KR20050074224A - 경마 승률 예측방법 및 이 방법을 실행하기 위한프로그램이 기록된 기록매체 - Google Patents

경마 승률 예측방법 및 이 방법을 실행하기 위한프로그램이 기록된 기록매체 Download PDF

Info

Publication number
KR20050074224A
KR20050074224A KR1020040002476A KR20040002476A KR20050074224A KR 20050074224 A KR20050074224 A KR 20050074224A KR 1020040002476 A KR1020040002476 A KR 1020040002476A KR 20040002476 A KR20040002476 A KR 20040002476A KR 20050074224 A KR20050074224 A KR 20050074224A
Authority
KR
South Korea
Prior art keywords
horse
evaluation
factor
score
race
Prior art date
Application number
KR1020040002476A
Other languages
English (en)
Other versions
KR100521397B1 (ko
Inventor
허형회
Original Assignee
주식회사 에이드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이드 filed Critical 주식회사 에이드
Priority to KR10-2004-0002476A priority Critical patent/KR100521397B1/ko
Publication of KR20050074224A publication Critical patent/KR20050074224A/ko
Application granted granted Critical
Publication of KR100521397B1 publication Critical patent/KR100521397B1/ko

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/66Details of globes or covers forming part of the light source
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G33/00Religious or ritual equipment in dwelling or for general use
    • A47G33/02Altars; Religious shrines; Fonts for holy water; Crucifixes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/101Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening permanently, e.g. welding, gluing or riveting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/12Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening by screwing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • F21V19/005Fastening of light source holders, e.g. of circuit boards or substrates holding light sources by permanent fixing means, e.g. gluing, riveting or embedding in a potting compound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • F21V19/0055Fastening of light source holders, e.g. of circuit boards or substrates holding light sources by screwing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)

Abstract

본 발명은 컴퓨터를 이용하여 레이싱 경기의 승부를 예측하는 방법에 관한 것으로서, 특히 마필의 과거 전적정보와 현재의 경주 환경정보에 근거하여 경마에 참여하는 마필의 우승 확률을 예측하는 방법에 관한 것이다.
이를 위해, 본 발명은 경주에 참여하는 마필의 우승 확률을 예측하는 인자를 객관 인자와 주관 인자로 나눈다. 객관 인자는 과거의 실적 데이터에 근거하여 컴퓨터가 자동으로 연산하는 예측 항목이고, 주관 인자는 해당 경기의 경주환경정보에 근거하여 사용자가 임의로 결정하는 예측 항목이다. 이 객관 인자에 대한 평가점수와 주관 인자에 대한 평가 점수를 합산한 후, 합산된 평가 총점을 기초로 각 마필별 상대 승률과 이에 따른 개인 배당률을 연산하여 사용자에게 제공한다.
따라서, 본 발명은 컴퓨터 시스템의 우수한 연산 능력과 경마 애호가의 뛰어난 직관력을 혼합하여 경마경기에 있어서 보다 정확한 우승마의 예측을 가능하게 한다.

