KR20050097927A - Rewritable optical record carrier - Google Patents
Rewritable optical record carrier Download PDFInfo
- Publication number
- KR20050097927A KR20050097927A KR1020057012391A KR20057012391A KR20050097927A KR 20050097927 A KR20050097927 A KR 20050097927A KR 1020057012391 A KR1020057012391 A KR 1020057012391A KR 20057012391 A KR20057012391 A KR 20057012391A KR 20050097927 A KR20050097927 A KR 20050097927A
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- recording
- stack
- dielectric layer
- thickness
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 38
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052709 silver Inorganic materials 0.000 claims abstract description 11
- 239000004332 silver Substances 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims description 10
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- 125000006850 spacer group Chemical group 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 111
- 206010034972 Photosensitivity reaction Diseases 0.000 description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 8
- 230000036211 photosensitivity Effects 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 229920000515 polycarbonate Polymers 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012782 phase change material Substances 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910017150 AlTi Inorganic materials 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
- G11B7/24035—Recording layers
- G11B7/24038—Multiple laminated recording layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B7/2433—Metals or elements of Groups 13, 14, 15 or 16 of the Periodic Table, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
- G11B7/24067—Combinations of two or more layers with specific interrelation
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/257—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/258—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/2431—Metals or metalloids group 13 elements (B, Al, Ga, In)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24312—Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24314—Metals or metalloids group 15 elements (e.g. Sb, Bi)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24316—Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/258—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
- G11B7/2585—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on aluminium
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/258—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
- G11B7/259—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on silver
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/21—Circular sheet or circular blank
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
Abstract
Description
본 발명은 다수 층의 기록 스택(IPIM)을 갖는 기판을 구비하는 재기록형 광학 기록 매체에 관한 것으로, 상기 기록 스택은 제1 유전체층(I1), 상변화 기록 재료(PC)를 갖는 기록층(P), 제2 유전체층(I2) 및 주 성분으로서 알루미늄을 포함하는 혼합물로 구성되거나 주 성분으로서 은을 포함하는 혼합물로 구성된 미러층(M)을 순차적으로 구비한다. 본 발명은 또한 상기 층을 역순으로 포함하는 기록 스택(MIPI)을 갖는 재기록형 광학 기록 매체에 관한 것이다.The present invention relates to a rewritable optical recording medium having a substrate having a multi-layer recording stack (IPIM), the recording stack comprising a first dielectric layer (I 1 ), a recording layer having a phase change recording material (PC) ( P), the second dielectric layer I 2 and the mirror layer M composed of a mixture containing aluminum as a main component or a mixture containing silver as a main component are sequentially provided. The invention also relates to a rewritable optical recording medium having a recording stack (MIPI) comprising the layers in reverse order.
CD-RW, DVD-RAM, DVD-RW 및 블루 레이 디스크(BD)와 같은 공지된 모든 기록형 광학 기록 매체에서, 상변화(PC) 기록층을 포함하는 기록 스택이 적용된다. PC층은 en개의 유전체 ZnS-SiO2 층 사이의 스택에 개재되는 것이 일반적이다. 소거 가능한 상변화 기록을 위한 선택 매체는 내구성이 있는 다결정 구조를 갖는 합금, 예를 들면 In, Ge, 및/또는 Ag로 구성된 합금 이외에 Sb 및 Te로 구성된 합금이다. 이러한 기록 스택의 한 면에는 미러층이 증착되며, 상기 미러층은 통상적으로 금, 알루미늄 또는 은과 같은 금속으로 제조되는 것이 일반적이다. 기록 스택은 폴리카보네이트 기판과 같은 기판 상에 증착된다. 기판으로부터 기록 매체에 들어가는 기록 신호에 의해 변조되는 기록 레이저빔은 기록 스택에 포커스된다. 디스크가 포커스된 레이저빔에 대하여 이동하는 동안, 레이저빔은 기록층에 의하여 주로 흡수된다. 그러므로, 합금은 국부적으로 가열된다. 온도가 용융점(약 500℃ 내지 700℃)을 초과하면, 상변화 재료는 비정질 상태로 변화한다. 인접 유전체층을 통한 급속 열 소산에 의하여 합금이 급속하게 냉각되며, 그에 의하여 비정질상을 안정화시키다. 따라서, 기록된 마크는 트랙을 따라 남아있게 된다. 낮은 출력으로 레이저빔을 인가하면 기록된 마크가 소거된다. 따라서, 기록층은 결정질상으로의 위상 변화를 유도하는 대략 200℃의 온도로 가열된다(어닐링). 원자는 경정화하기에 충분히 오랫동안 상승된 온도로 유지되어야 하기 때문에, 결정은 PC 매체에서의 비정질화가 매우 신속할 수 있음에도 불구하고 오히려 느린 공정이다.In all known recordable optical recording media such as CD-RW, DVD-RAM, DVD-RW and Blu-ray Disc (BD), a recording stack including a phase change (PC) recording layer is applied. The PC layer is typically sandwiched in a stack between en dielectric ZnS-SiO 2 layers. An optional medium for erasable phase change recording is an alloy having a durable polycrystalline structure, for example an alloy composed of Sb and Te, in addition to an alloy composed of In, Ge, and / or Ag. A mirror layer is deposited on one side of such a recording stack, which is typically made of a metal such as gold, aluminum or silver. The recording stack is deposited on a substrate such as a polycarbonate substrate. The recording laser beam modulated by the recording signal entering the recording medium from the substrate is focused on the recording stack. While the disk is moving relative to the focused laser beam, the laser beam is mainly absorbed by the recording layer. Therefore, the alloy is locally heated. If the temperature exceeds the melting point (about 500 ° C. to 700 ° C.), the phase change material changes to an amorphous state. Rapid heat dissipation through adjacent dielectric layers causes the alloy to cool rapidly, thereby stabilizing the amorphous phase. Thus, the recorded mark remains along the track. The application of the laser beam at low power erases the recorded mark. Thus, the recording layer is heated (annealed) to a temperature of approximately 200 ° C. which induces a phase change to the crystalline phase. Since atoms must be kept at elevated temperatures long enough to harden, crystals are a rather slow process, although amorphousness in PC media can be very rapid.
스택은 결정질상(기저상태)에서 고반사율을 갖지만, 비정질상(기록 상태)에서 낮은 반사율을 갖는다. 그러므로, 기록 스택에 초점을 맞춘 판독 빔은 그 빔이 기록 마크(피트)에 조사하는가 또는 비기록 영역(랜드)에 조사하는가에 따라 상이한 광도로 기록층에 의하여 반사된다. 따라서, 유전체층과 반사층은 다수의 임무, 즉 기록층을 보호하고, 반사율 및/또는 흡슈율을 최적화한 광학적으로 조정된 구조를 생성하며, 급속 냉각을 위해 디스크의 열 특성을 맞출 수 있는 기능을 수행한다. The stack has high reflectivity in the crystalline phase (base state) but low reflectivity in the amorphous phase (record state). Therefore, the read beam focused on the recording stack is reflected by the recording layer at different intensities depending on whether the beam irradiates a recording mark (feet) or a non-recording region (land). Thus, the dielectric and reflective layers perform a number of tasks: protect the recording layer, create an optically tuned structure that optimizes the reflectance and / or absorbance, and match the thermal characteristics of the disc for rapid cooling. do.
일반적인 기록 매체 뿐만 아니라 기록형 광학 기록 매체는 예를 들면 멀티미디어 적용에 제공되는 데이터 양의 폭발적 증가에 기인하여 데이터 용량에서 진화론적 증가를 보여주고 있다. 기록형 광학 기록 매체의 데이터 용량은 650MB(CD, NA=0.45,λ=780nm)에서 4.7GB(DVD, NA=0.65, λ=670nm)로, 최종적으로 25GB(블루 레이 디스크(BD), NA=0.85, λ=405nm)로 증가되었다. 데이터 용량은 디스크 당 기록 스택의 개수 증가만큼 더욱 배가될 수 있다. 소위 이중 기록층 스택 구조가 DVD-ROM으로 공지되어 있다. 두 개의 기록층은 동일한 기판 상에서 두 기록층 사이에 스페이서를 갖는 스택으로 배열된다. 이러한 종류의 디스크에서 기록층은 동일한 것으로부터 억세스될 수 있다.Recordable optical recording media as well as general recording media have shown an evolutionary increase in data capacity, for example due to the explosive increase in the amount of data provided for multimedia applications. The data capacity of recordable optical recording media ranges from 650MB (CD, NA = 0.45, λ = 780nm) to 4.7GB (DVD, NA = 0.65, λ = 670nm), and finally 25GB (Blu-ray Disc (BD), NA = 0.85, λ = 405 nm). The data capacity can be further doubled by increasing the number of write stacks per disc. A so-called dual recording layer stack structure is known as a DVD-ROM. The two recording layers are arranged in a stack with spacers between the two recording layers on the same substrate. In this type of disc, the recording layer can be accessed from the same.
그러나, 재기록형 기록 매체에서 레이저광의 충분한 흡수로 인하여, 이러한 매체 내에서 이중 기록층 스택 상에 정보를 기록하거나 판독하는 것이 더욱 곤란하게 된다. 레이저빔은 입사 레이저빔의 진행 방향에 대하여 가장 근접한 제1 기록 스택(L0)에 의하여 출력의 상당량이 흡수된 이후에, 입사 레이저빔의 전진 방향에 대하여 가장 먼 제2 기록 스택(L1) 상에 기록하는데 있어서 충분히 강력하여야 한다. 그러므로, 이러한 다중층 스택은 지금까지 재기록형 광학 기록 매체에 대하여 규정되어 있지 않다.However, due to sufficient absorption of the laser light in the rewritable recording medium, it becomes more difficult to record or read information on the double recording layer stack in such a medium. The laser beam is the second recording stack L 1 furthest from the advancing direction of the incident laser beam after a considerable amount of output is absorbed by the first recording stack L 0 closest to the advancing direction of the incident laser beam. It must be strong enough to record it. Therefore, such a multilayer stack has not been defined so far for a rewritable optical recording medium.
데이터 용량에 대한 요구 증가와 동시에, 상변화 광학 기록에서의 높은 데이터율에 대한 요구가 증가하고 있다. 높은 데이터율은 높은 결정화율, 즉 짧은 결정 시간을 갖는 기록층을 필요로 한다. 직접 겹쳐쓰기(DOW) 동안 이전에 기록된 마크가 재결정될 수 있는 것을 보장하기 위하여, 예를 들면, 전술한 바와 같이, 기록층은 레이저빔에 대하여 회전하는 기록 매체의 선속도에 일치하기에 적정한 결정 시간을 가져야 한다. 결정 속도가 선속도에 일치하기에 충분히 빠르지 않으면, 이전 기록보다 오래된 데이터는 완전히 소거될 수 없다. 나머지 오래된 데이터 단편은 높은 노이즈 레벨을 야기한다.At the same time as the demand for data capacity increases, the demand for high data rate in phase change optical recording is increasing. High data rates require a recording layer with a high crystallization rate, i. To ensure that previously recorded marks can be recrystallized during direct overwrite (DOW), for example, as described above, the recording layer is suitable to match the linear velocity of the recording medium rotating with respect to the laser beam. You must have a decision time. If the crystal velocity is not fast enough to match the linear velocity, data older than the previous record cannot be completely erased. The remaining old data fragments cause high noise levels.
최근, 미국 특허 출원 제2001-0036527호, 제2001-00365278호 및 제01/13370호 공보에서, 높은 선속도에서 조차도 지터, 광학 콘트라스트 및 변조와 같이 DVD-표준에 의하여 예정된 광학 범위를 만족시키기 위한 충분한 기록 특성을 갖는 재기록형 광학 기록 매체가 제안되어 있다. 그러나, 이러한 기록 매체는 40% 내지 60%의 투과율을 갖는 L0 기록 스택을 구비한다. L1에 도달하는 레이저 출력이 L1 만큼 감소하기 때문에, 기록 스택은 특히 높은 선속도에서 매우 민감하여야 한다. 반면, 제2 기록 스택 L1에서 반사된 판독 레이저빔의 광이 L0 스택을 통해 검출기까지의 도중에 한번 더 감쇠하기 때문에, L1 스택은 매우 높은 감광도를 가져야 한다.Recently, in US Patent Application Nos. 2001-0036527, 2001-00365278, and 01/13370, to satisfy optical ranges prescribed by DVD-standards such as jitter, optical contrast and modulation even at high linear velocities. A rewritable optical recording medium having sufficient recording characteristics has been proposed. However, such a recording medium has an L 0 recording stack having a transmittance of 40% to 60%. Since the laser power reaching the L 1 to reduce as much as L 1, the recording stack are to be highly sensitive, particularly in high linear velocity. On the other hand, since the light of the read laser beam reflected from the second write stack L 1 is attenuated once again on the way through the L 0 stack to the detector, the L 1 stack must have a very high sensitivity.
그러므로, 본 발명의 목적은 감광도와 반사율에 대하여 양호한 광학 특성을 제공하는 스택 구조를 갖는 재기록형 광학 기록 매체를 제공하는 것이다. Therefore, it is an object of the present invention to provide a rewritable optical recording medium having a stack structure that provides good optical properties with respect to photosensitivity and reflectance.
본 발명에 따르면, 층을 정순(IPIM)으로 구비하는 기록 스택을 갖는 도입부에 기술된 바와 같은 재기록형 광학 기록 매체에 있어서, 제1 유전체층은 100nm 내지 200nm 범위의 두께 d1을 가지며, 상기 제2 유전체층은 하기의 관계 중 하나에 따른 두께 d2를 갖는 것을 특징으로 하는 재기록형 광학 기록 매체에 의해 달성된다.According to the present invention, in a rewritable optical recording medium as described in the introduction having a recording stack having the layers in order (IPIM), the first dielectric layer has a thickness d 1 in the range of 100 nm to 200 nm, wherein the second The dielectric layer is achieved by a rewritable optical recording medium characterized by having a thickness d 2 according to one of the following relationships.
상기 미러층이 알루미늄을 포함하는 경우,If the mirror layer comprises aluminum,
0.0225*d2 2-2.6572*d2+173.3(nm) < d1 < 0.0225*d2 2-2.6572*d2+213.3(nm) (1)0.0225 * d 2 2 -2.6572 * d 2 +173.3 (nm) <d 1 <0.0225 * d 2 2 -2.6572 * d 2 +213.3 (nm) (1)
상기 미러층이 은을 포함하는 경우,If the mirror layer contains silver,
0.0191*d2 2-2.0482*d2+149.6(nm) < d1 < 0.0191*d2 2-2.0482*d2+189.6(nm) (2).0.0191 * d 2 2 -2.0482 * d 2 +149.6 (nm) <d 1 <0.0191 * d 2 2 -2.0482 * d 2 +189.6 (nm) (2).
본 발명의 제2 태양에 따르면, 층을 역순(MIPI)으로 구비하는 기록 스택을 갖는 도입부에 기술된 바와 같은 재기록형 광학 기록 매체에 있어서, 제1 유전체층I1은 100nm 내지 200nm 범위의 두께 d1을 가지며, 상기 제2 유전체층 I2는 상기 미러층이 알루미늄을 포함하는 경우에 수식 (가)에 따라 그리고 상기 미러층이 은을포함하는 경우에 수식 (나)에 따른 두께 d2를 갖는 것을 특징으로 하는 재기록형 광학 기록 매체에 의해 달성된다.According to a second aspect of the invention, in a rewritable optical recording medium as described in the introduction having a recording stack with layers in reverse order (MIPI), the first dielectric layer I 1 has a thickness d 1 in the range of 100 nm to 200 nm. Wherein the second dielectric layer I 2 has a thickness d 2 according to formula (a) when the mirror layer comprises aluminum and according to formula (b) when the mirror layer comprises silver. This is achieved by a rewritable optical recording medium.
본 발명의 제 1 태양 또는 제2 태양의 부가적인 개선을 구성하는 본 발명의 제3 태양에 따르면, 상기 제2 유전체층은 20nm 내지 50nm 범위의 두께를 갖는다.According to a third aspect of the invention, which constitutes an additional refinement of the first or second aspect of the invention, the second dielectric layer has a thickness in the range of 20 nm to 50 nm.
본 발명의 제1 태양 또는 제2 태양의 부가적인 개선을 구성하는 본 발명의 제4 태양에 따르면, 상기 제1 유전체층은 110nm 내지 150nm 범위의 두께를 가지며, 상기 제2 유전체층은 25nm 내지 40nm 범위의 두께를 갖는다.According to a fourth aspect of the invention, which constitutes an additional improvement of the first or second aspect of the invention, the first dielectric layer has a thickness in the range of 110 nm to 150 nm, and the second dielectric layer is in the range of 25 nm to 40 nm. Has a thickness.
종래 재기록형 광학 기록 매체에 사용하기 위하여 제안된 기록 스택의 개발은 높은 광학 콘트라스트에 초점을 맞춘 반면, 본 발명에 따른 재기록형 광학 기록 매체는 최대 반사 R*M(=Rc-Ra, 결정질 반사 Rc - 비정질 반사 Ra)에 대하여 최적화된 기록 스택을 포함한다. 하기의 실시예로부터 알 수 있는 바와 같이, 이것은 상당히 높은 반사율을 야기한다. 게다가, 마크를 기록하는데 요구되는 레이저 출력인 감광도가 증가될 수 있다.While the development of a recording stack proposed for use in a conventional rewritable optical recording medium focuses on high optical contrast, the rewritable optical recording medium according to the present invention has a maximum reflection R * M (= R c -R a , crystalline A recording stack optimized for reflection R c -amorphous reflection R a ). As can be seen from the examples below, this results in a fairly high reflectance. In addition, the photosensitivity, which is the laser output required to record the mark, can be increased.
상기 및 기타 본 발명의 목적, 특징 및 장점은 첨부도면과 관련한 바람직한 실시예의 설명으로부터 자명하게 될 것이다.These and other objects, features and advantages of the present invention will become apparent from the description of the preferred embodiments in conjunction with the accompanying drawings.
도 1은 통상의 재기록형 광학 기록 매체의 단면도를 도시한다.1 shows a cross-sectional view of a conventional rewritable optical recording medium.
도 2는 본 발명의 바람직한 실시예에 따른 재기록형 광학 기록 매체의 단면도를 도시한다.2 shows a cross-sectional view of a rewritable optical recording medium according to a preferred embodiment of the present invention.
도 3은 최대 Rc-Ra를 생성하는 알루미늄 미러층을 구비하는 본 발명에 따른 기록 스택의 I1층 두께와 I2층 두께의 조합을 도시한다.3 shows a combination of I 1 layer thickness and I 2 layer thickness of a recording stack according to the invention with an aluminum mirror layer producing a maximum of R c -R a .
도 4는 최대 Rc-Ra를 생성하는 은 미러층을 구비하는 본 발명에 따른 기록 스택의 I1층 두께와 I2층 두께의 조합을 도시한다.4 shows a combination of an I 1 layer thickness and an I 2 layer thickness of a recording stack according to the invention with a silver mirror layer producing a maximum of R c -R a .
도 5는 I2 두께의 함수로서 반사 신호 Rc, Ra, 차이 Rc-Ra, 및 반사된 판독 빔의 광학 콘트라스트 도시한다.5 shows the optical contrast of the reflected signal R c , R a , the difference R c -R a , and the reflected read beam as a function of the I 2 thickness.
도 6은 I1 두께의 함수로서 반사 신호 Rc, Ra, 차이 Rc-Ra, 및 반사된 판독 빔의 광학 콘트라스트 도시한다.6 shows the optical contrast of the reflected signals R c , R a , the difference R c -R a , and the reflected read beam as a function of the I 1 thickness.
도 7은 기록 출력에 의존하여 단일 기록 스택을 구비하는 본 발명에 따른 재기록형 광학 기록 매체의 변조 및 지터를 도시하는 도면이다.Fig. 7 is a diagram showing modulation and jitter of a rewritable optical recording medium according to the present invention having a single recording stack depending on the recording output.
도 8은 기록 출력에 의존하여 두 개의 기록 스택을 구비하는 본 발명에 따른 재기록형 광학 기록 매체의 변조 및 지터를 도시하는 도면이다.8 is a diagram showing modulation and jitter of a rewritable optical recording medium according to the present invention having two recording stacks depending on the recording output.
도 1에 도시된 통상의 재기록형 광학 매체(10)는 소위 더미 스택(dummy stack) 또는 더미 기판(102) 상에 고정 배치된 단일 기록 스택(101)을 구비한다. 여기서, 층의 위치 및/또는 방향 및 그 배열에 대한 모든 선언은 화살표 110으로 지시된 입사 레이저빔의 방향에 관한 것이다. 또한 L0 간주된 상부 단일 기록 스택(101)은 레이저빔의 유입면에 가장 근접한 스택이다. 전술한 바와 같이, 반사율과 감광도에 관한 공지된 기록 스택은 하부 스택 L1에서 사용하기에 적합하지 않다. 상부층(101)을 투과하는 광량이 작기 때문에, 이것은 정보를 기록하기에 충분한 감광도를 갖지 않으며 정보를 제2 레벨로 판독하기에 너무 낮은 반사율을 갖는다. 그러므로, 더미 스택(102)은 단순하게 폴리카보네이트로 제조된다. 더미 스택(102) 및 기록 스택(101)은 접착층과 스페이서층(비도시)에 의하여 고정되는 것이 일반적이다. 기록 스택(101)은 폴리카보네이트 기판(103)을 구비하며, 그 상부에는 제1 유전체층(104)이 적층된다. 상기 층(103)은 ZnS 및 SiO2의 혼합물, 예를 들면 (ZnS)80(SiO2)20으로 제조되며, 60nm 내지 85nm 범위의 두께를 갖는다. 다음의 인접한 층은 두께가 12nm 내지 18nm 범위인 예를 들면 GeInSbTe로 제조된 기록층(105)이다. 상기 제1 유전체층(104)의 대향 측면 상의 기록층(105)에는, 두께가 12nm 내지 20nm인 ZnS 및 SiO2의 혼합물로 제조된 제2 유전체층(106)이 부착된다. L0 스택에 속하는 최하부층은 주로 은이나 금으로 제조된 금속성 미러층(107)이다. 기록 스택(101)의 모든 층은 전술한 순서로 스퍼터링에 의하여 적층되어, IPIM 스택을 형성한다.The conventional rewritable optical medium 10 shown in FIG. 1 has a single recording stack 101 fixedly disposed on a so-called dummy stack or dummy substrate 102. Here, all declarations about the position and / or direction of the layers and their arrangement relate to the direction of the incident laser beam indicated by arrow 110. The upper single write stack 101 also considered L 0 is the stack closest to the inflow surface of the laser beam. As mentioned above, known recording stacks for reflectance and photosensitivity are not suitable for use in the lower stack L 1 . Since the amount of light passing through the top layer 101 is small, it does not have sufficient photosensitivity to record the information and has a reflectance too low to read the information to the second level. Therefore, the dummy stack 102 is simply made of polycarbonate. The dummy stack 102 and the recording stack 101 are generally fixed by an adhesive layer and a spacer layer (not shown). The recording stack 101 includes a polycarbonate substrate 103, on which a first dielectric layer 104 is stacked. The layer 103 is made of a mixture of ZnS and SiO 2 , for example (ZnS) 80 (SiO 2 ) 20 and has a thickness in the range of 60 nm to 85 nm. The next adjacent layer is a recording layer 105 made of GeInSbTe, for example, having a thickness in the range of 12 nm to 18 nm. To the recording layer 105 on the opposite side of the first dielectric layer 104, a second dielectric layer 106 made of a mixture of ZnS and SiO 2 having a thickness of 12 nm to 20 nm is attached. The bottom layer belonging to the L 0 stack is a metallic mirror layer 107 made primarily of silver or gold. All layers of the recording stack 101 are stacked by sputtering in the above-described order to form an IPIM stack.
도 2에 도시된 바와 같이, 본 발명에 따른 재기록형 캐리어(20)는 화살표 210으로 지시된 바와 같이 입사 광 빔의 방향에 대하여 제2 스택 L1로서 기록 스택(201)을 구비한다. L1 스택의 상부에, 제1 투명 기록 스택 L0(202)는 스택(201, 202) 사이에서 스페이서층(비도시)과 함께 증착될 수 있다. 이러한 투명 기록 스택은 40% 내지 60%의 투과율을 갖는 것이 일반적이다. 아래에서 알 수 있는 바와 같이, 높은 반사율과 감광도에 기인한 공지된 기록 스택 이외의 본 발명에 따른 L1 기록 스택(201)은 상기 조건 하에서 기록에 완벽하게 적응된다.As shown in Fig. 2, the rewritable carrier 20 according to the present invention has a recording stack 201 as a second stack L 1 with respect to the direction of the incident light beam, as indicated by arrow 210. On top of the L 1 stack, a first transparent write stack L 0 202 may be deposited with a spacer layer (not shown) between the stacks 201 and 202. Such transparent recording stacks typically have a transmittance of 40% to 60%. As can be seen below, the L 1 recording stack 201 according to the present invention other than the known recording stack due to high reflectance and photosensitivity is perfectly adapted to recording under the above conditions.
L1 기록 스택(201)은 위에서 아래로 100 내지 200nm, 바람직하게는 120nm 내지 160nm인 I1로 언급되는 제1 (ZnS)80(SiO2)20 유전체층(203), 예를 들면 12±1.5nm 범위의 두께를 갖는 GeInSbTe로 제조된 기록층(204)을 구비한다. 제1 유전체층(203)에 대향하는 기록층(204)에 인접하여, 20 내지 50nm, 바람직하게는 25nm 내지 40nm인 I2로 언급되는 제2 유전체 (ZnS)80(SiO2)20 층(205)이 존재한다. 그 하부에는 미러층(206)이 배열된다. 이것은 금속 또는 금속 합금, 바람직하게는 알루미늄, 소정 %의 Ti를 갖는 Al 혼합물, 또는 금으로 제조된다. 상기 미러층은 통상 두께가 약 50nm이다. 마지막으로, L1 기록 스택(201)의 하부층은 예를 들면 폴리카보네이트로 제조된 기판(207)이다. 전술한 층 배열, 즉 제1 유전체층(203), 기록층(204), 제2 유전체층(205) 및 미러층(2060의 배열은 수 표현과 반대 순서로 기판(207) 상에 적층되어, MIPI 스택을 형성한다.The L 1 write stack 201 is a first (ZnS) 80 (SiO 2 ) 20 dielectric layer 203, for example 12 ± 1.5 nm, referred to as I 1 from top to bottom 100 to 200 nm, preferably 120 nm to 160 nm. And a recording layer 204 made of GeInSbTe having a thickness in the range. 20 layers 205 of the second dielectric (ZnS) 80 (SiO 2 ), referred to as I 2 , adjacent to the recording layer 204 opposite the first dielectric layer 203, which is 20 to 50 nm, preferably 25 to 40 nm. This exists. Underneath is a mirror layer 206. It is made of a metal or metal alloy, preferably aluminum, an Al mixture having a certain percentage of Ti, or gold. The mirror layer is typically about 50 nm thick. Finally, the bottom layer of the L 1 recording stack 201 is a substrate 207 made of polycarbonate, for example. The above-described layer arrangement, i.e., the arrangement of the first dielectric layer 203, the recording layer 204, the second dielectric layer 205, and the mirror layer 2060, is stacked on the substrate 207 in the reverse order of the numerical representation, and thus the MIPI stack. To form.
광학 기록 매체에 공통으로 사용되는 기록 스택은 최대 반사에 대하여, 특히 반사차 R*M(=Rc-Ra, 결정질 반사 Rc - 비정질 반사 Ra)에 대하여 최적화되지 않는다. 이것은 도 3 및 도 4에 도시되어 있으며, 실선 301 및 401은 도 3의 알루미늄층과, 도 4의 은 미러층을 각각 포함하는 기록 스택에 대한 최대 반사율차를 나타낸다. 본 발명에 따른 기록 스택의 I1층 두께와 I2층 두께의 조합은 하기의 수식으로 기록될 수 있는 이러한 최대 Rc-Ra 선(301, 401)을 따라 선택되어야 한다(여기서 d1은 I1층 두께를 나타내며 d2는 I2층 두께를 나타낸다).The recording stack commonly used for the optical recording medium is not optimized for maximum reflection, in particular for reflection difference R * M (= R c -R a , crystalline reflection R c -amorphous reflection R a ). 3 and 4, the solid lines 301 and 401 represent the maximum reflectance difference for the recording stack each comprising the aluminum layer of FIG. 3 and the silver mirror layer of FIG. The combination of the I 1 layer thickness and the I 2 layer thickness of the recording stack according to the present invention should be selected along these maximum R c -R a lines 301, 401 which can be written by the following formula (where d 1 is I 1 layer thickness and d 2 indicates I 2 layer thickness).
a) 알루미늄 미러층을 포함하는 반사 스택의 경우a) for a reflective stack comprising an aluminum mirror layer
0.0225*d2 2-2.6572*d2+173.3(nm) < d1 < 0.0225*d2 2-2.6572*d2+213.3(nm)0.0225 * d 2 2 -2.6572 * d 2 +173.3 (nm) <d 1 <0.0225 * d 2 2 -2.6572 * d 2 +213.3 (nm)
b) 은 미러층을 포함하는 반사 스택의 경우b) is for a reflective stack comprising a mirror layer
0.0191*d2 2-2.0482*d2+149.6(nm) < d1 < 0.0191*d2 2-2.0482*d2+189.6(nm)0.0191 * d 2 2 -2.0482 * d 2 +149.6 (nm) <d 1 <0.0191 * d 2 2 -2.0482 * d 2 +189.6 (nm)
통상의 DVD에서 I1층 두께가 60nm 내지 85nm 범위이기 때문에, R*M은 최적값에서 상당히 멀다. 특히, R*M은 보다 높은 I1 두께가 필요한 경우에 상기 디스크 유형에 대하여 요구되는 제2 유전체층 두께가 12nm 내지 20nm 범위에 속하기 때문에 작다.Since the I 1 layer thickness in the conventional DVD ranges from 60 nm to 85 nm, R * M is far from optimal. In particular, R * M is small because the second dielectric layer thickness required for the disc type is in the range of 12 nm to 20 nm when a higher I 1 thickness is required.
본 발명의 바람직한 실시예에 따르면, 높은 반사율과 감광도에 대한 I2층 두께는 알루미늄 미러층을 포함하는 기록 스택의 경우에 약 28nm로 그리고 은 미러층을 포함하는 기록 스택의 경우에 25nm로 선택된다. 높은 R*M 값에 대한 대응하는 I1층 두께는 약 135nm 및 130nm로 각각 선택된다. 그러나, I1층 두께는 감광도, 변조 또는 광학 콘트라스트와 같은 다른 파라미터를 고려하여 상이하게 선택될 수도 있지만, ±20nm의 범위 내로 유지되어야 하며, 상기 범위는 각각 도 3 및 도 4에서 파선 302 및 402와 점선 303 및 403으로 지시되어 있다.According to a preferred embodiment of the present invention, the I 2 layer thickness for high reflectance and photosensitivity is selected to about 28 nm for a recording stack comprising an aluminum mirror layer and 25 nm for a recording stack comprising a silver mirror layer. . The corresponding I 1 layer thickness for high R * M values is chosen to be about 135 nm and 130 nm, respectively. However, the I 1 layer thickness may be chosen differently in view of other parameters such as photosensitivity, modulation or optical contrast, but should be kept within a range of ± 20 nm, which ranges from dashed lines 302 and 402 in FIGS. 3 and 4, respectively. And dashed lines 303 and 403.
게다가, 유전체층 I2 (205)는 통상의 유전체 I2층과 비교하여 두껍기 때문에 높은 열저항을 갖는다(도 1 및 도 2 참조). 따라서, 상변화층(204)으로부터 미러층(206)까지 열 수송은 감소된다. 미러층이 히트싱크로 작용하기 때문에, 상변화 재료를 그 융점 온도까지 가열하는데 보다 작은 출력이 요구된다. 상기 방식으로 본 발명에 다른 기록 스택의 높은 감광도를 얻는다.In addition, the dielectric layer I 2 205 has a high thermal resistance because it is thicker than a conventional dielectric I 2 layer (see FIGS. 1 and 2). Thus, heat transport from the phase change layer 204 to the mirror layer 206 is reduced. Since the mirror layer acts as a heat sink, smaller outputs are required to heat the phase change material to its melting point temperature. In this way a high photosensitivity of the recording stack according to the invention is obtained.
바람직한 실시예에 따른 기록 매체 내에서의 제2 기록 스택 L1의 RTM 측정 결과가 도 5 및 도 6에 도시되어 있다. 상기 실시예에 따르면, PC 층은 12nm의 두께를 갖는다. 그러나, 이것은 ±1.5nm의 범위에서 선택될 수 있으며, 여기서 Rc 및 Ra값은 거의 변화하지 않는다. 반면, 기록 PC 재료의 결정질 및 비정질 (구조) 상태 사이의 광 위상에서의 차이는 상기 범위 내에서 극적으로 변화한다. 상기 특성을 사용하여 푸쉬-풀 편차에 대하여 최적화할 수 있다. 1.5% Ti가 첨가된 Al; 혼합물로 구성된 본 실시예에 사용된 미러층은 50nm로 두껍다. 도 5에서, 포커스된 반사 신호 Rc, Ra, Rc-Ra의 차 및 광학 콘트라스트가 I2 층의 두께 함수로 도시되어 있다. 그러므로, I1 층의 두께는 최대 R*M 값을 고려하여 적용된다(도 3 참조). 도 6에서, 대응하는 결과가 I1 층의 두께 함수로 도시되어 있으며, I2 층의 두께는 28nm에 고정되어 있다.RTM measurement results of the second recording stack L 1 in the recording medium according to the preferred embodiment are shown in FIGS. 5 and 6. According to this embodiment, the PC layer has a thickness of 12 nm. However, this can be chosen in the range of ± 1.5 nm, where the values of R c and R a hardly change. On the other hand, the difference in optical phase between the crystalline and amorphous (structural) states of the recording PC material varies dramatically within this range. This property can be used to optimize for push-pull variation. Al with 1.5% Ti added; The mirror layer used in this embodiment composed of the mixture is 50 nm thick. In FIG. 5, the difference and optical contrast of the focused reflection signals R c , R a , R c -R a are shown as a function of the thickness of the I 2 layer. Therefore, the thickness of the I 1 layer is applied in consideration of the maximum R * M value (see FIG. 3). In FIG. 6, the corresponding result is shown as a function of the thickness of the I 1 layer and the thickness of the I 2 layer is fixed at 28 nm.
비정질 상 Ra(사각형 기호)의 반사율 뿐만 아니라 결정질 상 Rc(다이아몬드 기호)의 반사는 I2가 증가함에 따라 감소하며(도 5 참조), 따라서 두꺼운 I1 층을 선택할 때 증가한다(도 6 참조). 도 6으로부터 알 수 있는 바와 같이, 135nm의 I1 층 두께는 최대 R*M, 즉 최대 Rc-Ra(삼각 기호)를 발생시킨다. 도 3에 따르면, 상기 값은 약 28nm의 I2 값에 상응한다. 이에 의하면, R*M은 33% 이상으로 증가할 수 있는 반면, 통상적으로 제조된 디스크는 25%를 갖는다. 급격히 증가하는 결정질 상 반사 Rc에 기인하여, 표준화된 반사값, 즉 결정질 상 반사 Rc에 의하여 분할된 Rc-Ra인 콘트라스트(십자 기호)는 상기 영역에서 80%의 값까지 감소한다.The reflection of the crystalline phase R c (diamond symbol) as well as the reflectance of the amorphous phase R a (square symbol) decreases with increasing I 2 (see FIG. 5), and therefore increases when selecting a thick I 1 layer (FIG. 6). Reference). As can be seen from FIG. 6, an I 1 layer thickness of 135 nm produces a maximum R * M, ie a maximum R c -R a (triangle symbol). According to FIG. 3, this value corresponds to an I 2 value of about 28 nm. According to this, R * M can increase by more than 33%, whereas conventionally manufactured discs have 25%. Due to the rapidly increasing crystalline phase reflection R c , the contrast (cross sign), which is the normalized reflection value, ie R c -R a divided by the crystalline phase reflection R c , decreases to a value of 80% in this region.
단일 기록 MIPI 스택 L1을 갖는 또 다른 실시예에 따른 광디스크에서 레이저빔의 기록 출력에 대한 변조 및 지터의 종속성이 도 7에 도시되어 있으며, 이에 의하면, 레이저빔은 L0 스택으로서 폴리카보네이트 더미층을 통해 L1 기록 스택 상에 포커스된다. 본 발명에 의하여 제안된 바와 같은 이중 기록 스택 디스크에서 기록 출력에 대한 동일한 종속성이 도 8에 도시되어 있으며, 이에 의하면, 레이저빔은 약 45%의 투과율을 갖는 IPIM 기록 스택 L0 를 통해 MIPI 기록 스택 L1 상에 포커스된다. 두 기록 매체에서 L1 스택의 구조는 다음과 같다.The modulation and jitter dependence on the recording output of the laser beam in an optical disc according to another embodiment with a single recording MIPI stack L 1 is shown in FIG. 7, whereby the laser beam is a polycarbonate dummy layer as an L 0 stack. Through the L 1 write stack. The same dependency on the recording output in a dual recording stack disk as proposed by the present invention is shown in FIG. 8, whereby the laser beam is a MIPI recording stack via IPIM recording stack L 0 having a transmission of about 45%. Focused on L 1 . The structure of the L 1 stack in both recording media is as follows.
- 제1 유전체층: ZnS-SiO2, 130nmFirst dielectric layer: ZnS-SiO 2 , 130 nm
- PC 기록층: GeInSbTe, 12nmPC recording layer: GeInSbTe, 12nm
- 제2 유전체층: ZnS-SiO2, 32nmSecond dielectric layer: ZnS-SiO 2 , 32 nm
- 미러층: AlTi, 50nmMirror layer: AlTi, 50 nm
복층 구조에서 뿐만 아니라 L1 스택에 대한 두 기록 실험으로부터, 정확한 광감도를 얻기 위하여 I2 두께는 20nm 내지 40nm의 범위에 속하여야 한다. 한편, 상기 범위 이하에서, 기록에 필요한 기록 출력은 높게 된다. 상기 범위 이상에서, 반복 판독 문제가 발생한다.From two recording experiments on the L 1 stack as well as in the multilayer structure, the I 2 thickness must be in the range of 20 nm to 40 nm to obtain accurate light sensitivity. On the other hand, below the above range, the recording output required for recording becomes high. Above this range, repetitive reading problems arise.
도 7은 디스크가 상부에 투명 더미층만을 갖는 단일 L1 기록 스택을 포함하는 경우에, 약 12mW의 낮은 기록 출력으로도 기록에 충분하며, 따라서 45%의 변조와 10% 미만의 최소 지터를 얻는 것을 알 수 있다. 제안된 스택이 그정도로 감광성이 있으면, L1 스택으로서 이중층 디스크에도 사용될 수 있다(도 8 참조). 30mW 미만의 합리적인 기록 출력에 의하면, 이러한 이중 기록 스택 구조에서 낮은 지터와 양호한 변조가 얻어진다.FIG. 7 shows that a low write power of about 12 mW is sufficient for writing when the disk includes a single L 1 write stack with only a transparent dummy layer on top, thus obtaining 45% modulation and less than 10% minimum jitter. It can be seen that. If the proposed stack is so sensitive, it can also be used for a double layer disk as an L 1 stack (see FIG. 8). With a reasonable write output of less than 30mW, low jitter and good modulation are obtained in this dual write stack structure.
본 발명은 전술한 실시예에 제한받지 않는 것에 주목하여야 한다. 다른 기록층 재료, 유전체층 재료, 기판 재료 및/또는 반사층 재료를 이용할 수도 있다. 게다가, 본 발명은 전술한 바와 같은 이중 기록 스택 구조를 갖는 광학 기록 매체에 제한받지 않는다. 전술한 바와 같이 동일한 광학 특성 및 층 두께를 갖지만 더미층 상에 L0 층으로서 증착된 도 2에 따른 단일 기록 스택을 갖는 IPIM형의 보다 호환성 있는 단일층 광학 기록 매체를 제공할 수도 있다. 또한, 본 발명에 따른 광학 특성을 갖는 두 개 이상의 기록층을 구비하는 다중 기록 스택 구조가 제공될 수도 있다.It should be noted that the present invention is not limited to the embodiment described above. Other recording layer materials, dielectric layer materials, substrate materials and / or reflective layer materials may be used. In addition, the present invention is not limited to the optical recording medium having the dual recording stack structure as described above. It is also possible to provide a more compatible single layer optical recording medium of the IPIM type having the same optical properties and layer thickness as described above but having a single recording stack according to FIG. 2 deposited as a L 0 layer on a dummy layer. In addition, a multiple recording stack structure may be provided having two or more recording layers having optical properties according to the present invention.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02080579.2 | 2002-12-30 | ||
EP02080579 | 2002-12-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20050097927A true KR20050097927A (en) | 2005-10-10 |
Family
ID=32668854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020057012391A KR20050097927A (en) | 2002-12-30 | 2003-12-18 | Rewritable optical record carrier |
Country Status (8)
Country | Link |
---|---|
US (1) | US7385907B2 (en) |
EP (1) | EP1581941A2 (en) |
JP (1) | JP2006512711A (en) |
KR (1) | KR20050097927A (en) |
CN (1) | CN100388372C (en) |
AU (1) | AU2003285662A1 (en) |
TW (1) | TWI289835B (en) |
WO (1) | WO2004059631A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006172574A (en) * | 2004-12-14 | 2006-06-29 | Memory Tec Kk | Optical disk, optical disk device, optical disk reproducing method, digital work publication |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5935672A (en) * | 1997-03-17 | 1999-08-10 | U.S. Philips Corporation | Reversible optical information medium |
JP2001511288A (en) * | 1997-12-11 | 2001-08-07 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Rewritable optical information medium |
TW421790B (en) * | 1998-04-20 | 2001-02-11 | Koninkl Philips Electronics Nv | Rewritable optical information medium |
JP2003507218A (en) * | 1999-08-18 | 2003-02-25 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Rewritable optical information recording medium |
RU2002101129A (en) * | 2000-04-20 | 2003-09-27 | Конинклейке Филипс Электроникс Н.В. (Nl) | OPTICAL RECORDING MEDIA |
TW575873B (en) | 2000-07-13 | 2004-02-11 | Matsushita Electric Ind Co Ltd | Information recording medium, method for producing the same, and recording/reproducing method using the same |
KR100458299B1 (en) * | 2000-10-10 | 2004-11-26 | 티디케이가부시기가이샤 | Optical Recording Method and Optical Recording Medium |
EP1407451A1 (en) * | 2001-06-01 | 2004-04-14 | Koninklijke Philips Electronics N.V. | Multi-stack optical data storage medium and use of such a medium |
-
2003
- 2003-12-18 EP EP03778653A patent/EP1581941A2/en not_active Withdrawn
- 2003-12-18 CN CNB2003801078874A patent/CN100388372C/en not_active Expired - Fee Related
- 2003-12-18 KR KR1020057012391A patent/KR20050097927A/en not_active Application Discontinuation
- 2003-12-18 AU AU2003285662A patent/AU2003285662A1/en not_active Abandoned
- 2003-12-18 JP JP2004563479A patent/JP2006512711A/en active Pending
- 2003-12-18 WO PCT/IB2003/006131 patent/WO2004059631A2/en active Application Filing
- 2003-12-18 US US10/540,700 patent/US7385907B2/en not_active Expired - Fee Related
- 2003-12-26 TW TW092137140A patent/TWI289835B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EP1581941A2 (en) | 2005-10-05 |
TW200501087A (en) | 2005-01-01 |
WO2004059631A8 (en) | 2004-10-07 |
US7385907B2 (en) | 2008-06-10 |
CN1732523A (en) | 2006-02-08 |
CN100388372C (en) | 2008-05-14 |
TWI289835B (en) | 2007-11-11 |
US20060104189A1 (en) | 2006-05-18 |
AU2003285662A1 (en) | 2004-07-22 |
WO2004059631A3 (en) | 2004-09-02 |
WO2004059631A9 (en) | 2005-07-21 |
JP2006512711A (en) | 2006-04-13 |
WO2004059631A2 (en) | 2004-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003034081A (en) | Phase change type optical information recording medium | |
JP4577891B2 (en) | Optical recording medium | |
JP2004265561A (en) | Optical recording medium | |
JP2000322770A (en) | Optical information recording medium | |
JP2004296055A (en) | Optical recording and reproducing method and optical recording medium | |
KR20010080202A (en) | Rewritable optical information recording medium | |
KR100854953B1 (en) | Rewritable optical data storage medium and use of such a medium | |
KR20050097927A (en) | Rewritable optical record carrier | |
US7875365B2 (en) | Recordable optical recording media | |
KR20050059098A (en) | Rewritable optical data storage medium and use of such a medium | |
JP3138661B2 (en) | Phase change optical disk | |
JP2004171631A (en) | Optical recording medium | |
JP5398741B2 (en) | Optical information recording medium and recording / reproducing method thereof | |
JP2006035618A (en) | Optical information recording medium and its manufacturing method | |
JP4542922B2 (en) | Optical information recording medium and manufacturing method thereof | |
JP4637535B2 (en) | Optical information recording medium, manufacturing method thereof, and recording / reproducing method | |
JP4322719B2 (en) | Optical information recording medium, method for producing the same, and sputtering target | |
KR20050026477A (en) | Multi-stack optical data storage medium and use of such medium | |
JP3830045B2 (en) | Optical information recording medium and optical information recording / reproducing apparatus | |
JP2006508489A (en) | Method for manufacturing recordable optical disc, optical disc obtained by the method, and recording layer | |
KR100628100B1 (en) | Optical record medium of high resolution | |
JP2005517262A (en) | Rewritable optical storage medium and use of the medium | |
JP2005182860A (en) | Optical recording medium | |
JP2007118557A (en) | Multi-layer phase changing type optical recording medium | |
KR20060026855A (en) | Multi-stack optical storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |