KR20050044155A - 극 저자기장 측정용 플럭스게이트 자기센서를 구비한마그네토미터 및 극 저자기장을 측정하기 위한신호처리방법 - Google Patents

극 저자기장 측정용 플럭스게이트 자기센서를 구비한마그네토미터 및 극 저자기장을 측정하기 위한신호처리방법 Download PDF

Info

Publication number
KR20050044155A
KR20050044155A KR1020030078738A KR20030078738A KR20050044155A KR 20050044155 A KR20050044155 A KR 20050044155A KR 1020030078738 A KR1020030078738 A KR 1020030078738A KR 20030078738 A KR20030078738 A KR 20030078738A KR 20050044155 A KR20050044155 A KR 20050044155A
Authority
KR
South Korea
Prior art keywords
sensor
magnetic field
fluxgate
magnetic
magnetometer
Prior art date
Application number
KR1020030078738A
Other languages
English (en)
Other versions
KR100601818B1 (ko
Inventor
이문호
장긍덕
이주옥
Original Assignee
이문호
장긍덕
이주옥
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이문호, 장긍덕, 이주옥 filed Critical 이문호
Priority to KR1020030078738A priority Critical patent/KR100601818B1/ko
Publication of KR20050044155A publication Critical patent/KR20050044155A/ko
Application granted granted Critical
Publication of KR100601818B1 publication Critical patent/KR100601818B1/ko

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/14Measuring or plotting hysteresis curves

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

본 발명은 통상의 플럭스게이트 센서에서의 1차 코일과 2차 코일을 모두 활용하지 않고, 일차 코일만 가지는 센서 두개를 나란히 한 후, 서로 반대 방향으로 코어가 충분히 포화될 수 있도록 교류 전류를 흘릴 때, 두 개의 센서에 감겨 있는 코일에 흐르는 전류를 검출하여 출력 신호원으로 취하는 방법과, 또한 통상적인 플럭스게이트 센서의 신호처리에서 사용하는 L-C공진에서 공진주파수(resonant frequency)의 2배 주파수를 만들어 동기 검파 하지 않고, 임의의 주파수에서 구동시킨 센서의 자기 이력 곡선(magnetic hysteresis curve)에서 자속 밀도(magnetic flux density, B)가 0이 되는 시점에서 신호를 샘플링(sampling)하여 검파하는 방법을 제공함으로서 임의의 구동주파수에서 직선성이 뛰어나고, 고 이득의 출력을 얻을 수 있는 1pT정도의 극 저자기장을 측정할 수 있는 플럭스게이트 자기센서를 구비한 마그네토미터 및 그 센서로부터 발생하는 신호를 처리하여 극 저자기장을 측정하기 위한 신호처리방법을 제공함으로써, 직류를 비롯하여 0-50kHz의 측정 주파수에서 1fT∼1pT의 해상도를 가지고 1mT∼1pT의 자기장을 측정할 수 있다.