Description

경마 승률 예측방법 및 이 방법을 실행하기 위한 프로그램이 기록된 기록매체{METHOD OF FORCASTING THE PERCENTAGES OF VICTORIES FOR HORSE RACING AND PROGRAMM RECORDING MEDIUM}
본 발명은 컴퓨터를 이용하여 레이싱 경기의 승부를 예측하는 방법에 관한 것으로서, 특히 마필의 과거 전적정보와 현재의 경주 환경정보에 근거하여 경마에 참여하는 마필의 우승 확률을 예측하는 방법에 관한 것이다.
경마는 여러필의 말을 경주시키고, 각 기마에 대해 금액을 베팅하여 우승한 마필을 선택한 사람에게 베팅금액을 몰아주는 레이싱 경기이다. 따라서, 경마 애호가들은 우승마를 예상하기 위해서 경마 예상지 등을 참고한다.
그러나, 경마 예상지의 우승마 예측정보는 그 정확성이 떨어질 뿐만 아니라 경마 애호가의 주관적 의사가 전혀 반영되지 않는 문제점이 있다.
이러한 종래의 경마 예상지를 대체하기 위해 컴퓨터 시스템을 이용한 경마 승부 예측방법들이 제안되었다.
대한민국 공개특허공보 제 2001-67694 호는 배당크기와 우승확률을 매칭시키는 것에 의해 개별 경주마의 우승확률을 도출하는 방법을 제안하고, 대한민국 공개특허공보 제 2002-35512 호는 인공지능에 의해 스포츠 경기의 우승확률을 예측하는 시스템 및 방법을 제안한다.
또한, 대한민국 공개특허공보 제 2001-113256 호는 경마 기록에 관한 각종 데이터와 사용자에 의해 임의로 추가된 데이터들을 뉴럴네트워크를 통해 가공하는 것에 의해 경마결과를 예측하는 방법 및 시스템을 제안한다.
또한, 대한민국 공개특허공보 제 2002-88709 호(이하, "709'호 특허"로 약칭한다)는 원시데이터를 수집하는 단계; 현재 경기일정을 DB로부터 로드하여 이용자에게 제공하는 단계; 표시된 현재 경기일정에서 특정 경기를 선택하는 단계; 선택된 경기에서 특정 기수와 특정 기마를 선택하는 단계; 선택된 기수정보와 기마정보를 표시하는 단계; 상기 원시데이터에 현재 경기 데이터를 조합한 후 이 조합 데이터에 가중치를 부여하는 단계; 가중치가 부여된 각 조합데이터로부터 기대이익(배당률, 예측승률)을 산출하는 단계를 포함하는 경주 승률 예측방법을 제안한다.
즉, 상기 709'호 특허는 과거의 경기성적과 현재의 경기 데이터를 조합하여 조합데이터를 구성하고, 이 조합데이터에 사용자의 주관에 따른 가중치를 부여하여 경주 승률을 예측하는 방법에 관한 것이다. 709'호 특허는 승률을 예측하는 인자(전체승률, 거리별 승률, 날씨별 승률)와 평가치는 시스템이 결정하고, 이렇게 결정된 인자와 평가치에 대해 사용자는 그 중요도만을 반영하고 있다. 따라서, 사용자의 주관적인 의사가 간접적으로만 반영되기 때문에 사용자의 경험과 노하우를 직접적으로 반영하는 것이 곤란하다.
따라서, 컴퓨터 시스템의 연산능력과 사용자의 경륜과 노하우를 충분히 결합하여 보다 정확한 예측치를 산출할 수 있는 시스템과 방법이 요청된다.
본 발명은 과거의 경주기록 데이터와 현재의 경주환경 데이터에 근거하여 보다 정확한 우승마 예측정보를 제공하는 것을 목적으로 한다.
또한, 본 발명은 경마의 우승 확률을 예측함에 있어서 컴퓨터 시스템의 연산능력과 인간의 노하우를 적절히 결합하는 것을 다른 목적으로 한다.
이를 위해, 본 발명은 우승마를 예측하기 위해 사용하는 인자들을 컴퓨터 시스템에 의해 자동으로 연산되는 객관 인자(objective factor)와 사용자에 의해 임의로 결정되는 주관 인자(subjective factor)로 나누고, 이 인자들에 대해 평가점수를 부여하여 경기마의 우승 확률을 예측한다.
본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시예에 의해 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 첨부된 특허청구범위에 나타낸 수단 및 조합에 의해 실현될 수 있다.
상기한 목적을 달성하기 위한 본 발명의 일 양태는 과거의 경주 실적정보와 현재의 경주 환경정보에 근거하여 경마 승률을 예측하는 컴퓨터 시스템을 이용한 경마 승률 예측방법으로서,
예측하고자 하는 경주를 선택하고, 이 선택정보를 상기 컴퓨터 시스템에 입력하는 단계와; 선택된 경주에 참여하는 마필들 각각에 대하여 적어도 하나 이상의 객관 예측인자와 주관 예측인자를 배정하는 단계와; 상기 과거의 경주 실적정보에 근거하여 상기 마필들 각각에 대해 객관 예측인자에 대한 평가점수를 연산하는 단계와; 상기 주관 예측인자의 평가를 위해 참고할 평가도구들을 추출하고, 이를 출력하는 단계와; 상기 평가도구들에 근거하여 상기 주관 예측인자에 대한 평가점수를 결정하고, 이를 상기 컴퓨터 시스템에 입력하는 단계와; 상기 객관 예측인자의 평가점수와 주관 예측인자의 평가점수를 합산하여 각 마필들의 평가 총점을 산출하는 단계를 포함한다.
상기 객관 예측인자는, 경주에 참여하는 마필의 능력을 평가 하기 위한 마필 능력인자와 경주에 참여하는 기수의 능력을 평가 하기 위한 기수 능력인자로 이루어진다. 이때, 상기 마필 능력인자는 상기 기수 능력인자에 대해 상대적으로 높은 수준(예를들어, 10배 정도)의 가중치를 갖도록 설정되는 것이 바람직하다.
상기 마필 능력인자에 대한 평가점수(마필능력 평가치)는 해당 마필의 과거 전적과 거리별 평균기록에 근거하여 연산되는데, 예를들어 아래의 수학식 1에 의해 계산되는 것이 바람직하다.
(여기서, Vhorse : 마필능력 평가치, Rm : 거리별 평균기록, Rr : 주파기록, G : 군점수, Σ: n회 동안의 합, n: 0보다 큰 자연수, Wi: 최근 i회 전적의 가중치)
또한, 상기 기수 능력인자에 대한 평가점수(기수능력 평가치)는 각 기수들의 과거 1년간의 전적 데이터에 근거하여 연산되는데, 예를들어 아래의 수학식 2에 의해 계산되는 것이 바람직하다.
(여기서, Vrider : 기수능력 평가치, A: 최근 n개월간 기승 횟수를 100명 정도의 기수에 적용하여 최고값에 해당하는 기수에 대해서는 10점을, 최저값에 해당하는 기수에 대해서는 0점을 부여하고, 나머지는 비례식으로 구한 값, B : 과거 n개월간의 복승율을 100명 정도의 기수에 적용하여 최고값에 해당하는 기수에 대해서는 10점을, 최저값에 해당하는 기수에 대해서는 0점을 부여하고, 나머지는 비례식으로 구한 값, x: 상기 A와 B의 상대적인 가중치를 나타내는 0이 아닌 실수, Φ: 상기 A+xB가 최고인 기수에 대해서 N점(예를들어, 10점)을, 최저인 기수에 대해서 0점을 부여하고, 나머지는 비례식으로 구하는 함수)
상기 주관 예측인자는, 마방의 승부의지를 평가하기 위한 마방 승부의지 인자와, 마필의 부담 중량을 평가하기 위한 부담중량 인자와, 게이트 번호 인자 및 함수율 인자를 포함한다. 또한, 상기 주관 예측인자는 경마팬의 주관이 반영되어 마권 선택에 도움이 될 수 있는 다른 인자들을 추가로 더 포함할 수 있음은 물론이다.
또한, 상기 평가도구는, 마방의 상금지수를 나타내는 마방 상금 차트, 부담중량에 따른 착순을 나타내는 착순-부담중량 추세선, 경주강도-복기점수 추세차트 등과 같은 차트 도구와; 마필별 게이트 번호, 모래 주로의 습기 함유율 등과 같은 텍스트 도구;를 포함한다.
또한, 본 발명의 다른 일 양태로서의 경마 승률 예측방법은 아래의 수학식 3을 이용하여 각 마필들의 상대 승률을 산출하는 단계를 더 포함할 수 있다.
[여기서, R%: 상대 승률, Uti = (1/C)(Vt_max - Vti)(Vt_max :평가총점의 최대값, Vti:i번째 마필의 평가 총점, C: 평가총점의 편차를 상대 비율로 바꾸기위한 계수로 1.15 정도가 바람직하다), ΣUt: 모든 마필의 Uti의 합]
본 발명의 또 다른 일 양태로서의 경마 승률 예측방법은 아래의 수학식 4를 이용하여 각 마필들의 개인 배당율을 산출하는 단계를 더 포함할 수도 있다.
