전압 영역에 고전압용 게이트 산화막을 형성하는 단계; 상기 고전압 영역의 문턱전압을 조절하기 위해 이온주입 공정을 실시하는 단계; 상기 기판의 저전압 영역에 형성된 고전압용 게이트 산화막을 제거하는 단계; 상기 기판의 고전압 영역에 N형 불순물 이온을 주입하여 드리프트 영역을 형성하는 단계; 상기 기판의 저전압 영역에 N웰 영역을 형성하고, 문턱전압을 조절하기 위해 1차 이온주입 공정을 실시하는 단계; 상기 기판의 저전압 영역에 P웰 영역을 형성하고, 문턱전압을 조절하기 위해 2차 이온주입 공정을 실시하는 단계; 상기 기판의 저전압 영역 상에 저전압용 게이트 산화막을 증착하여 저전압용 게이트를 형성하는 단계; 상기 기판의 고전압 영역에 고전압용 게이트를 형성하는 단계; 상기 저전압용 게이트 양측 기판 상에 이온주입 공정을 실시하여 LDD 영역을 형성하는 단계; 및 상기 저전압용 게이트 양측 기판 상에 이온주입 공정을 실시하여 소오스/드레인 영역을 형성하는 단계를 포함하는 것을 특징으로 한다.The method of the present invention for achieving the above object comprises the steps of providing a semiconductor substrate consisting of a high voltage region and a low voltage region; Forming N well and P well regions in the high voltage region of the substrate; Forming an isolation layer in the substrate; Forming a high voltage gate oxide film in a high voltage region and a low voltage region of the substrate; Performing an ion implantation process to adjust the threshold voltage of the high voltage region; Removing the high voltage gate oxide film formed in the low voltage region of the substrate; Implanting N-type impurity ions into the high voltage region of the substrate to form a drift region; Forming an N well region in a low voltage region of the substrate and performing a primary ion implantation process to adjust a threshold voltage; Forming a P well region in the low voltage region of the substrate and performing a secondary ion implantation process to adjust a threshold voltage; Depositing a low voltage gate oxide layer on the low voltage region of the substrate to form a low voltage gate; Forming a high voltage gate in a high voltage region of the substrate; Forming an LDD region by performing an ion implantation process on both substrates of the low voltage gate; And forming a source / drain region by performing an ion implantation process on both substrates of the low voltage gate.

여기에서, 상기 기판의 저전압 영역에 P웰 영역을 형성하는 단계는 상기 기판의 저전압 영역에 P웰 영역을 형성함과 동시에 고전압 영역에 PMOS 트랜지스터를 형성하기 위해 불순물 이온을 주입하여 소오스/드레인 영역을 형성하는 것을 특징으로 한다. The forming of the P well region in the low voltage region of the substrate may include forming a P well region in the low voltage region of the substrate and implanting impurity ions to form a PMOS transistor in the high voltage region to form a source / drain region. It is characterized by forming.

(실시예)(Example)

이하, 본 발명의 바람직한 실시예에 대해 첨부된 도면을 참조하여 상세하게 설명하도록 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1a 내지 도 1d는 본 발명의 실시예에 따른 반도체 소자의 제조방법을 설명하기 위한 공정별 단면도이다.1A to 1D are cross-sectional views of processes for describing a method of manufacturing a semiconductor device according to an embodiment of the present invention.

도 1a에 도시된 바와 같이, 고전압 영역(HVR)과 저전압 영역(LVR)으로 구성되는 반도체 기판(21)을 마련한다. 그 다음, 상기 기판(21) 상의 고전압 영역(HVR)에 이온주입 공정을 진행하여 N웰 및 P웰 영역(22a, 22b)을 형성한 후에 상기 기판(21) 내에 STI 공정을 진행하여 소자분리막(23)을 형성한다.As shown in FIG. 1A, a semiconductor substrate 21 including a high voltage region HVR and a low voltage region LVR is provided. Next, an ion implantation process is performed in the high voltage region HVR on the substrate 21 to form N wells and P well regions 22a and 22b, and then an STI process is performed in the substrate 21 to form an element isolation film ( 23).

이어서, 상기 기판(21)의 고전압 영역(HVR) 및 저전압 영역(LVR) 상에 고전압용 게이트 산화막(24)을 형성한 다음, 고전압 영역(HVR)의 트랜지스터 문턱전압을 조절하기 위해 이온주입 공정을 실시한다.Subsequently, a high voltage gate oxide layer 24 is formed on the high voltage region HVR and the low voltage region LVR of the substrate 21, and then an ion implantation process is performed to adjust the transistor threshold voltage of the high voltage region HVR. Conduct.