Description

극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터 및 극 저자기장을 측정하기 위한 신호처리방법{Magnetometer having fluxgate-type magnetic sensor and signal processing method for measurement of ultra low magnetic field}
본 발명은 1pT정도의 극 저자기장을 측정할 수 있는 플럭스게이트 자기센서 및 그 센서로부터 발생하는 신호를 처리하여 극 저자기장을 측정하는 신호처리방법에 관한 것으로서, 보다 상세하게는 본 발명은 통상의 플럭스게이트형 센서에 사용되는 1차 코일과 2차 코일을 모두 활용하지 않고, 2개로 분리되어 평행하게 배열된 제1 센서코어 및 제2 센서코어에 1차 코일만이 감긴 플럭스게이트 자기센서를 구성하여, 코일이 공진하지 않은 상태에서 서로 반대방향으로 이들 센서코어가 충분히 포화될 수 있도록 교류전류를 가하여 자속 밀도(magnetic flux density, B)가 영(zero)이 되는 부근에서 다점 표본채취(multipoint sampling) 및 적분하여 외부 자기장을 측정하는 신호처리방법을 제공함으로써, 통상적인 플럭스게이트형 센서에서 행해지는 L-C공진을 이용하지 않기 때문에 전력소모가 극히 적고, 코일의 구동(driving)주파수를 높일 수 있으며, 신호 대 잡음비(signal to noise ratio)가 높아서 코일인가 전압 ± 5V, 전류 10mA, 최대 측정주파수 50kHz의 플럭스게이트형 마그네토미터를 제작하여 측정주파수 2kHz에서 1pT의 분해능을 실현할 수 있는 극 저자기장 측정용 플럭스게이트 자기센서와 이 센서를 이용한 플럭스게이트 마그네토미터 및 그 센서로부터 발생하는 신호를 처리하여 외부 자기장을 측정하는 방법에 관한 것이다.
일반적으로 플럭스게이트형 자기센서(fluxgate-type magnetic sensor)는 1930년대에 아쉔브레너(Aschenbrennner)와 포스터(Forster)에 의해 개발되었다. 1970년대부터는 비정질(amorphous) 재료를 자성 코어(magnetic core)로 사용하였는데, 이 방식은 센서코어가 비교적 소형이고, 전력소모가 적으며, 출력신호 안정도(long-term stability)가 우수하다는 장점을 가지고 있다. 이 센서의 측정범위는 1mT이하이며, 0.1nT정도의 분해능을 가지고, 저자기장 측정에 응용되고 있다.
이러한 플럭스게이트형 자기센서의 기본 원리는 자성 코어의 자기이력곡선의 이동에 기초하고 있고, 또한 감도 및 전력소모는 자심의 자기이력곡선의 형태에 따라 그 특성이 좌우되는데 형태가 구형(square)에 가까울수록 감도가 최대로 되며 보자력 및 포화 자속밀도가 작을수록 전력소모가 적어지는 특성을 가지고 있다.
도 1은 종래의 플럭스게이트 마그네토미터 구성 회로도를 나타낸 것으로, 동 도면의 좌측에 있는 토로이드(toroid) 코어(Tc)에 1, 2차코일(L1)(L2)이 감긴 원형 코어 센서(40)에서 1차 코일(L1)을 L-C공진 시키면 상기 코어가 자기적으로 포화(saturation)되어, 2차 코일(L2)에 유도되는 기전력의 짝수 고조파(even harmonics)에 외부 자기장이 포함되는데, 이 외부 자기장의 크기를 측정하는 방법이 전형적인 플럭스게이트 자기센서의 원리이다.
도 1에서 발진신호를 생성하는 발진기(10)로부터 발생된 구동전압(Vg)을 전류 구동기(20)에 통과하여 만들어진 교류전류를 센서(40)의 코어에 감긴 1차 코일(L1)에 인가했을 때 각 점에 있어서 신호파형 및 동기 검파(synchronous detection) 신호는 도2 에 나타낸 바와 같다.
도 2에서 Vg는 1차 코일(L1)에 인가되는 구동전압의 파형이고, Vs는 검파를 위한 주파수체배기(30)로부터 나온 2배 주파수 파형이고, Vo1은 2차코일(L2)에 유도되는 짝수 고조파이며, Vo2는 동기 검파 신호를 나타내는 파형도이다.
다음은 센서 코어의 2차 코일(L2)에 유도되는 짝수 고조파(Vo1)를 검출하는 일반적인 방법을 설명하기로 한다.
도 3의 (가)와 같이 1차와 2차로 나뉘어진 코일(L1)(L2)을 비정질 합금의 자성 코어로 유도결합(inductive coupling)한 후, 도 3의 (가)에 표시된 1차 코일(L1)의 유도성 리액턴스(inductive reactance XL)와 같은 값의 용량성 리액턴스(capacitive reactance XC)를 가지는 캐패시터(도 4의 (가)에서 C)를 연결하여 공진 주파수 (fo)로 직렬 공진시키면, 도 4의 (나)와 같이 회로의 통합 임피던스(impedance)는 최소로 되고, 어드미턴스(admittance)는 최대가 되며, 공진 전류(resonance current)도 최대가 된다.