(여기서, A : 개인 배당율, R%: 상대 승률)
또한, 본 발명의 또 다른 일 양태로서의 경마 승률 예측방법은, 상기 객관 예측 인자에 대해 연산된 평가점수를 확인하는 단계와; 상기 객관 예측인자의 평가를 위해 참고할 평가도구들을 추출하고, 이를 출력하는 단계와; 상기 평가도구에 근거하여 연산된 평가점수를 수정하고, 이 수정값을 상기 컴퓨터 시스템에 입력하는 단계와; 입력된 수정값에 근거하여 상기 평가점수를 갱신하는 단계를 더 포함한다.
본 발명의 다른 일 양태는 출마표 정보, 과거의 경주 실적정보, 현재의 경주 환경정보 등을 저장하고 있는 컴퓨터 시스템에 설치되어 경마 승률을 예측하는 프로그램에 관한 것이다.
즉, 컴퓨터에 의해 판독 가능한 본 발명에 따른 기록매체는, (a) 상기 경주 실적정보 및 경주 환경정보를 가공하여 각종 차트와 추세선 등과 같은 평가도구를 생성하고, 이를 저장하는 단계와; (b) 선택된 경주에 참여하는 마필들 각각에 대하여 적어도 하나 이상의 객관 예측인자와 주관 예측인자를 배정하는 단계와; (c) 상기 과거의 경주 실적정보에 근거하여 상기 마필들 각각에 대해 객관 예측인자에 대한 평가점수를 연산하고, 이를 저장하는 단계와; (d) 사용자로부터 요청된 상기 평가도구를 추출하고, 이를 출력하는 단계와; (e) 사용자로부터 상기 주관 예측인자에 대한 평가점수를 입력받고, 이를 저장하는 단계와; (f) 상기 연산된 객관 예측인자들의 평가점수와 사용자로부터 입력된 주관 예측인자들의 평가점수를 합산하여 각 마필들의 평가 총점을 산출하는 단계를 수행하는 프로그램을 기록하고 있다.
이하에서 첨부도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
먼저, 도 1은 본 발명에 따른 경마 승률 예측방법을 구현하기 위한 컴퓨터 시스템을 도시하고 있다.
도면에 도시된 바와 같이, 본 발명의 시스템은 승률 예측시스템(300), 이 승률 예측 시스템(300)으로부터 우승 확률과 관련된 정보를 제공받는 이용자 정보통신단말(100), 이들을 상호 접속시키는 네트워크망(200)으로 이루어진다.
상기 이용자 정보통신단말(100)은 개인용 컴퓨터, 워크스테이션 또는 이보다 크거나 더 작은 컴퓨터시스템이 될 수 있다. 전형적으로 이용자 정보통신단말(100)은 하나 또는 그 이상의 프로세서, 메모리 및 입/출력장치를 포함한다.
상기 이용자 단말(100)의 사용자는 예를들어, 월드와이드웹 서버에 의해 저장된 정보레코드에 액세스하기를 희망한다. 이 정보레코드는 웹페이지의 형태일 수 있다. 웹페이지는 단순한 컨텐츠 텍스트 정보나 소프트웨어 프로그램, 그래픽, 오디오신호, 비디오 등과 같이 더 복잡하게 디지털적으로 암호화된 멀티미디어 컨텐츠와 같은 데이터 레코드일 수 있다.
또한, 상기 이용자 단말(100)은 컴퓨터 시스템의 하드웨어 및 소프트웨어를 효율적으로 이용할 수 있도록 감시하고, 관리하는 시스템 소프트웨어로서의 운영체제(110)와, 웹페이지를 위치지정하기 위한 네비게이트(Navigator) 또는 익스플로러(Explorer)와 같은 웹브라우저 프로그램(120)과, 상기 승률 예측 시스템과의 데이터 통신을 지원하기 위한 통신 인터페이스(130)를 포함한다.
상기 브라우저 프로그램(120)은 사용자가 검색할 특정 웹페이지의 주소(또는 위치정보)를 입력하도록 허락한다. 웝페이지의 주소(또는 위치정보)는 URL(uniform resource locator)로서 지정된다. 또한, 브라우저 프로그램(120)은 페이지가 획득되었을때, 그 획득된 웹페이지의 하이퍼링크(hyperlink)를 클릭(click)하는 것에 의해 다른 페이지에 액세스(acess)할 수 있도록 한다. 이러한 하이퍼링크는 페이지를 획득한 후, 다른 페이지의 URL을 입력하는 것을 자동화시킨다.
이 이용자 단말(100)로는 랩탑 컴퓨터나 핸드헬드 PC를 채택하는 것이 바람직하지만, 반드시 이에 한정되는 것은 아니며 네트워크망(200)을 경유하여 상기 승률 예측 시스템(300)과 정보를 송, 수신함으로써 본 발명의 목적을 달성할 수 있다면 유, 무선상의 모든 정보통신단말을 포함하는 것으로 해석되어야 한다.
상기 승률 예측 시스템(300)은 과거의 경주 실적 데이터와 현재의 경주 환경 데이터에 근거하여 선택된 경주에 참여하는 마필들의 우승 확률을 산출하는 컴퓨터 시스템이다.
이 승률 예측 시스템(300)은 도 1에 도시된 바와같이 ROM(320), RAM(330), CPU(310), 운영체제(370), 네트워크 인터페이스(360), 승률 예측 프로그램(340) 및 데이터 기억장치(350)를 포함한다.
상당한 양의 메모리와 처리능력을 갖춘 전통적인 개인 컴퓨터나 워크스테이션이 본 발명의 승률 예측 시스템으로 사용될 수 있다.
본 발명의 승률 예측 시스템(300)은 정보처리나 데이터베이스 탐색에 있어 엄청난 양의 수학적 계산을 실행함으로써 대량의 업무처리를 할 수 있다. 예를들어, 인텔사에서 생산되는 팬티엄 마이크로 프로세서가 CPU(310)로 사용될 수 있다.
상기 승률 예측 프로그램(340)은 이용자의 요청에 근거하여 선택된 경주의 우승마를 예측하기 위한 각종 통계치 및 확률을 연산하는 서버 사이드 프로그램이다. 이 승률 예측 프로그램(340)은 평가도구 가공모듈(341), 객관 인자치 연산 모듈(342), 사용자 정의모듈(343), 승률 연산모듈(344)과 같은 여러개의 프로그램 모듈로 구성되어 도 3, 도 4 및 도 7에 도시되어 있는 프로세스 루틴을 실행한다.
상기 평가도구 가공모듈(341)은 마사회로부터 제공되는 경마데이터를 가공하여 도 8a 및 도 8b와 같은 각종 차트와 추세선을 작성하는 프로그램 모듈이다. 이렇게 작성된 차트와 추세선은 하기의 평가도구 DB(352)에 저장, 관리된다.
또한, 상기 평가도구 가공모듈(341)은 도 5에 도시된 바와 같은 승률 예측 테이블(400)을 작성하는 역할을 추가로 수행한다.
상기 객관 인자치 연산모듈(342)은 하기의 원시정보 DB(351)에 저장되어 있는 과거 경주 실적정보에 근거하여 마필능력 평가치 또는 기수능력 평가치와 같은 객관 예측인자에 대한 평가점수를 연산하고, 이렇게 연산된 값을 도 5의 승률 예측 테이블(400)에 자동으로 입력하는 프로그램 모듈이다.
여기서, 『객관 예측 인자』라 함은 사용자의 의사와는 무관하게 과거의 경주 실적 데이터에 근거하여 컴퓨터 시스템에 의해 자동으로 계산되는 예측인자를 의미한다. 이러한 객관 예측 인자로는 예를들어, 마필능력인자, 기수능력인자, 경주강도인자, 복기인자 등을 들 수 있다.
상기 "마필능력인자"는 경주에 참여하는 경기마의 순발력이나 스태미너 등의 능력을 수치화하기 위한 것으로서, 해당 경기마의 과거 전적과 거리별 평균 기록에 근거하여 그 평가점수가 연산된다. 또한, 상기 "기수능력인자"는 기수의 작전, 기승술, 성실성, 끈기, 경주 감각 등의 능력을 수치화하기 위한 것으로서, 해당 기수의 과거 1년간 전적을 이용하여 그 평가점수가 연산된다.
상기 "경주강도인자"는 마필의 전적이나 승률만으로는 설명될 수 없는 부분을 보완하기 위해 정의되는 보조인자로서 경주에 참여하는 여러필의 경기마에 대한 상대적인 능력을 수치화하기 위한 것이다. 상기 "복기인자"는 마필의 각 경주결과에 대한 능력을 수치화하기 위한 인자이다.
상기 객관 인자치 연산모듈(342)은 예를들어, 아래의 수학식 1을 이용하여 상기 마필능력인자에 대한 평가점수(즉, 마필능력 평가치: Vhorse)를 계산한다.
[수학식 1]
(여기서, Vhorse : 마필능력 평가치, Rm : 거리별 평균기록, Rr : 주파기록, G : 군점수, Σ: n회 동안의 합, n: 0보다 큰 자연수, Wi: 최근 i회 전적의 가중치)