도 1b에 도시된 바와 같이, 상기 기판(21)의 저전압 영역(LVR)에 형성된 고전압용 게이트 산화막(24)을 제거한 다음, 기판 상의 고전압 영역(HVR)에 N형 불순물 이온을 주입하여 드리프트 영역(Drift : 25a, 25b)을 형성한다. 그 다음, 저전압 영역(LVR)에 N웰 영역(26a)을 형성하고, 트랜지스터의 문턱전압을 조절하기 위해 1차 이온주입 공정을 실시한다. As shown in FIG. 1B, the high voltage gate oxide layer 24 formed in the low voltage region LVR of the substrate 21 is removed, and then N-type impurity ions are implanted into the high voltage region HVR on the substrate to drift the region. Drift: 25a, 25b). Next, the N well region 26a is formed in the low voltage region LVR, and a primary ion implantation process is performed to adjust the threshold voltage of the transistor.

이어서, 저전압 영역(LVR)에 P웰 영역(26b)을 형성한 후에 저전압 영역(LVR)에 트랜지스터의 문턱전압을 조절하기 위해 2차 이온주입 공정을 실시한다. 이때, 저전압 영역(LVR)에 P웰 영역을 형성함과 동시에 고전압 영역(HVR)에 PMOS 트랜지스터를 형성하기 위한 불순물 이온을 주입하여 소오스/드레인 영역(27a, 27b)을 형성한다. Subsequently, after forming the P well region 26b in the low voltage region LVR, a secondary ion implantation process is performed to adjust the threshold voltage of the transistor in the low voltage region LVR. At this time, the P well region is formed in the low voltage region LVR, and the source / drain regions 27a and 27b are formed by implanting impurity ions for forming the PMOS transistor in the high voltage region HVR.

여기에서, 소오스/드레인 형성시 비확산형 이온주입 공정을 실시하게 되면 종래 소오스/드레인 형성시 확산형 이온주입 공정으로 인해 발생하는 단채널 현상 방지 및 반도체 소자의 내압 특성을 확보할 수 있으므로, 반도체 소자의 크기를 감소시킬 수 있다.Here, if the non-diffusion ion implantation process is performed at the time of source / drain formation, it is possible to prevent short channel phenomenon caused by the diffusion type ion implantation process at the time of source / drain formation and to ensure the breakdown voltage characteristics of the semiconductor device. Can reduce the size.

도 1c에 도시된 바와 같이, 상기 기판(21)의 저전압 영역(LVR) 상에 저전압용 게이트 산화막(28) 및 폴리실리콘막(29)을 형성한다. 이어서, 상기 폴리실리콘막(29) 및 게이트 산화막(28)을 식각하여 하여 저전압 영역(LVR) 영역 상에 저전압용 게이트(30a)를 형성한다.As shown in FIG. 1C, a low voltage gate oxide layer 28 and a polysilicon layer 29 are formed on the low voltage region LVR of the substrate 21. Subsequently, the polysilicon layer 29 and the gate oxide layer 28 are etched to form the low voltage gate 30a on the low voltage region LVR region.

그 다음, 상기 기판(21) 상의 고전압 영역(HVR)에 형성된 폴리실리콘막(29) 및 게이트 산화막(24)을 식각하여 고전압 영역(HVR) 상에 고전압용 게이트(30b)를 형성하고, 저전압 게이트(30a) 및 고전압용 게이트(30b) 양측벽에 스페이서(31)를 형성한다.Next, the polysilicon layer 29 and the gate oxide layer 24 formed in the high voltage region HVR on the substrate 21 are etched to form the high voltage gate 30b on the high voltage region HVR, and the low voltage gate Spacers 31 are formed on both side walls 30a and the high voltage gate 30b.

이때, 0.18um 로직 공정(Logic Process) 진행시 상대적으로 저전압 영역(LVR) 영역의 게이트 산화막이 현저히 낮아졌으므로, 저전압용 게이트와 고전압용 게이트를 분리하여 형성함으로써 스페이서 식각공정에 의한 저전압 영역(LVR)의 과다 식각을 방지할 수 있다.At this time, since the gate oxide layer of the low voltage region (LVR) region is significantly lowered during the 0.18um logic process, the low voltage region (LVR) by the spacer etching process is formed by separating the low voltage gate and the high voltage gate. It can prevent the excessive etching.

도 1d에 도시된 바와 같이, 상기 저전압용 게이트(30a) 양측 기판 상에 이온주입 공정을 실시하여 LDD 영역(32a, 32b)을 형성한다. 이어서, 상기 저전압용 게이트(30a) 양측의 기판 상에 이온주입 공정을 실시하여 소오스/드레인 영역(33a, 33b)을 형성한다.As illustrated in FIG. 1D, the LDD regions 32a and 32b are formed by performing an ion implantation process on both substrates of the low voltage gate 30a. Subsequently, an ion implantation process is performed on the substrates on both sides of the low voltage gate 30a to form source / drain regions 33a and 33b.