이 때, 코어는 자기적으로 포화를 되풀이하여 도 3에 표시된 2차 코일(L2)에 도 2의 Vo1과 같은 짝수 고조파가 발생한다. 이와 같은 짝수 고조파(Vo1)를 전치증폭기(50)로 적당한 레벨까지 증폭된 짝수 고조파(Vo1)를 2배 주파수 필터(60)로 필터링(filtering)한다. 이것을 직류전압으로 변환하기 위하여, 발진기(10)로부터 공진 주파수(fo)를 가진 구동전압(Vg)을 주파수 체배기(frequency multiplier)(30)에서 2배 주파수를 가지는 전압(Vs)를 만들어 도 1의 PSD(phase sensitive detector)(70)에 공급하고, 짝수 고조파(Vo1)를 통과시켜 동기 검파한다.
그 결과로 도 2에서와 같은 동기 검파 신호(Vo2)가 만들어지고, 이 신호를 적분기(80)로 적분하고, 이 적분된 신호를 필터(90)로 잡음(noise)을 제거하여 이득 증폭기(100)로 증폭된 도 1에서의 Vo4와 같은 외부 자기장에 비례하는 전압출력을 얻어 자기장을 측정할 수 있다. 또한 적분기(80)로부터의 적분된 신호출력(Vo3)은 궤환(feedback) 저항(R2)을 통해 플럭스게이트 자기센서(40)의 2차 코일(L2)단에 입력한다.
이와 같은 플럭스게이트 자기센서(40)로 측정할 수 있는 주파수는 수 100㎐가 그 한계이며, 분해능은 수 100pT에 지나지 않는다. 따라서 센서의 이러한 한계를 극복하기 위해서 많은 연구자들이 연구를 한 결과, 온도보상(temperature compensation), 동조 증폭기(tuned amplifier), 국부 궤환(local feedback), 코어의 열처리 등과 같은 방법들이 제안되었지만, 측정 주파수나 분해능 개선에 뚜렷한 효과는 없었다.
또한, 플럭스게이트 마그네토미터에서 적용하고 있는 L-C직렬공진회로의 이상적인 임피던스는 공진 주파수에서 0이거나 0에 가까우므로 커다란 공진 전류가 흐르게 되고, 이것은 주위에 비교적 큰 자기장을 형성한다. 즉 공진 주파수에서는 비교적 큰 구동전류가 발생하고, 측정하고자 하는 외부 자기장에 비해서 무시할 수 없을 정도의 큰 자기장을 이 구동전류가 만들기 때문에, 외부 자기장의 강도가 충분히 클 때는 도 2의 Vo1과 같이 양호한 짝수 고조파 신호를 얻을 수 있지만, 외부 자기장의 세기가 작을 때는 도 5의 Vo1과 같이 센서의 구동전류가 만든 자기장이 외부 자기장에 영향을 주어 잡음으로 작용한다.
또한, 외부자기장이 변화하면 자속 밀도가 변하므로, 실질적으로 센서 코일의 리액턴스(inductive reactance)가 변하는 것과 같은 효과가 있다. 따라서 외부자기장이 변하면 리액턴스가 변하여 코일에 흐르는 전류가 변하게 되고, 공진 주파수도 변한다. 공진 주파수의 변화는 동기 검파에 문제를 일으킨다. 즉, 공진 주파수의 이동 때문에 동기 검파가 되지 않아서, 도 2와 도 5의 동기 검파 신호(Vo2)에 나타나 있는 것처럼 음(-)의 값이 출력으로 나온다. 이 출력된 동기 검파 신호 (Vo2)를 전술한 바와 같이 적분기(80)로 적분, 필터(90)로 잡음제거, 이득증폭기(100)로 증폭하여 출력 값으로 취하게 되면 실제의 자속 밀도와 상당한 차이가 있게 된다.
따라서, 이와 같은 ① 센서 구동전류가 만든 자기장에 의한 영향과 ② 외부 자기장의 변화에 의한 공진 주파수의 변화에 의한 영향을 배제하기 위해서는, 신호를 검파할 때 공진에 의한 동기 검파를 이용하지 않아야 한다.
그러나, 플럭스게이트 센서(40)로 측정하고자 하는 신호인 외부 자기장은 코어(Tc) 내부에 형성된 자속에 실려서 2차 코일(L2)에 유도된다. 따라서 측정신호의 정밀도와 직선성은 코어 내부에 형성된 자속의 특성과 직접적인 관계가 있다. 즉, 코어 내부의 자속이 인가전류에 따라 규칙적이고 대칭적으로 변할 경우에는, 신호도 직선성과 정밀도가 좋아진다.
그런데, 코어 내부의 자속은 인가전류의 특성에 의해서 변하지만, 코어의 특성에 의해서도 변한다. 코어의 자기이력곡선이 대칭적이고 규칙적이어야만 잡음이 적은 신호를 얻을 수 있다. 따라서, 잡음이 적은 신호를 얻기 위해서는, 코어 재료가 균일해야 함은 물론, 코어의 표면이 매끈하여 거칠지 않고, 형태가 대칭이어야 하며, 형태 가공에 의해서 생성된 내부 응력(internal stress)이 없어야 한다. 아울러 코어 주위에 있는 코일도 균일하고, 규칙적이며, 대칭적이어야 한다. 그러나, 이러한 조건을 만족하는 코어를 만드는 것은 용이하지 않다.
더욱이, 토로이드 코어의 경우에는 좌우 대칭을 이루는 형태로 제작하기가 용이하지 않으므로, 센서의 형태적 비대칭 때문에 발생하는 잡음도 무시할 수 없다. 이처럼 센서코어의 재료적인 특성과 형태 그리고 코일의 형태적 특성에 의한 영향을 배제하기 위해서는, 이들의 영향이 전혀 없고 직선성이 보장되는 부분에서만 신호를 취해야 하는 많은 문제점이 있다.
따라서, 본 발명의 목적은 1차 코일만 가지는 센서에서 코일에 흐르는 1차 전류를 검출하여 센서신호로 취하는 극 저자기장용 플럭스게이트 자기센서를 제공하는데 있다.
본 발명의 다른 목적은 플럭스게이트 자기센서의 코일이 공진하지 않은 상태에서 서로 반대방향으로 코어가 충분히 포화될 수 있도록 교류전류를 가하여 자속밀도가 영이 되는 부근에서 다점 표본채취 및 적분하여 외부 자기장을 측정하는 플럭스게이트 자기센서를 이용한 마그네토미터를 제공하는데 있다.