상기 수학식 1의 군점수(G)는 경주 기록만으로 표현되지 않는 대진운에 따른 능력차를 보완하기 위해 첨가되었다. 즉, 기록이 같더라도 상위군에서 획득한 기록에 대해 더 높은 점수를 부여하는 것이다. 예를 들어, 상기 n은 5회 ~ 10회 정도의 값을 갖는 것이 바람직하며, 5회는 최근 상태를 반영하기에 적합하고, 10회는 기복이 있는 마필의 능력을 평균화시키는데 적합하다.
상기 마필능력 평가치(Vhorse)는 0점 ~ 100점의 점수 분포를 갖는데, 평균 기록 보다 월등히 높은 기록을 갖는 마필에 대해서 100점 이상의 점수를 부여하고, 부진한 마필에 대해서는 20점 ~ 30점 정도의 점수가 부여되도록 상기 수학식 1을 설계하였다.
또한, 상기 객관 인자치 연산모듈(342)은 예를들어, 아래의 수학식 2를 이용하여 상기 기수능력인자에 대한 평가점수(즉, 기수능력 평가치: Vrider)를 계산한다.
[수학식 2]
(여기서, Vrider : 기수능력 평가치, A: 최근 n개월간 기승 횟수를 100명 정도의 기수에 적용하여 최고값에 해당하는 기수에 대해서는 10점을, 최저값에 해당하는 기수에 대해서는 0점을 부여하고, 나머지는 비례식으로 구한 값, B : 과거 n개월간의 복승율을 100명 정도의 기수에 적용하여 최고값에 해당하는 기수에 대해서는 10점을, 최저값에 해당하는 기수에 대해서는 0점을 부여하고, 나머지는 비례식으로 구한 값, x: 상기 A와 B의 상대적인 가중치를 나타내는 0이 아닌 실수, Φ: 상기 A+xB가 최고인 기수에 대해서 N점(예를들어, 10점)을, 최저인 기수에 대해서 0점을 부여하고, 나머지는 비례식으로 구하는 함수)
본 발명의 경우, 우승 확률을 예측함에 있어서 기수능력인자 보다는 마필능력인자를 더 중요하게 본다. 즉, 마필능력 평가치가 0점 ~ 100점의 점수분포를 갖는데 비해 기수능력 평가치는 0점 ~ 10점의 점수분포를 갖게 된다. 이는 마필능력인자에 가중치를 더 부여한다는 것을 의미한다. 그러나, 마필능력은 경주별로 능력이 비슷한 마필들이 편성되는 경우도 있으므로 편차가 유동적이다. 따라서, 가중치는 경주별로 변화되어야 할 것이다.
또한, 상기 경주강도인자 또는 복기인자 역시 상기 마필능력인자나 기수능력인자와 마찬가지로 수학식에 의해 표현하는 것이 가능하다.
예를들어, 경주강도인자에 대한 평가점수(경주강도 평가치 : Vf)는 아래와 같이 계산될 수 있다.
Vf = (Vhorse1×10)/N
(여기서, Vf: 경주강도 평가치, Vhorse1: 특정 경주에 참여한 경기마의 해당 경주에 대한 마필능력 평가치의 총합, N: 해당 경주에 참여한 마필의 수)
상기 사용자 정의 모듈(343)은 상기 평가도구 가공모듈(341)에 의해 가공되는 각종 평가도구(즉, 차트, 추세선, 테이블 등) 또는 과거 실적정보나 경기환경정보(예를들어, 게이트 번호, 함수율 등)를 사용자에게 제공하고, 이를 참고한 사용자가 주관 예측인자에 대해 평가점수를 부여할 수 있도록 도 9와 같이 인터페이스하는 프로그램 모듈이다. 또한, 상기 사용자 정의모듈(343)은 상기 객관 인자치 연산모듈(342)에 의해 연산되는 객관 예측인자에 대한 평가점수(예를들어, 마필능력 평가치 또는 기수능력 평가치)를 사용자가 임의로 수정할 수 있도록 인터페이스하는 역할을 더 수행한다.
여기서, 『주관 예측 인자』라 함은 컴퓨터로부터 제공되는 각종 평가도구(마방 상금 추세차트, 착순-부담중량 추세차트 등) 및 참고 데이터(게이트 번호, 함수율 등)에 근거하여 사용자가 임의로 평가점수를 부여할 수 있는 예측인자를 의미한다. 이러한 주관 예측 인자로는 예를들어, 마방 승부의지 인자, 부담중량 인자, 게이트번호 인자, 함수율 인자, 기복성 인자, 마필 질주습성 인자 등을 들 수 있다.
상기 "마방 승부의지 인자"는 최근 몇개월간의 마방의 상금지수 즉, 상금의 추세차트를 참고하여 해당 마방의 승부의지를 수치화하기 위한 것이다. 예를들어, 이 마방 승부의지 인자에 대해서는 0점 ~ 10점의 평가 점수를 배정할 수 있다.
또한, 상기 "부담중량 인자"는 성적과 부담중량간의 상관관계를 수치화하기 위한 예측인자로서, 사용자가 도 8b의 착순-부담중량 추세차트를 참고하여 -5점 ~ 5점(또는 0점 ~ 10점)의 평가점수를 배정할 수 있다.
상기 "게이트번호 인자"는 게이트 배정에 따른 마필(선행마 또는 추입마)의 유, 불리를 수치화하기 위한 예측인자로서, 사용자는 배정된 게이트 번호와 해당 마필의 질주습성을 참고하여 -5점 ~ 5점(또는 0점 ~ 10점)의 평가점수를 배정할 수 있다.
상기 "함수율 인자"는 모래 주로의 수분 함유율과 마필의 특성간의 상관관계를 수치화하기 위한 예측인자로서, 사용자는 마필의 특성과 함수율에 근거하여 -5점 ~ 5점(또는 0점 ~ 10점)의 평가점수를 배정할 수 있다.
상기 승률 연산모듈(344)은 객관 인자치 연산모듈(342)과 사용자 정의모듈(343)에 의해 연산 또는 부여된 평가점수를 합산하여 평가 총점을 구하고, 이 평가 총점을 이용하여 상대 승률과 개인 배당율을 계산하여 도 10의 결과 테이블(500)에 입력하는 프로그램 모듈이다.
상기 평가 총점은 객관 예측인자의 평가점수와 주관 예측인자의 평가점수를 합산하여 구한다.
또한, 상기 상대 승률(R%)은 아래의 수학식 3에 의해 상기 승률 연산모듈(344)로부터 계산된다.
[수학식 3]
[여기서, R%: 상대 승률, Uti = (1/C)(Vt_max - Vti)(Vt_max :평가총점의 최대값, Vti:i번째 마필의 평가 총점, C: 평가총점의 편차를 상대 비율로 바꾸기위한 계수로 1.15 정도가 바람직하다), ΣUt: 모든 마필의 Uti의 합]
상기 개인 배당율(A) 역시 아래의 수학식 4에 의해 승률 연산모듈(344)로부터 계산된다.
[수학식 4]
(여기서, A : 개인 배당율, R%: 상대 승률)
또한, 상기 네트워크 인터페이스(360)는 상기 네트워크망(200)을 경유하여 이용자 단말(100)과 정보를 주고, 받기 위한 게이트웨이이다. 기존의 내외장용 모뎀들이 네트워크 인터페이스(360)로서 역할을 할 수 있다.
상기 데이터 기억장치(350)는 CD-ROM 드라이버나 플래쉬 메모리와 같은 자기 또는 광학 기억장치들인 하드 디스크를 포함할 수 있다. 데이터 기억장치(350)는 원시정보 데이터베이스(351), 평가도구 데이터베이스(352), 평가정보 데이터베이스(353), 회원정보 데이터베이스(354)를 포함한다.
상기 원시정보 데이터베이스(351)는 한국 마사회로부터 제공되는 경마데이터를 토대로 구축되는데, 도 2a와 같이 출마표 정보, 성적표 정보, 경주마 정보, 기수 정보, 조교사 정보 등을 포함한다.
여기서, 출마표 정보는 경기번호, 경기시간, 주행거리, 게이트 번호, 부담 중량 등과 같이 마필들의 출마 편성과 관련된 정보나 날씨, 풍속, 기온, 함수율 등과 같은 경주 환경정보를 포함한다. 상기 성적표 정보는 과거 경기에서의 성적을 나타내는 데이터로서, 경기코드, 라인번호, 기마코드, 기수코드, 주행거리, 순위 등을 포함한다. 상기 경주마 정보는 기마코드, 나이, 산지, 성별, 중량, 주행습성, 출생일, 지구력, 최고속도 등의 데이터를 포함한다. 상기 기수 정보는 기수코드, 기수명, 나이, 체중, 주행습성 등의 데이터를 포함한다. 상기 조교사 정보는 상금지수, 과거 전적 등의 데이터를 포함한다.
상기 평가도구 데이터베이스(352)는 상기 평가도구 가공모듈(341)에 의해 작성되는 각종 차트나 추세선 등을 이용하여 구축되는데, 예를들어, 도 2b와 같이 마방 상금 추세차트, 착순-부담중량 추세차트, 복기점수-경주강도 추세차트 등의 데이터를 포함한다.
상기 마방 상금 추세차트는 조교사별로 과거 몇개월간의 상금 획득 상황을 추세 그래프로 나타낸 것이다.(도 8a 참조) 이 마방 상금 추세차트를 통해 사용자는 해당 마방의 승부의지를 평가내릴 수 있다.
또한, 상기 착순-부담중량 추세차트는 경주별로 마필에 가해지는 부담중량과 이에 따른 해당 경주에서의 마필의 착순을 추세 그래프로 나타낸 것이다.(도 8b) 이 착순-부담중량 추세차트를 통해 사용자는 해당 마필의 부담중량 인자를 평가내릴 수 있다.
상기 평가정보 데이터베이스(353)는 상기 객관 인자치 연산모듈(342)에 의해 계산되는 마필능력 평가치, 기수능력 평가치 및 상기 사용자 정의모듈(343)에 의해 부여되는 마방 승부의지 평가치, 부담중량 평가치, 게이트번호 평가치, 함수율 평가치를 각 경주별 및 마필별로 저장, 관리한다. 또한, 상기 평가정보 데이터베이스(353)는 상기 객관 예측인자 평가치와 주관 예측인자 평가치를 합산하여 구해지는 평가총점, 이 평가총점으로부터 계산되는 상대 승률 및 개인 배당률 데이터를 각 경주별 및 마필별로 저장, 관리한다.
상기 회원정보 데이터베이스(354)는 경마 애호가로서 등록된 회원의 이름, 주소, 신용카드번호, 전화번호, 주민번호, 전자메일주소, 신용내역, 과거 시스템 사용내역, 회원 식별코드(예를들어, ID, 패스워드) 등과 같은 사용자와 관련된 정보를 저장한다. 이런 정보는 사용자가 시스템에 등록할때 얻어진다.
상기에서는 한 대의 컴퓨터가 승률 예측 시스템(300)으로서 역할을 하는 것으로 기술되고 있으나, 당업자라면 그 기능성이 복수의 컴퓨터에 분포될 수 있다는 점을 인식할 수 있을 것이다. 또한, 도 1의 경우 본 발명이 서버-클라이언트 환경에서 구현되는 형태를 도시하고 있으나, 본 발명이 반드시 이러한 예로 한정되는 것은 아니다. 즉, 본 발명은 승률 예측 프로그램(340)을 클라이언트 컴퓨터에 다운로드하여 네트워크망의 도움없이 로컬에서 실행하는 응용예도 포함한다.
또한, 본 발명은 상기 승률 예측 프로그램(340)과 각종 데이터를 컴퓨터로 판독 가능한 기록매체에 수납한 상태에서 불특정한 컴퓨터 시스템을 통해 실행하는 응용예도 포함한다.
상기에서 예시된 객관 예측인자 및 주관 예측인자 이외에 경마팬의 마권선택에 도움을 줄 수 있는 인자들(예를들어, 경주전개인자, 질병내역인자, 혈통인자, 연대율인자, 직전 경주트립 인자, 기복성 인자, 체중변동 인자, 연령인자, 성별인자, 거리경험 인자, 산지인자, 성장과정인자 등)이 본 발명의 객관 예측인자 또는 주관 예측인자로 사용 가능하다.
객관 예측인자와 주관 예측인자의 점수 분포는 상술한 예(0점 ~ 100점, 0점 ~ 10점, -5점 ~ 5점)에 한정되지 않고 다양한 레인지를 가질 수 있다. 또한, 객관 예측인자와 주관 예측인자의 점수 분포에 대해 아무런 제한 없이 사용자가 임의로 정하는 것도 가능할 것이다.
본 발명의 시스템에서의 네트워크망(200)은 유선 인터넷망, 무선 인터넷망 및 공중전화망 등을 모두 포함할 수 있다.
이하에서는 상기 네트워크망(200)이 월드와이드웹(WWW)을 기반으로 하는 유선 인터넷망이고, 상기 이용자 정보통신단말(100)이 퍼스널 컴퓨터인 경우를 대표적인 실시예로 들어 본 발명을 설명한다. 그러나, 본 발명이 반드시 이러한 예로 한정되는 것이 아님은 물론이다.
이하, 도 3 내지 도 10을 참조하여 본 발명에 따른 경마 승률 예측방법을 상세히 살펴보기로 한다.
경마의 승률을 예측하고자 하는 사용자는 네트워크망(200)을 경유하여 승률 예측 시스템(300)에 접속한 후, 정당 사용에 대한 인증을 완료한다. 인증을 완료한 사용자는 승률 예측 시스템에 대해 경주 일자를 지정하고, 해당 일자의 출마표를 확인한다.(S100) 이때, 승률 예측 프로그램(340)은 사용자의 요청에 응답하여 원시정보 데이터베이스(351)로부터 해당 일자의 출마표 정보를 독출하고, 이를 이용자 단말(100)에 출력한다. 출마표 정보를 확인한 사용자는 배팅할 경주를 선택한다.(S150)
사용자로부터 경주 선택정보를 입력받은 승률 예측 프로그램(340)의 평가도구 가공모듈(341)은 도 5와 같은 형태의 승률 예측 테이블(400)을 작성한 후, 원시정보 데이터베이스(351)로부터 독출한 기마정보, 기수정보, 조교사 정보, 마주 정보 등을 선택된 경주에 대응되도록 입력한다. 또한, 시스템에 의해 미리 정해져 있는 승률 예측인자(객관 승률 예측인자와 주관 승률 예측인자)를 출전한 마필들과 대응되도록 도 5의 승률 예측 테이블(400)에 관계형 모델로 배치한다.(S200)
예를 들어, 상기 객관 인자(410)에는 마필능력인자와 기수능력인자가 배치되고, 주관 인자(420)에는 마방 승부의지 인자, 부담중량 인자, 게이트 번호 인자 및 함수율 인자가 배치될 수 있다. 물론, 도 5의 테이블에 있어서, 객관 인자 컬럼(410)과 주관 인자컬럼(420)에 더 많은 다른 예측 인자(forecating factor)들이 배치될 수도 있다.
이와 같이, 선택된 경주에 대한 승률 예측 테이블(400)의 골격이 완성되면, 승률 예측 프로그램(340)의 객관 인자치 연산모듈(342)은 상술한 수학식 1 및 수학식 2에 근거하여 각 마필들에 대한 마필능력 평가치(Vhorse)와 기수능력 평가치(Vrider)를 연산하고, 이를 승률 예측 테이블(400)내의 객관 인자 컬럼(410)에 입력한다.(S300)
도 5의 경우, 객관 인자로서 마필능력 인자와 기수능력 인자만을 소개하고 있으나, 본 발명이 반드시 이러한 예로 한정되는 것은 아니고, 다른 객관 인자들 예를들어, 경주강도인자 또는 복기인자 등이 더 포함될 수 있다. 또한, 상기 주관인자들 역시 시스템이 처리할 수 있고, 실효성이 검증되어 사용자의 주관을 반영하는 것 보다 편리해질 수 있다면 객관인자로 전환할 수 있다. 예를들어, 경주전개인자, 승군착순인자 등도 유,불리를 수치화하여 객관인자로 전환 가능하다.
상기 단계 300의 절차를 도 4를 참조하여 보다 자세히 설명하면, 객관 인자치 연산모듈(342)은 원시정보 데이터베이스(351)로부터 해당 마필의 최근 n회(예를들어, 10회) 동안의 경주전적과 거리별 평균 기록 데이터 등을 추출한다.(S310)
이렇게 추출한 경주 전적데이터, 거리별 평균 기록 데이터 등을 아래의 수학식 1에 적용하여 마필능력 평가치(Vhorse)를 연산한다.
[수학식 1]
(여기서, Vhorse : 마필능력 평가치, Rm : 거리별 평균기록, Rr : 주파기록, G : 군점수, Σ: n회 동안의 합, n: 0보다 큰 자연수, Wi: 최근 i회 전적의 가중치)
또한, 상기 객관 인자치 연산모듈(342)은 원시정보 데이터베이스(351)로부터 해당 마필에 기승하는 기수의 최근 n개월(예를들어, 3개월, 6개월, 12개월 등이 바람직함)간의 전적 데이터를 추출한다. 이렇게 추출된 기수의 최근 전적 데이터를 아래의 수학식 2에 적용하여 기수능력 평가치(Vrider)를 연산한다.
[수학식 2]
(여기서, Vrider : 기수능력 평가치, A: 최근 n개월간 기승 횟수를 100명 정도의 기수에 적용하여 최고값에 해당하는 기수에 대해서는 10점을, 최저값에 해당하는 기수에 대해서는 0점을 부여하고, 나머지는 비례식으로 구한 값, B : 과거 n개월간의 복승율을 100명 정도의 기수에 적용하여 최고값에 해당하는 기수에 대해서는 10점을, 최저값에 해당하는 기수에 대해서는 0점을 부여하고, 나머지는 비례식으로 구한 값, x: 상기 A와 B의 상대적인 가중치를 나타내는 0이 아닌 실수, Φ: 상기 A+xB가 최고인 기수에 대해서 N점(예를들어, 10점)을, 최저인 기수에 대해서 0점을 부여하고, 나머지는 비례식으로 구하는 함수)
상기 연산된 마필능력 평가치와 기수능력 평가치는 평가정보 데이터베이스(353)에 저장됨과 동시에 승률 예측 테이블(400)의 객관 인자 컬럼(410)에 입력된다.(S350) 상기한 S310 내지 S350의 절차는 승률 예측 테이블(400)내의 모든 마필에 대하여 동일하게 반복되고, 이를 통해 도 5의 객관 인자 컬럼(410)은 연산된 평가점수로 채워진다.
이와같이, 시스템에 의해 연산된 평가점수를 확인한 사용자는 연산된 마필능력 평가치와 기수능력 평가치를 그대로 수용할 것인지 여부를 결정한다.(S350) 이때, 상기 평가치의 수정을 원할 경우, 사용자 정의모듈(343)은 평가도구 데이터베이스(352)로부터 경주강도 추세차트 또는 복기점수 추세차트 등과 같은 평가도구를 추출하여 사용자에게 제공하고, 사용자는 이 평가도구를 참조하여 도 6과 같이 자신이 원하는 점수로 연산된 평가점수를 수정할 수 있다.
이러한 수정행위에 의해 승률 예측 테이블(400)의 평가점수는 도 6과 같이 수정점수(415)로 갱신된다.(S370)
객관 예측인자에 대한 연산과 수정이 완료되면, 사용자는 사용자 정의모듈(343)이 제공하는 점수변경도구(도 9의 도면부호 450)를 통해 승률 예측 테이블(400)의 주관 인자 컬럼(420)에 평가점수를 입력한다.(S400)
이하, 도 7을 참조하여 주관 예측인자에 대한 평가점수를 부여하는 과정을 상세히 살펴보기로 한다.
일단, 본 실시예의 경우 주관 예측인자로 마방 승부의지 인자, 핸디캡 인자, 게이트번호 인자 및 함수율 인자가 설정된 경우를 설명한다.
마방 승부의지 평가치를 결정하고자 하는 사용자는 평가도구 데이터베이스(352)로부터 도 8a와 같은 마방상금 추세차트를 불러온다.(S410)
이 마방상금 추세차트를 통해 사용자는 해당 마방의 승부의지를 유추할 수 있다. 즉, 도 8a의 2번 마방 보다는 6번 마방이 더 큰 승부의지를 가지게 된다는 것을 마방상금 추세차트로 부터 추측할 수가 있다. 이와같이, 사용자는 마방상금 추세차트를 이용하여 각 마필이 속한 마방의 승부의지를 예측하고, 이를 0점 ~ 10점의 점수분포로 결정한다. 즉, 승부의지가 높은 마방에 대해서는 10점에 가깝게 승부의지가 낮은 마방에 대해서는 0점에 가까운 점수를 부여한다. 이러한 점수의 입력은 도 9의 점수변경도구(450)를 이용한다. 즉, 시스템이 설정한 점수를 0점으로 보고, 사용자가 결정한 점수를 점수변경의 형태로 시스템에 입력하면 된다.
사용자로부터 마방승부의지 평가치를 입력받은 사용자 정의모듈(343)은 이 평가치를 평가정보 데이터베이스(353)에 저장함과 동시에 승률 예측 테이블(400)의 주관 예측인자 컬럼(420)의 대응하는 공백(blank)에 입력한다.(S420)
마방승부의지 인자에 대해 점수를 부여한 사용자는 부담중량 평가치를 결정하기 위해 평가도구 데이터베이스(352)로부터 도 8b와 같은 착순-부담중량 추세차트를 불러온다.(S430) 이 착순-부담중량 추세 차트는 해당 마필의 부담중량에 따른 착순을 경기일자에 따라 추세 그래프로 나타낸 것이다.
따라서, 이 착순-부담중량 추세 차트를 참고하는 것에 의해 사용자는 해당 경주에 있어서, 특정 마필의 성적이 부담중량과 어떤 상관관계를 갖게 되는지를 유추할 수가 있게 된다. 사용자는 착순-부담중량 추세차트를 참고한 상태에서 도 9의 점수변경도구(450)를 이용하여 각 마필별로 부담중량 평가치(예를들어, -5점 ~ 5점 또는 0점 ~ 10점)를 입력한다. 사용자로부터 부담중량 평가치를 입력받은 사용자 정의모듈(343)은 이 평가치를 평가정보 데이터베이스(353)에 저장함과 동시에 승률 예측 테이블(400)의 주관 예측인자 컬럼(420)의 대응하는 공백(blank)에 입력한다.(S440)
또한, 사용자는 원시정보 데이터베이스(351)로부터 각 마필들의 라인 배정정보를 확인하고(S450), 이 라인 배정정보(즉, 게이트번호)에 근거하여 게이트번호 평가치(예를들어, -5점 ~ 5점 또는 0점 ~ 10점)를 부여한다.(S460) 일반적으로, 선행마의 경우는 안쪽 게이트가 유리하고, 추입마는 오히려 바깥쪽 게이트가 유리한 것으로 알려져 있다.
또한, 사용자는 원시정보 데이터베이스(351)로부터 경주 당일의 함수율 정보를 확인하고(S470), 이 함수율 정보에 근거하여 함수율 평가치(예를들어, -5점 ~ 5점 또는 0점 ~ 10점)를 부여한다.(S480) 일반적으로, 비오는 날과 같이 함수율이 높은 날에는 선행마가 유리한 것으로 알려져 있다.
상기 S410 내지 S480의 과정을 반복 수행하는 것에 의해 승률 예측 테이블(400)의 주관 예측인자 컬럼(420)이 모두 채워지면, 사용자 정의모듈(343)은 승률 연산모듈(344)에 대해 평가결과의 연산을 지시한다.
승률 연산모듈(344)은 먼저, 각 마필별로 연산된 객관 예측인자 평가점수와 주관 예측인자 평가점수를 모두 합산하여 도 10의 도면부호 401과 같이 평가 총점을 연산한다.(S500)
경주에 참여하는 모든 마필에 대해 평가 총점의 산출이 완료되면, 승률 연산모듈(344)은 아래의 수학식 3을 이용하여 각 마필별로 상대 승률(R%)을 계산한다. 이렇게 계산된 상대 승률값은 평가정보 데이터베이스(353)에 저장됨과 동시에 도 10에 도시된 결과 테이블(500)의 상대승률 컬럼(402)의 대응하는 공백에 입력된다.(S600)
[수학식 3]
[여기서, R%: 상대 승률, Uti = (1/C)(Vt_max - Vti)(Vt_max :평가총점의 최대값, Vti:i번째 마필의 평가 총점, C: 평가총점의 편차를 상대 비율로 바꾸기위한 계수로 1.15 정도가 바람직하다), ΣUt: 모든 마필의 Uti의 합]
경주에 참여하는 모든 마필에 대해 상대 승률(R%)의 산출이 완료되면, 승률 연산모듈(344)은 아래의 수학식 4를 이용하여 각 마필별로 개인 배당율(A)을 계산한다. 이렇게 계산된 개인 배당율(A)은 평가정보 데이터베이스(353)에 저장됨과 동시에 상기 결과 테이블(500)의 개인배당율 컬럼(403)의 대응하는 공백에 입력된다.(S700)
[수학식 4]
(여기서, A : 개인 배당율, R%: 상대 승률)
따라서, 사용자는 상기 결과 테이블(500)의 상대 승률값(R%)과 개인 배당율(A)에 근거하여 우승마를 예측하고, 해당 경주에 대해 적절한 배팅 계획을 세울 수 있게 된다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
상술한 실시예에 본 발명이 한정되는 것은 아니며 본 발명이 속하는 기술분야에서 통상의 지식을 갖는 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위내에서 다양한 수정 및 변형이 가능함은 물론이다.
본 발명은 경마에 참여하는 마필의 우승 능력을 여러가지 인자로 나누어 분석하되 과거 실적데이터에 근거하여 계산되는 개관 인자와 당일 경기의 경주환경 데이터에 근거하여 설정되는 주관 인자로 나누고 있다. 따라서, 컴퓨터 시스템의 우수한 연산 능력과 경마 애호가의 뛰어난 직관력을 혼합하여 경마경기에 있어서 보다 정확한 우승마의 예측을 가능하게 한다.
명세서내에 통합되어 있고 명세서의 일부를 구성하는 첨부도면은 발명의 현재의 바람직한 실시예를 예시하며, 다음의 바람직한 실시예의 상세한 설명과 함께 본 발명의 원리를 설명하는 역할을 할 것이다.
도 1은 본 발명의 방법을 실행하는 컴퓨터 시스템의 구성도이다.
도 2a는 원시정보 데이터베이스의 데이터 속성을 나타내고, 도 2b는 평가도구 데이터베이스의 데이터 속성을 나타내며, 도 2c는 평가정보 데이터베이스의 데이터 속성을 나타낸다.
도 3은 본 발명에 따른 경마 승률 예측방법을 설명하기 위한 플로우챠트이다.
도 4는 객관 예측인자에 대한 평가점수를 연산하는 과정을 설명하는 플로우차트이다.
도 5는 객관 예측 인자에 대한 평가점수의 연산치가 입력되어 있는 승률 예측 테이블의 구성도이다.
도 6은 객관 예측 인자에 대한 평가점수를 수정한 상태의 승률 예측 테이블을 나타낸다.
도 7은 사용자에 의해 주관 예측인자에 대한 평가점수가 설정되는 과정을 설명하는 플로우챠트이다.
도 8a는 마방 상금차트이고, 도 8b는 착순-핸드캡 추세 차트이다.
도 9는 주관 예측인자에 대한 평가점수를 입력하기 위한 점수변경도구의 구성도이다.
도 10은 승률 예측 결과값이 담겨 있는 평가결과 테이블의 구성도이다.
<도면의 주요부분에 대한 부호의 설명>
100: 사용자 단말 200: 네트워크망
300: 승률 예측 시스템