이후, 공지의 후속 공정을 진행하여 반도체 소자를 완성한다.Thereafter, a known subsequent process is performed to complete the semiconductor device.

이상, 본 발명을 몇 가지 예를 들어 설명하였으나, 본 발명은 이에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 사상에서 벗어나지 않으면서 많은 수정과 변형을 가할 수 있음을 이해할 것이다.In the above, the present invention has been described with reference to some examples, but the present invention is not limited thereto, and a person of ordinary skill in the art may make many modifications and variations without departing from the spirit of the present invention. I will understand.

이상에서와 같이, 본 발명은 고전압 영역(HVR)에 드리프트 형성 및 PMOS 트랜지스터를 형성하기 위한 이온주입 공정에서 비확산형 이온주입 공정을 실시하여 단채널 현상 방지 및 반도체 소자의 내압 특성을 확보할 수 있으므로, 반도체 소자의 크기를 감소시킬 수 있다.As described above, the present invention can prevent the short-channel phenomenon and the breakdown voltage characteristics of the semiconductor device by performing a non-diffusion ion implantation process in the ion implantation process for forming drift and PMOS transistor in the high voltage region (HVR). The size of the semiconductor device can be reduced.

또한, 본 발명은 0.18um 로직 공정(Logic Process) 진행시 저전압용 게이트와 고전압용 게이트를 분리하여 형성함으로써 스페이서 식각공정에 의한 저전압 영역(LVR)의 과다 식각을 방지할 수 있다.In addition, the present invention can prevent the over-etching of the low voltage region (LVR) by the spacer etching process by separating and forming the low voltage gate and the high voltage gate during the 0.18um logic process.

도 1a 내지 도 1d는 본 발명의 실시예에 따른 반도체 소자의 제조방법을 설명하기 위한 공정별 단면도.1A to 1D are cross-sectional views illustrating processes for manufacturing a semiconductor device in accordance with an embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명 * Explanation of symbols on the main parts of the drawings

21 : 반도체 기판 22a, 22b : N웰 및 P웰 영역21: semiconductor substrate 22a, 22b: N well and P well region

23 : 소자분리막 24 : 고전압용 게이트 산화막23 device isolation layer 24 high-voltage gate oxide film

25a, 25b : 드리프트 영역 28 : 저전압용 게이트 산화막25a, 25b: Drift region 28: Low-gate gate oxide film

29 : 폴리실리콘막 30a : 저전압용 게이트 29: polysilicon film 30a: low voltage gate

30b : 고전압용 게이트 31 : 스페이서30b: high voltage gate 31 spacer

32a, 32b : LDD 영역 33a, 33b : 소오스/드레인 영역32a, 32b: LDD region 33a, 33b: source / drain region

Claims (2)

고전압 영역과 저전압 영역으로 구성되는 반도체 기판을 제공하는 단계;Providing a semiconductor substrate comprising a high voltage region and a low voltage region; 상기 기판의 고전압 영역에 N웰 및 P웰 영역 형성하는 단계;Forming N well and P well regions in the high voltage region of the substrate; 상기 기판 내에 소자분리막을 형성하는 단계;Forming an isolation layer in the substrate; 상기 기판의 고전압 영역 및 저전압 영역에 고전압용 게이트 산화막을 형성하는 단계;Forming a high voltage gate oxide film in a high voltage region and a low voltage region of the substrate; 상기 고전압 영역의 문턱전압을 조절하기 위해 이온주입 공정을 실시하는 단계;Performing an ion implantation process to adjust the threshold voltage of the high voltage region; 상기 기판의 저전압 영역에 형성된 고전압용 게이트 산화막을 제거하는 단계;Removing the high voltage gate oxide film formed in the low voltage region of the substrate; 상기 기판의 고전압 영역에 N형 불순물 이온을 주입하여 드리프트 영역을 형성하는 단계;Implanting N-type impurity ions into the high voltage region of the substrate to form a drift region; 상기 기판의 저전압 영역에 N웰 영역을 형성하고, 문턱전압을 조절하기 위해 1차 이온주입 공정을 실시하는 단계;Forming an N well region in a low voltage region of the substrate and performing a primary ion implantation process to adjust a threshold voltage; 상기 기판의 저전압 영역에 P웰 영역을 형성하고, 문턱전압을 조절하기 위해 2차 이온주입 공정을 실시하는 단계;Forming a P well region in the low voltage region of the substrate and performing a secondary ion implantation process to adjust a threshold voltage; 상기 기판의 저전압 영역 상에 저전압용 게이트 산화막을 증착하여 저전압용 게이트를 형성하는 단계;Depositing a low voltage gate oxide layer on the low voltage region of the substrate to form a low voltage gate; 상기 기판의 고전압 영역에 고전압용 게이트를 형성하는 단계;Forming a high voltage gate in a high voltage region of the substrate; 상기 저전압용 게이트 양측 기판 상에 이온주입 공정을 실시하여 LDD 영역을 형성하는 단계; 및Forming an LDD region by performing an ion implantation process on both substrates of the low voltage gate; And 상기 저전압용 게이트 양측 기판 상에 이온주입 공정을 실시하여 소오스/드레인 영역을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 제조방법.And forming a source / drain region by performing an ion implantation process on both substrates of the low voltage gate. 제 1 항에 있어서, 상기 기판의 저전압 영역에 P웰 영역을 형성하는 단계는 상기 기판의 저전압 영역에 P웰 영역을 형성함과 동시에 고전압 영역에 PMOS 트랜지스터를 형성하기 위해 불순물 이온을 주입하여 소오스/드레인 영역을 형성하는 것을 특징으로 하는 반도체 소자의 제조방법.The method of claim 1, wherein the forming of the P well region in the low voltage region of the substrate comprises implanting impurity ions to form a P well region in the low voltage region of the substrate and forming a PMOS transistor in the high voltage region. A method for manufacturing a semiconductor device, comprising forming a drain region.
KR1020040031107A 2004-05-03 2004-05-03 Method of manufacturing semiconductor device KR101051956B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040031107A KR101051956B1 (en) 2004-05-03 2004-05-03 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040031107A KR101051956B1 (en) 2004-05-03 2004-05-03 Method of manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
KR20050105835A true KR20050105835A (en) 2005-11-08
KR101051956B1 KR101051956B1 (en) 2011-07-26

Family

ID=37282942

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040031107A KR101051956B1 (en) 2004-05-03 2004-05-03 Method of manufacturing semiconductor device

Country Status (1)

Country Link
KR (1) KR101051956B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4811895B2 (en) * 2001-05-02 2011-11-09 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
KR100390921B1 (en) * 2001-11-08 2003-07-12 주식회사 하이닉스반도체 Method of manufacturing high voltage semiconductor device
KR100901648B1 (en) * 2002-06-29 2009-06-09 매그나칩 반도체 유한회사 Method for fabricating of semiconductor device

Also Published As

Publication number Publication date
KR101051956B1 (en) 2011-07-26

Similar Documents

Publication Publication Date Title
US6087208A (en) Method for increasing gate capacitance by using both high and low dielectric gate material
US7256092B2 (en) Method for fabricating integrated circuits having both high voltage and low voltage devices
CN110767551A (en) LDMOS device, manufacturing method thereof and method for adjusting electrical parameters of LDMOS device
TW202018777A (en) Method for fabricating semiconductor device
KR19980053390A (en) METHOD FOR MANUFACTURING DUAL-GATE SEMICONDUCTOR DEVICE
US20030008515A1 (en) Method of fabricating a vertical MOS transistor
KR101051956B1 (en) Method of manufacturing semiconductor device
CN112309853A (en) Preparation method of shielded gate trench structure
KR20050045560A (en) Method for implanting channel ions in recess gate type transistor
KR100239420B1 (en) Semiconductor device and method for manufacturing the same
KR100537272B1 (en) Method for fabricating of semiconductor device
KR100602317B1 (en) Method of forming a gate oxide layer in a semiconductor device
KR100477542B1 (en) Method of manufacturing short-channel transistor in semiconductor device
KR100772115B1 (en) Method of manufacturing mosfet device
KR20050108197A (en) Method for forming nmos transistor
KR100943133B1 (en) Transistor of semiconductor device and forming method thereof
KR100982961B1 (en) Method for fabricating semiconductor device
KR20060005556A (en) Method for manufacturing an integrated semiconductor device
KR20050048125A (en) Method of manufacturing semiconductor device
KR20050081105A (en) Poly-silicon gate manufacturing method for dual gate cmos transistor device
KR0152936B1 (en) Method of fabricating semiconductor device
KR100641482B1 (en) Method for forming a semiconductor gate line
KR100609225B1 (en) Fabricating method of gate oxidation layer in semiconductor device
KR100973091B1 (en) Method for manufacturing of mos transistor
KR100365416B1 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140618

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150617

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160620

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170626

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180618

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190619

Year of fee payment: 9