본 발명의 또 다른 목적은 플럭스게이트 자기센서의 코일이 공진하지 않은 상태에서 서로 반대방향으로 코어가 충분히 포화될 수 있도록 임의의 주파수에서 구동시킨 센서의 자기이력곡선에서 자속 밀도가 영이 되는 시점에서 신호를 샘플링하여 극 저자기장을 측정하는 신호처리방법을 제공하는데 있다.
상기한 목적을 달성하기 위하여, 본 발명은 강자성체의 자기 포화특성을 이용하여 외부 자기장을 측정하는 플럭스게이트 마그네토미터에 있어서, 구동전압을 발생시키는 신호발생기; 상기 신호 발생기에 연결되어 소정 간격으로 평행하게 배열된 한쌍의 제1, 제2 센서코어에 서로 반대 방향으로 각각 감긴 제1, 제2 코일을 가지는 플럭스게이트 자기센서; 상기 자기센서에 직렬로 연결되어 두개의 코일에 흐르는 전류를 전압으로 변환하는 두개의 분로 저항에 연결되어 자기센서의 각 코일에서 출력되는 양 전압차에 해당하는 전압을 증폭하여 출력하는 계측 연산기; 상기 계측 연산기로부터의 출력전압이 직선성이 확보될 수 있도록 인가되는 스위칭 전압이 로우가 되는 상태에서 신호를 취할 수 있도록 스위칭하는 아날로그 스위치; 상기 아날로그 스위치로부터 얻어진 신호를 적분하여 외부 자기장에 비례하는 출력 신호를 증폭하여 출력하는 적분 연산기; 를 포함하는 것을 특징으로 하는 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터를 제공한다.
여기서, 플럭스게이트 자기센서는 임의의 주파수로 구동시킨 자기이력곡선에서 자속 밀도가 0이 되는 시점에서 신호를 샘플링하여 외부 자기장을 검파하는 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터를 제공한다.
상기 센서코어가 2개로 분리된 플럭스게이트 자기센서에서 2차 코일을 감지 않고 각 코일간에 180도의 위상차를 갖도록 1차 코일만 감아서 두개의 1차 코일에 흐르는 자화 전류를 검출하여 출력 신호원으로 사용하는 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터를 제공한다.
센서코어가 2개로 분리되어 있지 않고, 1개만으로 구성된 플럭스게이트 자기센서에도 1차 코일 1개의 자화 전류를 검출하여 출력 신호원으로 사용하는 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터를 제공한다.
플럭스게이트 자기센서는 코어가 두께 25㎛, 폭10㎜, 길이30㎜인 비정질합금이고, 직경 0.12㎜의 에나멜 동선 코일을 250회 감긴 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터를 제공하는 것이 바람직하다.
또한 강자성체의 자기 포화특성을 이용하여 외부 자기장을 측정하는 통상의 마그네토미터의 외부 자기장 측정 방법에 있어서, 플럭스게이트 자기센서 코어에 감겨 있는 각 코일에 흐르는 자화 전류를 검출하여 출력 신호원으로 사용하는 제1 과정; 임의의 주파수에서 구동시킨 플럭스게이트 자기센서의 자기 이력 곡선에서 자속 밀도(B)가 0이 되는 시점에서 신호를 샘플링하여 외부 자기장을 검파하는 제2 과정; 을 포함하는 것을 특징으로 하는 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터의 극 저자기장을 측정하기 위한 신호처리방법을 제공한다.
여기서, 플럭스게이트 자기센서에서 공진 주파수를 이용한 동기 검파에 의한 방법으로 외부 자기장을 검파하지 않고, 공진 주파수가 아닌 임의의 주파수를 가진 구동전류를 이용하여 외부 자기장을 검파하는 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터의 극 저자기장을 측정하기 위한 신호처리방법을 제공한다.
센서코어가 두개로 분리된 플럭스게이트 자기센서에서 2차코일을 사용하지 않고, 1차 코일만을 감아서 각 코일간에 180°의 위상 차이가 발생하도록 서로 연결한 후에 1차 코일에 흐르는 자화 전류를 출력 신호원으로 사용하는 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터의 극 저자기장을 측정하기 위한 신호처리방법을 제공한다.
센서코어가 두개로 분리되어 있지 않고, 1개만으로 구성된 경우에도 1차 코일의 자화 전류를 출력 신호원으로 사용하는 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터의 극 저자기장을 측정하기 위한 신호처리방법을 제공하는 것이 바람직하다.
이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하면 다음과 같다.
먼저, 본 발명자가 제안하는 플럭스게이트 자기센서는 통상적인 플럭스게이트 센서와는 달리 2차 코일을 감지 않고, 한 쌍의 센서코어에 1차 코일만을 감아서 코일이 공진하지 않은 상태에서 이 1차 코일에 흐르는 자화 전류(magnetization current)를 출력 신호원(output signal source)으로 사용하는 것이 특징이다.
도 6은 본 발명의 일 실시예에 따른 극 저자기장 측정용 플럭스게이트 자기센서 모형도를 도시한 것으로, 본 발명에서 제안하는 플럭스게이트 자기센서(20)는 도 6에 나타낸 바와 같이 투자율이 높은 강자성 물질로 된 막대 모양를 가진 두개의 나란한 한 쌍의 제1 및 제2 센서코어(21a)(21b)와, 그 각각의 센서코어에는 소정 횟수 감겨 있는 제1 코일 및 제2 코일(22a)(22b)로 구성되어 있다. 여기서 상기 제1 코일 및 제2 코일(22a)(22b)은 통상적인 자기센서에 감기는 1차 코일에 해당한다.
그리고, 상기 코어(21a)(21b)는 센서의 좋은 동 특성(dynamic characteristics)을 얻기 위하여 미국 Honewell사의 Metglas 2714A 비정질 합금(두께 25㎛, 폭 10㎜, 길이 30㎜)을 사용하였다.
또한, 상기 코일(22a)(22b)은 직경 0.12 ㎜의 에나멜 동선이 사용되었고, 코어에는 250회 정도의 코일을 감은 것이 바람직하였다.
마찬가지로 도시는 하지 않았으나, 상기와 같이 센서코어가 2개로 나란히 분리되어 있지 않고, 1개만으로 구성된 막대형 센서코어에 1차 코일이 감겨 있는 센서를 구성한 경우에도 전술한 바와 같이 1차 코일 1개의 자화 전류를 검출하여 출력신호원으로 사용할 수 있음은 물론이다.
도 7는 본 발명의 일 실시예에 따른 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터의 구성 회로도이다.
본 발명에서 제안하는 마그네토미터는 도 7에 도시한 바와 같이 신호발생기(10), 플럭스게이트 자기센서(20), 계측 연산기(30), 아날로그 스위치(40), 적분 연산기(50)로 구성되어 있다.
동 도면을 참조하여, 신호발생기(10)는 도 8의 구동전압(Vg)을 발생시켜서 제1, 제2 센서코어(21a,21b)에 감긴 제1, 제2 코일(22a,22b)에 인가한다.
플럭스게이트 자기센서(20)는 상기 신호 발생기에 연결되어 소정 간격으로 평행하게 배열된 두개의 제1 및 제2 센서코어(21a)(21b)에 서로 반대 방향으로 제1 및 제2 코일(22a)(22b)이 감겨 있다.
계측 증폭기(Instrumentation OP-Amp)(30)는 상기 자기센서에 직렬로 연결되어 두개의 코일에 흐르는 전류를 전압으로 변환하기 위하여 각각의 코일에 직렬로 분로 저항(shunt resister) (R1)과 (R2)를 연결하되, 상기 분로 저항(R1)과 제1 코일 (22a)의 접속점은 비반전 입력단자(+)에, 분로 저항(R2)과 제2 코일의 접속점은 반전 입력단자(-)에 연결되어 각 코일에서 출력되는 양 전압차에 해당하는 전압을 증폭하여 출력한다.
아날로그 스위치(40)는 상기 계측연산기로부터의 출력전압이 직선성이 확보될 수 있도록 인가되는 스위칭 전압이 로우(Low)가 되는 상태에서 신호를 취할 수 있도록 스위칭한다.
적분 연산기(Integral OP-Amp)(50)는 상기 아날로그 스위치로부터 얻어진 신호를 적분하여 외부 자기장에 비례하는 출력 신호를 증폭하여 출력한다.
이와 같이, 평행하게 배열한 한 쌍의 제1, 제2 센서코어(21a,21b)에 각각 감긴 두개의 제1, 제2 코일(22a,22b)에 서로 반대의 자속이 발생할 수 있도록 교류전류를 인가할 때 두개의 센서에 감겨있는 코일에 흐르는 자화 전류를 검출하여 센서 신호원으로 하여 공진이 일어나지 않은 상태에서 임의의 주파수로 구동시킨 센서의 자기이력곡선(magnetic hysteresis curve)에서 자속 밀도(B)가 0이 되는 시점에서 신호를 샘플링, 검파하여 직선성이 우수한 고 이득의 출력신호를 얻어 외부 자기장을 측정한다. 이 때 마그네토미터 구성회로를 나타낸 도 7의 각 점에서 나타나는 전압의 파형을 나타낸 것이 도 8이다.
그러므로 신호발생기(10)에서 만들어진 구동전압(Vg)을 인가했을 때 자기센서(20) 코어에 감긴 제1, 제2 코일(22a,22b)이 작동하는 방법을 상세히 설명하면 다음과 같다.
도 8에 나타난 구동전압(Vg)을 제1 코일(22a)과 제2 코일(22b)에 인가하면, 외부 자기장(Hext)으로 인하여 제1 코일(22a)의 자기이력곡선은 왼쪽으로 이동하여 도8의 HL1과 같이 되지만, 제1 코일(22a)과 180°의 위상 차이가 있는 제2 코일 (22b)의 자기이력곡선은 오른쪽으로 이동하여 도 8의 HL2로 나타난다.
마찬가지로 제1 코일(22a)과 제2 코일(22b)에 흐르는 전류는 각각 도 8의 Vr1과 Vr2처럼 제1 코일(22a)에서는 위로 이동하고, 제2 코일(22b)에서는 아래로 이동한다. 따라서 두 전압의 차이(Vr1 - Vr2)인 출력전압은 도 8의 Vo1이 된다.
또한, 강자성체인 센서 코어(21a,21b)의 자기이력곡선 특성 때문에 도 8의 출력전압 Vo1은 대칭성이 없다. 즉, 자기이력곡선에서 자기적으로 포화(magnetic saturation)가 일어날 때 상하의 피크(peak)를 나타내고, 그 중간에서는 거의 직선적인 변화를 보인다. 이때 자기이력곡선이 거의 직선인 자속 밀도 B=0 부근에서 신호를 취하면, 출력신호의 직선성이 확보된다. 이 직선성을 확보하기 위해서 구동전압(Vg)에 동기시켜 만든 스위칭 전압(Vs)를 아날로그 스위치(40)에 인가하였다. 그리고 스위칭 전압이 로우로 되는 구간에서만 신호를 취하기 때문에 도 9의 Vo2를 얻는다. 도 9는 외부 자기장이 0이 아닌 경우이다. 만약 외부 자기장이 0인 경우에는 도 10과 같이 값이 0인 출력 Vo2를 얻는다.
외부자기장이 0이 아니면 도 9와 같은 결과를 얻는데, 이것은 서로 180°의 위상차이가 나는 두 코일(22a)(22b)의 자기이력곡선이 서로 반대방향으로 이동한 결과이다. 이러한 자기이력곡선의 이동과 출력전압의 관계를 자세히 나타낸 것이 도 11이다.
도 11에서 (a)는 코일에 인가한 전압을 나타내는데, 이 전압이 인가된 자성 코어의 자기이력곡선은 (b)와 같이 좌우로 이동한다. 따라서, 제1 코일(22a)과 제2 코일(22b)이 포화되는 시점이 달라지고, (c)와 같이 자기이력곡선의 좌우이동에 의해서 발생한 시간에 따른 전류의 변화가 달라진다. 이들 전류곡선 중 하나는 Vr1이 되고 다른 하나는 Vr2가 되며, 그 차이(Vr1-Vr2)는 Vo1이다.
상기의 Vr1과 Vr2의 변화는 모두 외부자기장(Hext) 때문에 발생한 것이지만, 변화량은 (+)와 (-)로 서로 반대이므로, 그 차이(Vr1-Vr2)는 외부 자기장의 2배에 해당하는 전압이 된다. 이것이 계측 연산기(30)에서 증폭되어 Vo3으로 나타난다. 그러므로, 이 방식은 일반적인 플럭스게이트 마그네토미터에 비하여 2배의 초기감도(initial sensitivity)를 갖게 된다.
도 12와 도 13은 본 발명에서 구성한 플럭스게이트 마그네토미터의 동작 파형을 자기장 차폐공간에서 조사한 결과들이다.
도 12에서 위쪽의 그림은 센서에 가한 주파수가 50Hz인 1mA의 사인(sine)파 교류전류 파형을 나타낸 것이며, 아래쪽의 그림은 플럭스게이트 마그네토미터의 출력을 로직분석기(logic analyzer, hp 1653B)로 관찰한 파형이다. 센서의 출력 파형은 신호 파형과 거의 변화가 없다. 전류원에서 5mm 떨어진 곳에 센서가 위치하므로, 이로부터 계산한 센서의 최소 분해능은 1pT 이었다.
도 13은 센서에 가한 주파수가 2kHz인 1mA의 구형파 전류에 대한 센서의 출력을 나타낸 것이다. 구형파로부터 약간의 변형이 발생했지만, 비교적 신호 파형과 거의 유사한 형태로 나타났으며, 분해능도 50Hz와 거의 같이 1pT이었다.
이상과 같이, 본 발명에 의하여 측정주파수 2kHz에서 1pT의 분해능을 실현할 수 있는 극 저자기장 측정용 플럭스게이트 자기센서의 구성과 이 센서를 이용한 플럭스게이트 마그네토미터 및 그 센서로부터 발생하는 신호를 처리하여 외부 자기장을 측정하는 방법을 제공함으로써, 플럭스게이트 자기센서는 직류자기장과 0∼50kHz의 교류자기장을 측정할 수 있다. 측정이 가능한 자속 밀도의 최대 값은 1mT이고, 최소값은 확인된 바로는 최소한 1pT이지만, 실제로는 그 이하이다. 자속 밀도의 최소 분해능은 1pT이다. 이러한 값들은 현재 사용하고있는 전형적인 플럭스게이트 센서의 측정주파수 20kHz, 최대 자속 밀도 1mT, 최소 자속 밀도 100pT, 자속 밀도의 분해능 100pT 등에 비해서 현저하게 향상된 것임을 확인할 수 있다. 측정 주파수의 범위는 최소한 2배 이상 확장되었으며, 자속 밀도의 분해능은 최소한 100배 이상 증가하였다.
도 1은 종래의 플럭스게이트 마그네토미터의 구성 회로도이다.
도 2는 도 1의 각 점에 있어서 신호 파형과 동기 검파 신호를 나타내는 파형도이다.
도 3은 도 1에 있어서 플럭스게이트 센서의 코일을 도시한 도면으로써, (가)는 모형도이고, (나)는 등가회로도이다.
도 4는 도 1에 있어서 플럭스게이트 센서의 개념을 설명하기 위한 도면으로써, (가)는 공진회로이고, (나)는 그 공진주파수 부근에서의 어더미턴스 변화를 나타내는 특성도이다.
도 5는 도 1에 있어서 외부 자기장의 강도가 낮을 때의 짝수 고조파(Vo1)와 동기 검파 신호(Vo2)를 나타내는 특성도이다.
도 6은 본 발명의 일 실시예에 따른 극 저자기장 측정용 플럭스게이트 자기센서 모형도이다.
도 7은 본 발명의 일 실시예에 따른 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터의 구성 회로도이다.
도 8은 도 7의 각 점에 있어서의 각 파형도이다.
도 9는 도 7에 있어서 외부 자기장이 존재할 때의 신호출력을 나타내는 파형도이다.
도 10은 도 7에 있어서 외부 자기장이 존재하지 않을 때의 출력신호를 나타내는 파형도이다.
도 11은 본 발명의 일 실시예에 따른 극 저자기장 측정용 플럭스게이트 자기센서의 동작 시 자기이력곡선의 이동과 출력전압의 관계를 나타내는 동작 특성도이다.
도 12는 본 발명의 일 실시예에 따른 극 저자기장 측정용 플럭스게이트 자기센서에 가한 50㎐의 외부 자기장에 대응하는 센서의 출력 파형도이다.
도 13은 본 발명의 일 실시예에 따른 극 저자기장 측정용 플럭스게이트 자기센서에 가한 2㎑의 외부 자기장에 대응하는 센서의 출력 파형도이다.

Claims (8)

  1. 강자성체의 자기 포화특성을 이용하여 외부 자기장을 측정하는 통상의 플럭스게이트 마그네토미터에 있어서,
    구동전압을 발생시키는 신호발생기;
    상기 신호 발생기에 연결되어 소정 간격으로 평행하게 배열된 한쌍의 제1, 제2 센서코어에 서로 반대 방향으로 각각 감긴 제1, 제2 코일을 가지는 플럭스게이트 자기센서;
    상기 자기센서에 직렬로 연결되어 두개의 코일에 흐르는 전류를 전압으로 변환하는 두개의 분로 저항에 연결되어 자기센서의 각 코일에서 출력되는 양 전압차에 해당하는 전압을 증폭하여 출력하는 계측 연산기;
    상기 계측 연산기로부터의 출력전압이 직선성이 확보될 수 있도록 인가되는 스위칭 전압이 로우가 되는 상태에서 신호를 취할 수 있도록 스위칭하는 아날로그 스위치;
    상기 아날로그 스위치로부터 얻어진 신호를 적분하여 외부자기장에 비례하는 출력 신호를 증폭하여 출력하는 적분 연산기;
    를 포함하는 것을 특징으로 하는 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터.
  2. 제 1 항에 있어서, 플럭스게이트 자기센서는 임의의 주파수로 구동시킨 자기이력곡선에서 자속밀도가 0이 되는 시점에서 신호를 샘플링하여 외부 자기장을 검파하는 것을 특징으로 하는 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터.
  3. 제 1 항에 있어서, 센서코어가 2개로 분리된 플럭스게이트 자기센서에서 2차 코일을 감지 않고 각 코일간에 180°의 위상차를 갖도록 1차 코일만 감아서 두개의 1차 코일에 흐르는 자화 전류를 검출하여 출력 신호원으로 사용하는 것을 특징으로 하는 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터.
  4. 제 1 항에 있어서, 센서코어가 2개로 분리되어 있지 않고 1개만으로 구성된 플럭스게이트 자기센서에도 1차 코일 1개의 자화 전류를 검출하여 출력 신호원으로 사용하는 것을 특징으로 하는 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터.
  5. 강자성체의 자기 포화특성을 이용하여 외부 자기장을 측정하는 통상의 플럭스게이트 마그네토미터의 외부 자기장 측정 방법에 있어서,
    플럭스게이트 자기센서 코어에 감겨 있는 각 코일에 흐르는 자화 전류를 검출하여 출력 신호원으로 사용하는 제1 과정;
    임의의 주파수에서 구동시킨 플럭스게이트 자기센서의 자기 이력 곡선에서 자속 밀도(B)가 0이 되는 시점에서 신호를 샘플링하여 외부 자기장을 검파하는 제2 과정; 을 포함하는 것을 특징으로 하는 마그네토미터의 극 저자기장을 측정하기 위한 신호처리방법.
  6. 제 5 항에 있어서, 제1 과정에는 센서코어가 두개로 분리된 플럭스게이트 자기센서에서 2차코일을 사용하지 않고, 1차 코일만을 감아서 각 코일간에 180°의 위상차이가 발생하도록 서로 연결한 후에 1차 코일에 흐르는 자화 전류를 출력 신호원으로 사용하는 것을 특징으로 하는 마그네토미터의 극 저자기장을 측정하기 위한 신호처리방법.
  7. 제 5 항 또는 제 6 항에 있어서, 제1 과정에는 센서코어가 두개로 분리되어 있지 않고 1개만으로 구성된 경우에도 1차 코일의 자화 전류를 출력 신호원으로 사용하는 것을 특징으로 하는 마그네토미터의 극 저자기장을 측정하기 위한 신호처리방법.
  8. 제 5 항에 있어서, 제2 과정에는 플럭스게이트 자기센서에서 공진 주파수를 이용한 동기 검파에 의한 방법으로 외부 자기장을 검파하지 않고, 공진 주파수가 아닌 임의의 주파수를 가진 구동 전류를 이용하여 외부 자기장을 검파하는 것을 특징으로 하는 마그네토미터의 극 저자기장을 측정하기 위한 신호처리방법.
KR1020030078738A 2003-11-07 2003-11-07 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터 및 극 저자기장을 측정하기 위한 신호처리방법 KR100601818B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030078738A KR100601818B1 (ko) 2003-11-07 2003-11-07 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터 및 극 저자기장을 측정하기 위한 신호처리방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030078738A KR100601818B1 (ko) 2003-11-07 2003-11-07 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터 및 극 저자기장을 측정하기 위한 신호처리방법

Publications (2)

Publication Number Publication Date
KR20050044155A true KR20050044155A (ko) 2005-05-12
KR100601818B1 KR100601818B1 (ko) 2006-07-19

Family

ID=37244556

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030078738A KR100601818B1 (ko) 2003-11-07 2003-11-07 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터 및 극 저자기장을 측정하기 위한 신호처리방법

Country Status (1)

Country Link
KR (1) KR100601818B1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101433212B1 (ko) * 2010-04-14 2014-08-22 지멘스 악티엔게젤샤프트 코어 내의 자기 특성 변수를 검출하기 위한 방법 및 장치
CN109270325A (zh) * 2018-11-12 2019-01-25 深圳市艾华迪技术有限公司 一种自激型开环磁通门电流传感器电路及其自激振荡方法
KR102204165B1 (ko) * 2020-04-14 2021-01-19 대보정보통신 주식회사 서치코일 타입 센서를 이용한 물체의 무극 보정 및 변위 측정 장치
CN115902378A (zh) * 2022-12-30 2023-04-04 浙江巨磁智能技术有限公司 一种磁通门传感器关于超大电流特性干扰的解决方法
EP4303603A1 (en) * 2022-07-06 2024-01-10 Yokogawa Electric Corporation Magnetic detection apparatus and current detection apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101433212B1 (ko) * 2010-04-14 2014-08-22 지멘스 악티엔게젤샤프트 코어 내의 자기 특성 변수를 검출하기 위한 방법 및 장치
US8896306B2 (en) 2010-04-14 2014-11-25 Siemens Aktiengesellschaft Method and apparatus for detecting a magnetic characteristic variable in a core
CN109270325A (zh) * 2018-11-12 2019-01-25 深圳市艾华迪技术有限公司 一种自激型开环磁通门电流传感器电路及其自激振荡方法
CN109270325B (zh) * 2018-11-12 2024-05-24 深圳市艾华迪技术有限公司 一种自激型开环磁通门电流传感器电路及其自激振荡方法
KR102204165B1 (ko) * 2020-04-14 2021-01-19 대보정보통신 주식회사 서치코일 타입 센서를 이용한 물체의 무극 보정 및 변위 측정 장치
EP4303603A1 (en) * 2022-07-06 2024-01-10 Yokogawa Electric Corporation Magnetic detection apparatus and current detection apparatus
CN115902378A (zh) * 2022-12-30 2023-04-04 浙江巨磁智能技术有限公司 一种磁通门传感器关于超大电流特性干扰的解决方法
CN115902378B (zh) * 2022-12-30 2024-06-07 浙江巨磁智能技术有限公司 一种磁通门传感器关于超大电流特性干扰的解决方法

Also Published As

Publication number Publication date
KR100601818B1 (ko) 2006-07-19

Similar Documents

Publication Publication Date Title
KR101329240B1 (ko) 플럭스 게이트 방식의 비접촉 전류 계측기
US6885183B2 (en) Current probe
CN107315150B (zh) 一种正交基模磁通门传感器
WO2014010187A1 (ja) 電流検出装置
CN103616550A (zh) 巨磁阻电流传感器
CN110927428B (zh) 一种宽量程宽频高精度磁平衡式电流测量装置
JP5116433B2 (ja) 変動磁場検出用磁気検出器
JP2009210406A (ja) 電流センサ及び電力量計
Yang et al. A new compact fluxgate current sensor for AC and DC application
CN108983124B (zh) 磁饱和状态反馈式磁通门传感器
Zhao et al. Feedback-type giant magneto-impedance sensor based on longitudinal excitation
CN110824229B (zh) 一种单磁芯多绕组磁平衡式电流检测装置
Yang et al. Design optimization of a fluxgate current sensor with low interference
CN104849679A (zh) 磁探头和包括该磁探头的磁场传感器
CN111323737B (zh) 一种阻抗敏感型磁传感器及其硬件检测电路
JP4353465B2 (ja) 鉄道車両の磁界測定方法および磁界測定装置
KR100601818B1 (ko) 극 저자기장 측정용 플럭스게이트 자기센서를 구비한 마그네토미터 및 극 저자기장을 측정하기 위한 신호처리방법
JP2008532012A (ja) 環状コイル(magnetictoroid)を備える電流センサ
WO2010020648A1 (en) A fluxgate sensor
Ripka et al. Excitation efficiency of fluxgate sensors
JP2004257904A (ja) 電流プローブ
Ripka et al. Tuned current-output fluxgate
Ripka et al. AMR proximity sensor with inherent demodulation
Ripka Improved fluxgate for compasses and position sensors
US5831424A (en) Isolated current sensor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130626

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140610

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151224

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161109

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180420

Year of fee payment: 13