Claims (23)

  1. 과거의 경주 실적정보와 현재의 경주 환경정보에 근거하여 경마 승률을 예측하는 컴퓨터 시스템을 이용한 경마 승률 예측방법으로서,
    예측하고자 하는 경주를 선택하고, 이 선택정보를 상기 컴퓨터 시스템에 입력하는 단계와;
    선택된 경주에 참여하는 마필들 각각에 대하여 적어도 하나 이상의 객관 예측인자와 주관 예측인자를 배정하는 단계와;
    상기 과거의 경주 실적정보에 근거하여 상기 마필들 각각에 대해 객관 예측인자에 대한 평가점수를 연산하는 단계와;
    상기 주관 예측인자의 평가를 위해 참고할 평가도구들을 추출하고, 이를 출력하는 단계와;
    상기 평가도구들에 근거하여 상기 주관 예측인자에 대한 평가점수를 결정하고, 이를 상기 컴퓨터 시스템에 입력하는 단계와;
    상기 객관 예측인자의 평가점수와 주관 예측인자의 평가점수를 합산하여 각 마필들의 평가 총점을 산출하는 단계를 포함하는 것을 특징으로 하는 경마 승률 예측방법.
  2. 제 1 항에 있어서,
    상기 객관 예측인자는, 경주에 참여하는 마필의 능력을 평가 하기 위한 마필 능력인자와 경주에 참여하는 기수의 능력을 평가 하기 위한 기수 능력인자로 이루어지는 것을 특징으로 하는 경마 승률 예측방법.
  3. 제 2 항에 있어서,
    상기 마필 능력인자는 상기 기수 능력인자에 대해 10배 정도의 가중치를 갖는 것을 특징으로 하는 경마 승률 예측방법.
  4. 제 2 항에 있어서,
    상기 마필 능력인자에 대한 평가점수(마필능력 평가치)는 해당 마필의 과거 전적과 거리별 평균기록에 근거하여 연산되는 것을 특징으로 하는 경마 승률 예측방법.
  5. 제 2 항에 있어서,
    상기 마필 능력 평가치는 아래의 수학식 1에 의해 연산되는 것을 특징으로 하는 경마 승률 예측방법.
    [수학식 1]
    (여기서, Vhorse : 마필능력 평가치, Rm : 거리별 평균기록, Rr : 주파기록, G : 군점수, Σ: n회 동안의 합, n: 0보다 큰 자연수, Wi: 최근 i회 전적의 가중치)
  6. 제 2 항에 있어서,
    상기 기수 능력인자에 대한 평가점수(기수능력 평가치)는 각 기수들의 과거 n개월(여기서, n은 1이상의 자연수)간의 전적 데이터에 근거하여 연산되는 것을 특징으로 하는 경마 승률 예측방법.
  7. 제 6 항에 있어서,
    상기 기수능력 평가치는 아래의 수학식 2에 의해 연산되는 것을 특징으로 하는 경마 승률 예측방법.
    [수학식 2]
    (여기서, Vrider : 기수능력 평가치, A: 최근 n개월간 기승 횟수를 100명 정도의 기수에 적용하여 최고값에 해당하는 기수에 대해서는 10점을, 최저값에 해당하는 기수에 대해서는 0점을 부여하고, 나머지는 비례식으로 구한 값, B : 과거 n개월간의 복승율을 100명 정도의 기수에 적용하여 최고값에 해당하는 기수에 대해서는 10점을, 최저값에 해당하는 기수에 대해서는 0점을 부여하고, 나머지는 비례식으로 구한 값, x: 상기 A와 B의 상대적인 가중치를 나타내는 0이 아닌 실수, Φ: 상기 A+xB가 최고인 기수에 대해서 N점(예를들어, 10점)을, 최저인 기수에 대해서 0점을 부여하고, 나머지는 비례식으로 구하는 함수)
  8. 제 1 항에 있어서,
    상기 주관 예측인자는, 마방의 승부의지를 평가하기 위한 마방 승부의지 인자와, 마필의 부담 중량을 평가하기 위한 부담중량 인자와, 게이트 번호 인자 및 함수율 인자를 포함하는 것을 특징으로 하는 경마 승률 예측방법.
  9. 제 8 항에 있어서, 상기 평가도구는
    마방의 상금지수를 나타내는 마방 상금 차트, 부담중량에 따른 착순을 나타내는 착순-부담중량 추세 차트, 경주강도 추세차트, 복기점수 추세차트 등과 같은 차트 도구와;
    마필별 게이트 번호, 모래 주로의 습기 함유율 등과 같은 텍스트 도구;를 포함하는 것을 특징으로 하는 경마 승률 예측방법.
  10. 제 9 항에 있어서,
    상기 마방 승부의지 인자에 대한 평가점수(마방 승부의지 평가치)는 상기 마방 상금 차트를 분석한 사용자에 의해 -N ~ N점(여기서, N은 정수)의 범위내에서 결정되는 것을 특징으로 하는 경마 승률 예측방법.
  11. 제 9 항에 있어서,
    상기 부담중량 인자에 대한 평가 점수(부담중량 평가치)는 상기 착순-부담중량 추세차트를 분석한 사용자에 의해 -N ~ N점(여기서, N은 정수)의 범위내에서 결정되는 것을 특징으로 하는 경마 승률 예측방법.
  12. 제 9 항에 있어서,
    상기 함수율에 대한 평가점수(함수율 평가치)는 상기 모래주로에 대한 습기 함유율 정보에 근거하여 사용자가 일정한 점수를 부여하는 것을 특징으로 하는 경마 승률 예측방법.
  13. 제 1 항에 있어서,
    아래의 수학식 3을 이용하여 각 마필들의 상대 승률을 산출하는 단계를 더 포함하는 것을 특징으로 하는 경마 승률 예측방법.
    [수학식 3]
    [여기서, R%: 상대 승률, Uti = (1/C)(Vt_max - Vti)(Vt_max :평가총점의 최대값, Vti:i번째 마필의 평가 총점, C: 평가총점의 편차를 상대 비율로 바꾸기위한 계수로 1.15 정도가 바람직하다), ΣUt: 모든 마필의 Uti의 합]
  14. 제 13 항에 있어서,
    아래의 수학식 4를 이용하여 각 마필들의 개인 배당율을 산출하는 단계를 더 포함하는 것을 특징으로 하는 경마 승률 예측방법.
    [수학식 4]
    (여기서, A : 개인 배당율, R%: 상대 승률)
  15. 제 1 항에 있어서,
    상기 객관 예측 인자에 대해 연산된 평가점수를 확인하는 단계와;
    상기 객관 예측인자의 평가를 위해 참고할 평가도구들을 추출하고, 이를 출력하는 단계와;
    상기 평가도구에 근거하여 연산된 평가점수를 수정하고, 이 수정값을 상기 컴퓨터 시스템에 입력하는 단계와;
    입력된 수정값에 근거하여 상기 평가점수를 갱신하는 단계를 더 포함하는 것을 특징으로 하는 경마 승률 예측방법.
  16. 출마표 정보, 과거의 경주 실적정보, 현재의 경주 환경정보 등을 저장하고 있는 컴퓨터 시스템에 설치되어 경마 승률을 예측하는 프로그램으로서,
    (a) 상기 경주 실적정보 및 경주 환경정보를 가공하여 각종 차트와 추세선 등과 같은 평가도구를 생성하고, 이를 저장하는 단계와;
    (b) 선택된 경주에 참여하는 마필들 각각에 대하여 적어도 하나 이상의 객관 예측인자와 주관 예측인자를 배정하는 단계와;
    (c) 상기 과거의 경주 실적정보에 근거하여 상기 마필들 각각에 대해 객관 예측인자에 대한 평가점수를 연산하고, 이를 저장하는 단계와;
    (d) 사용자로부터 요청된 상기 평가도구를 추출하고, 이를 출력하는 단계와;
    (e) 사용자로부터 상기 주관 예측인자에 대한 평가점수를 입력받고, 이를 저장하는 단계와;
    (f) 상기 연산된 객관 예측인자들의 평가점수와 사용자로부터 입력된 주관 예측인자들의 평가점수를 합산하여 각 마필들의 평가 총점을 산출하는 단계;를 수행하기 위한 프로그램을 기록한 기록매체.
  17. 제 16 항에 있어서,
    상기 객관 예측인자는, 경주에 참여하는 마필의 능력을 평가 하기 위한 마필 능력인자와 경주에 참여하는 기수의 능력을 평가 하기 위한 기수 능력인자로 이루어지는 것을 특징으로 하는 기록매체.
  18. 제 17 항에 있어서,
    상기 마필 능력 평가치(마필 능력인자에 대한 평가점수)는 아래의 수학식 1에 의해 연산되는 것을 특징으로 하는 기록매체.
    [수학식 1]
    (여기서, Vhorse : 마필능력 평가치, Rm : 거리별 평균기록, Rr : 주파기록, G : 군점수, Σ: n회 동안의 합, n: 0보다 큰 자연수, Wi: 최근 i회 전적의 가중치)
  19. 제 17 항에 있어서,
    상기 기수능력 평가치(기수능력 인자에 대한 평가점수)는 아래의 수학식 2에 의해 연산되는 것을 특징으로 하는 기록매체.
    [수학식 2]
    (여기서, Vrider : 기수능력 평가치, A: 최근 n개월간 기승 횟수를 100명 정도의 기수에 적용하여 최고값에 해당하는 기수에 대해서는 10점을, 최저값에 해당하는 기수에 대해서는 0점을 부여하고, 나머지는 비례식으로 구한 값, B : 과거 n개월간의 복승율을 100명 정도의 기수에 적용하여 최고값에 해당하는 기수에 대해서는 10점을, 최저값에 해당하는 기수에 대해서는 0점을 부여하고, 나머지는 비례식으로 구한 값, x: 상기 A와 B의 상대적인 가중치를 나타내는 0이 아닌 실수, Φ: 상기 A+xB가 최고인 기수에 대해서 N점(예를들어, 10점)을, 최저인 기수에 대해서 0점을 부여하고, 나머지는 비례식으로 구하는 함수)
  20. 제 16 항에 있어서,
    상기 주관 예측인자는, 마방의 승부의지를 평가하기 위한 마방 승부의지 인자와, 마필의 부담 중량을 평가하기 위한 핸디캡 인자와, 게이트 번호 인자 및 함수율 인자를 포함하는 것을 특징으로 하는 기록매체.
  21. 제 16 항에 있어서, 상기 평가도구는
    마방의 상금지수를 나타내는 마방 상금 차트, 부담중량에 따른 착순을 나타내는 착순-핸디캡 추세차트, 경주강도 추세차트, 복기점수 추세차트 등과 같은 차트 도구와;
    마필별 게이트 번호, 모래 주로의 습기 함유율 등과 같은 텍스트 도구;를 포함하는 것을 특징으로 하는 기록매체.
  22. 제 16 항에 있어서,
    아래의 수학식 3을 이용하여 각 마필들의 상대 승률을 산출하는 단계를 더 포함하는 것을 특징으로 하는 기록매체.
    [수학식 3]
    [여기서, R%: 상대 승률, Uti = (1/1.15)a(Vt_max - Vti)(V t_max :평가총점의 최대값, Vti:i번째 마필의 평가 총점, a: 지수인자), ΣUt: 모든 마필의 Uti 의 합)
  23. 제 22 항에 있어서,
    아래의 수학식 4를 이용하여 각 마필들의 개인 배당율을 산출하는 단계를 더 포함하는 것을 특징으로 하는 기록매체.
    [수학식 4]
    (여기서, A : 개인 배당율, R%: 상대 승률)
KR10-2004-0002476A 2004-01-13 2004-01-13 경마 승률 예측방법 및 이 방법을 실행하기 위한프로그램이 기록된 기록매체 KR100521397B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2004-0002476A KR100521397B1 (ko) 2004-01-13 2004-01-13 경마 승률 예측방법 및 이 방법을 실행하기 위한프로그램이 기록된 기록매체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2004-0002476A KR100521397B1 (ko) 2004-01-13 2004-01-13 경마 승률 예측방법 및 이 방법을 실행하기 위한프로그램이 기록된 기록매체

Publications (2)

Publication Number Publication Date
KR20050074224A true KR20050074224A (ko) 2005-07-18
KR100521397B1 KR100521397B1 (ko) 2005-10-14

Family

ID=37263061

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2004-0002476A KR100521397B1 (ko) 2004-01-13 2004-01-13 경마 승률 예측방법 및 이 방법을 실행하기 위한프로그램이 기록된 기록매체

Country Status (1)

Country Link
KR (1) KR100521397B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101141966B1 (ko) * 2009-12-30 2012-05-04 주식회사 제이콘텐트리 예측 신뢰도 측정 방법 및 그 시스템
KR101406340B1 (ko) * 2014-03-21 2014-06-13 신중섭 핸디캡점수 산정이 가능한 당구게임 관리시스템
US11605268B2 (en) 2019-11-22 2023-03-14 Castle Hill Holding Llc System and method for wagering on past events
US11948434B2 (en) 2021-02-02 2024-04-02 Castle Hill Holding Llc Method and system for conducting wagers

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101141966B1 (ko) * 2009-12-30 2012-05-04 주식회사 제이콘텐트리 예측 신뢰도 측정 방법 및 그 시스템
KR101406340B1 (ko) * 2014-03-21 2014-06-13 신중섭 핸디캡점수 산정이 가능한 당구게임 관리시스템
US11605268B2 (en) 2019-11-22 2023-03-14 Castle Hill Holding Llc System and method for wagering on past events
US11610455B2 (en) 2019-11-22 2023-03-21 Castle Hill Holding Llc System and method for pari-mutuel gaming
US11651655B2 (en) 2019-11-22 2023-05-16 Castle Hill Holding Llc System and method for pari-mutuel gaming
US11710383B2 (en) 2019-11-22 2023-07-25 Castle Hill Holding Llc System and method for wagering on historical horse races
US11948434B2 (en) 2021-02-02 2024-04-02 Castle Hill Holding Llc Method and system for conducting wagers

Also Published As

Publication number Publication date
KR100521397B1 (ko) 2005-10-14

Similar Documents

Publication Publication Date Title
US11253786B2 (en) Virtual league platform of a sport activity
CN109582875B (zh) 一种在线医疗教育资源的个性化推荐方法及系统
US10940395B2 (en) Method and device for fantasy sports auction recommendations
CN109285075A (zh) 一种理赔风险评估方法、装置及服务器
Štrumbelj et al. Online bookmakers’ odds as forecasts: The case of European soccer leagues
Radicchi Universality, limits and predictability of gold-medal performances at the Olympic Games
CN113268589A (zh) 关键用户识别方法、装置、可读存储介质和计算机设备
US20170084108A1 (en) System and method for sporting event wagering
Van Bulck et al. Result-based talent identification in road cycling: discovering the next Eddy Merckx
KR100521397B1 (ko) 경마 승률 예측방법 및 이 방법을 실행하기 위한프로그램이 기록된 기록매체
Arabzad et al. Ranking players by DEA the case of English Premier League
KR100552488B1 (ko) 예측인자를 이용한 경마 승률 예측방법
Dinnie et al. Strategic target setting in the heptathlon
KR100552487B1 (ko) 사용자 주도의 경마 승률 예측방법
Ekstrøm et al. Evaluating one-shot tournament predictions
US20190304040A1 (en) System and Method for Vetting Potential Jurors
CN109410046A (zh) 目标股票选择方法、装置及存储介质
KR102234068B1 (ko) 복권 구매 지원 장치 및 그 방법
JP2002169924A (ja) 予測方法並びに記録媒体
US6666763B2 (en) Prediction method and storage medium
van den Hoek et al. What are the odds? Identifying factors related to competitive success in powerlifting
JP5509126B2 (ja) 予想力診断装置および予想力診断方法
Bose et al. Managing in-play run chases in limited overs cricket using optimized CUSUM charts
Christensen et al. Electing mayors with the supplementary vote method: Evidence from Norway
KR20020088709A (ko) 경주정보 제공 및 경주승률 예측 방법

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee