KR20050041909A - Method for forming silica-based processed film resistant to washing, and silica-based processed film resistant to washing obtained by the method - Google Patents

Method for forming silica-based processed film resistant to washing, and silica-based processed film resistant to washing obtained by the method Download PDF

Info

Publication number
KR20050041909A
KR20050041909A KR1020040086255A KR20040086255A KR20050041909A KR 20050041909 A KR20050041909 A KR 20050041909A KR 1020040086255 A KR1020040086255 A KR 1020040086255A KR 20040086255 A KR20040086255 A KR 20040086255A KR 20050041909 A KR20050041909 A KR 20050041909A
Authority
KR
South Korea
Prior art keywords
film
coating film
silica
coating
heat treatment
Prior art date
Application number
KR1020040086255A
Other languages
Korean (ko)
Other versions
KR100632163B1 (en
Inventor
후지이야스시
사토이사오
시부야다츠히코
Original Assignee
도오꾜오까고오교 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도오꾜오까고오교 가부시끼가이샤 filed Critical 도오꾜오까고오교 가부시끼가이샤
Publication of KR20050041909A publication Critical patent/KR20050041909A/en
Application granted granted Critical
Publication of KR100632163B1 publication Critical patent/KR100632163B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/06Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76828Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

기판 상에 실리카계 피막형성용 도포액을 도포하고 건조시켜 도막을 형성하는 도막 형성 공정과, 상기 도막 형성 공정에 의해 얻어진 상기 도막에 대해 가열처리하여 피막을 형성하는 제1 가열 처리 공정과, 상기 피막에 대해 선택적으로 에칭 처리하는 선택적 에칭 처리 공정과, 상기 선택적 에칭 처리 후의 상기 피막에 대해 추가로 가열처리하여 상기 에칭 처리에 의해 노출된 단면의 경화도를 향상시키는 제2 가열 처리 공정을 갖는 것을 특징으로 하는 실리카계 내세정성 가공피막의 형성방법.A coating film forming step of applying a coating solution for forming a silica-based coating film on a substrate and drying the coated film to form a coating film; a first heat treatment step of forming a coating film by heat treatment of the coating film obtained by the coating film forming step; And a second heat treatment step of further performing a heat treatment on the film after the selective etching treatment to improve the degree of curing of the cross section exposed by the etching treatment By weight based on the total weight of the silica-based gas-permeable processing film.

Description

실리카계 내세정성 가공피막의 형성방법, 및 이 방법에 의해 얻어지는 실리카계 내세정성 가공피막{METHOD FOR FORMING SILICA-BASED PROCESSED FILM RESISTANT TO WASHING, AND SILICA-BASED PROCESSED FILM RESISTANT TO WASHING OBTAINED BY THE METHOD}TECHNICAL FIELD [0001] The present invention relates to a method for forming a silica based submersible processing film and a silica based submersible processing film obtained by the method,

본 발명은 반도체 소자 등의 제조에서 기판 상에 형성되는 평탄화막, 층간절연막 등에 사용되는 실리카계 내세정성 가공피막으로, 세정처리에 대한 내성이, 그 피막표면뿐만 아니라, 그 후의 에칭 처리에 의한 가공에 의해 노출된 피막 단면에도 부여된 실리카계 내세정성 가공피막의 형성방법, 및 이 방법에 의해 얻어지는 실리카계 내세정성 가공피막에 관한 것이다.The present invention relates to a silica-based after-treatment process coating film used for a planarizing film, an interlayer insulating film, or the like formed on a substrate in the production of semiconductor devices and the like, and is excellent in resistance to the cleaning process, And a silica-based scratch-resistant processed film obtained by the method. The present invention also relates to a silica-based scratch-resistant processed film obtained by this method.

최근, 반도체 소자 등의 제조에서 기판 상에 형성되는 평탄화막, 층간절연막 등에 사용되는 실리카계 피막의 형성방법으로는, 화학적 기상성장법 (CVD법), 도포법 등이 알려져 있다.Recently, as a method of forming a silica-based coating film used for a planarizing film or an interlayer insulating film formed on a substrate in the production of semiconductor devices and the like, a chemical vapor deposition method (CVD method), a coating method and the like are known.

상기 화학적 기상성장법 (CVD법) 에서는, 일반적으로 매입성에 문제가 있고, 또한 피막중에 보이드가 발생하기 쉬워 미세한 패턴을 형성하기에는 부적합하다. 또 이 CVD법에서는 막의 평탄화도 실행하기 어렵다. 한편 도포법에서는 매립성이 좋아 미세한 패턴을 형성하기에는 적합하다.In the chemical vapor deposition method (CVD method), there is generally a problem with embeddability and voids are easily generated in the coating film, which is unsuitable for forming a fine pattern. In addition, in this CVD method, it is also difficult to planarize the film. On the other hand, the coating method is suitable for forming a fine pattern with good filling property.

상기 도포법에 사용되는 실리카계 피막형성용 재료로는, 무기 SOG (spin on glass) 재료를 들 수 있다 (예컨대 특허문헌 1 및 2 ; 각각 일본 공개특허공보 평10-313002호 및 동 공보 10-310872호). 여기에서 무기 SOG 재료란 유기기를 갖지 않는, 실록산 단위 및 H-Si 기를 포함하는 실록산 단위 중 어느 일방만, 또는 양방으로 이루어지는 규소 화합물을 함유하는 재료를 의미한다. 또 메틸기 등의 유기기를 무기 SOG 의 실록산 골격에 도입한 것을 포함하는 재료를 유기 SOG 재료라고 한다.Examples of the material for forming a silica-based coating film used in the coating method include an inorganic SOG (spin on glass) material (for example, Japanese Patent Application Laid-Open Nos. 10-313002 and 10- 310872). Herein, the inorganic SOG material means a material containing no silicon, a siloxane unit containing an organic group, and a siloxane unit containing an H-Si group, or both. A material containing an organic group such as a methyl group introduced into the siloxane skeleton of the inorganic SOG is referred to as an organic SOG material.

이 무기 SOG 재료를 사용한 실리카계 피막의 형성에 있어서는, 종래, 산수용액에 의한 세정 처리 (웨트 에칭) 내성을 향상시키기 위해 800℃ 정도의 가열처리를, 도막형성 후의 선택적 에칭 처리 전에 실행하였다. 이 가열처리에 의해 피막 표면은, 산수용액에 의한 세정처리 (웨트 에칭) 내성을 갖게 된다.In the formation of a silica-based coating film using the inorganic SOG material, a heat treatment at about 800 캜 was conventionally conducted before selective etching treatment after formation of a coating film in order to improve the cleaning treatment (wet etching) resistance by an aqueous acid solution. By this heat treatment, the surface of the coating film has a cleaning treatment (wet etching) resistance by an aqueous acid solution.

그러나 그 후의 공정에 의해 피막에 콘택트홀, 슬릿 부분 등을 형성하는 에칭 처리에 의해, 피막 내부가 노출된 부분에 있어서는, 산수용액 등에 의한 세정공정 중, 기판에 대해 수평방향으로 에칭되는, 소위 사이드 에칭되는 문제가 있었다. 이 사이드 에칭은 피막의 하부 방향을 향하여 커지는 경향이 있고, 피막의 하부 부근, 즉 피막과 기판의 계면에서 현저하다. 이 사이드 에칭이 발생되면 배선 사이가 단락될 우려가 있기 때문에, 특히 배선 사이가 매우 근접된 미세한 금속 배선 패턴의 상층에 형성하는 절연막 (이하 「PMD」라고 함) 용의 실리카계 피막으로는 무기 SOG 재료의 적용은 곤란하였다.However, in a portion where the inside of the film is exposed by an etching process for forming a contact hole, a slit portion, and the like in the film by a subsequent process, during the cleaning process with an acid aqueous solution or the like, There was a problem of being etched. This side etching tends to become larger toward the lower side of the film, and is remarkable near the lower part of the film, that is, at the interface between the film and the substrate. When this side etching occurs, there is a possibility that the wiring is short-circuited. Therefore, as the silica-based coating film for the insulating film (hereinafter referred to as "PMD") formed on the upper layer of the fine metal wiring pattern, The application of the material was difficult.

한편, 유기 SOG 재료를 사용하는 것도 제안되었다. 그러나 역시 상기 사이드 에칭 등의 문제가 있었다.On the other hand, it has also been proposed to use an organic SOG material. However, there is also a problem such as the side etching.

최근, 반도체 장치의 고집적화에 따라, 배선 서이가 매우 근접한 미세한 금속 배선 패턴, 구체적으로는 배선 사이의 폭이 0.25㎛ 이하의 배선 패턴의 형성이 요망되고 있으나, 상기와 같은 문제에 의해 그 실현이 어려웠다. 따라서 상기 문제를 해결할 수 있는 실리카계 피막의 형성방법이 요망되었다.In recent years, with the high integration of semiconductor devices, it is desired to form a fine metal wiring pattern in which wiring lines are very close to each other, specifically, a wiring pattern with a width of 0.25 mu m or less between wirings. However, . Therefore, a method for forming a silica-based coating film capable of solving the above problems has been desired.

발명자들은 미세 배선 패턴용에 적합한 실리카계 피막을 형성하는 방법으로서, 유기 SOG 재료를 기판 상에 도포한 후에, 산소농도 1000ppm 이하의 분위기에서 소성하여 피막을 형성함으로써, 산수용액에 대한 웨트 에칭 내성이 현저하게 향상되는 것을 발견하고, 이것을 특허 출원하고 있다. 그러나 웨트 에칭 내성의 향상이 더욱 요망되고 있다. 또한 유기 SOG 재료는, 애싱시에 피막이 산화되는 (알킬기가 분해되는) 등의 문제가 발생할 우려가 있기 때문에, 바람직하게는 무기 SOG 재료를 사용한 실리카계 피막의 형성방법이 요망되었다.The inventors of the present invention have found that a method for forming a silica-based coating film suitable for a fine wiring pattern is a method in which an organic SOG material is coated on a substrate and then baked in an atmosphere having an oxygen concentration of 1000 ppm or less to form a film, It is remarkably improved, and patent application is made. However, improvement in wet etching resistance is further demanded. Further, since the organic SOG material may cause problems such as oxidation of the film at the time of ashing (decomposition of the alkyl group), a method of forming a silica-based coating film using an inorganic SOG material has been desired.

본 발명자들은, 상기 과제를 해결하기 위해 산수용액을 사용한 세정처리에 의한 사이드 에칭이 발생하는 이유를 검토하였다. 그 결과, 이하와 같이 추측할 수 있음을 알 수 있었다. 즉, 상기 서술한 가열처리에 의해 피막표면은 경화되었으나, 표면으로부터 내부로 감에 따라 막내에서 열 편차를 발생시키고 있고, 피막 내부의 경화가 불충분한 부분이 발생한다. 이 때문에, 선택적인 에칭 처리에 의해 내부의 경화가 불충분한 부분이 단면으로 노출되고, 그 부분이 산수용액에 의한 세정처리에 의해, 침식을 받아, 사이드 에칭을 발생시키는 것으로 추측할 수 있었다.Means for Solving the Problems The present inventors have studied the reason why side etching by cleaning treatment using an acid aqueous solution occurs to solve the above problems. As a result, it can be understood that the following assumption can be made. In other words, although the surface of the film is cured by the above-described heat treatment, heat deviation occurs in the film as it goes from the surface to the inside, and a portion where the film is hardly cured is generated. For this reason, it can be assumed that a portion where the internal hardening is insufficient by the selective etching treatment is exposed to the end face, and the portion is eroded by the cleaning treatment with the acid aqueous solution, and the side etching is generated.

따라서 본 발명자들은 본 추측이 맞다면, 피막을 에칭 처리하여 단면을 노출시킨 후에, 다시 가열처리할 경우, 적어도 피막의 노출 단면은 충분히 경화되고, 노출 단면의 경화 치밀도는 막두께 방향으로 균일화되게 되어, 단면이 노출된 부분이더라도 산수용액에 대한 내성이 부여되어 있을 것으로 생각하고 실시한 결과 예측대로 되었다.Therefore, the inventors of the present invention found that, if the guesses are correct, when the film is subjected to an etching treatment to expose the end face, and then the film is heated again, at least the exposed end face of the film is sufficiently cured and the hardened density of the exposed end faces is uniform Therefore, even if the exposed section is considered to be tolerant to the acid aqueous solution, the result was as predicted.

본 발명은 이와 같은 지견에 근거하여 이루어진 것으로, 본 발명의 실리카계 내세정성 가공피막의 형성방법은, 기판 상에 실리카계 피막 형성용 도포액을 도포하고 건조시켜 도막을 형성하는 도막 형성 공정과, 상기 도막 형성 공정에 의해 얻어진 상기 도막에 대해 가열처리하여 피막을 형성하는 제1 가열 처리 공정과, 상기 피막에 대해 선택적으로 에칭 처리하는 선택적 에칭 처리 공정과, 상기 선택적 에칭 처리 후의 상기 피막에 대해 추가로 가열처리하여 상기 에칭 처리에 의해 노출된 단면의 경화도를 향상시키는 제2 가열 처리 공정을 갖는 것을 특징으로 한다.The present invention has been made based on such findings, and a method for forming a silica-based gas-sensitive processed film of the present invention comprises a coating film forming step of applying a coating liquid for forming a silica- A first heat treatment step of performing heat treatment on the coating film obtained by the coating film formation step to form a coating film; a selective etching treatment step of selectively etching the coating film; And a second heat treatment step of improving the degree of curing of the cross section exposed by the etching treatment.

또, 본 발명의 실리카계 내세정성 가공피막은, 기판 상에 형성되고, 선택적으로 에칭 처리에 의해 가공되어 이루어지고, 상기 가공에 의해 노출된 단면의 경화 치밀도가 막두께 방향으로 균일하게 되어 있는 것을 특징으로 한다.The silica-based gas-impervious processed film of the present invention is formed on a substrate and is selectively etched by an etching process, and the hardened denseness of the cross-section exposed by the above processing is uniform in the film thickness direction .

본 발명에 의해 적어도 피막의 노출 단면은 충분히 경화되고, 노출 단면의 경화 치밀도는 막두께 방향으로 균일화되고, 단면이 노출된 부분이더라도 산수용액에 대한 내성이 부여되어 있는 실리카계 내세정성 가공피막의 형성방법 및 그 피막을 제공할 수 있다.According to the present invention, at least the exposed end face of the film is sufficiently cured, the hardened denseness of the exposed end face is homogenized in the film thickness direction, and the silica-based submersible processing film And a method for producing the same.

발명을 실시하기 위한 최선의 형태BEST MODE FOR CARRYING OUT THE INVENTION

이하에 본 발명의 실시형태에 대해 설명한다.Hereinafter, embodiments of the present invention will be described.

본 발명의 실리카계 내세정성 가공피막의 형성방법은, 기판 상에 실리카계 피막형성용 도포액을 도포하고 건조시켜 도막을 형성하는 도막 형성 공정과, 상기 도막 형성 공정에 의해 얻어진 상기 도막에 대해 가열처리하여 피막을 형성하는 제1 가열 처리 공정과, 상기 피막에 대해 선택적으로 에칭 처리하는 선택적 에칭 처리 공정과, 상기 선택적 에칭 처리 후의 상기 피막에 대해, 다시 가열처리하여 상기 에칭 처리에 의해 노출된 단면의 경화도를 향상시키는 제2 가열 처리 공정을 갖는 것을 특징으로 한다.The method for forming a silica-based immersion treatment film of the present invention comprises a coating film forming step of coating a substrate with a coating solution for forming a silica-based coating film and drying to form a coating film; A selective etching treatment step of selectively etching the coating; and a step of applying heat treatment again to the coating after the selective etching treatment to form a cross section exposed by the etching treatment And a second heat treatment step of improving the degree of curing of the substrate.

(A) 실리카계 피막 형성용 도포액(A) a coating liquid for forming a silica-based coating film

실리카계 피막 형성용 도포액이면 특별히 제한되지 않지만, 구체적으로는 이하와 같은 것을 들 수 있다.Based coating film forming liquid is not particularly limited, and specific examples thereof include the following.

(a-1) 상기 실리카계 피막 형성용 도포액으로는, 적어도 하기 일반식 (a-1) As the coating liquid for forming a silica-based coating film,

(1) R1 2Si(OR2)2 (1)(1) R 1 2 Si (OR 2 ) 2 (1)

(식 중, R1 은 탄소수 1∼4 의 알킬기 또는 페닐기를 나타내고, R2 는 탄소수 1∼4 의 알킬기를 나타낸다)(Wherein R 1 represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and R 2 represents an alkyl group having 1 to 4 carbon atoms)

로 표시되는 디알킬디알콕시실란류 및/또는 하기 일반식And / or dialkyldialkoxysilanes represented by the following general formula

(2) R3Si(OR4)3 (2)(2) R 3 Si (OR 4 ) 3 (2)

(식 중, R3 은 탄소수 1∼4 의 알킬기 또는 페닐기를 나타내고, R4 는 탄소수 1∼4 의 알킬기를 나타낸다)(Wherein R 3 represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and R 4 represents an alkyl group having 1 to 4 carbon atoms)

로 표시되는 모노알킬트리알콕시실란류로 이루어지는 군에서 선택되는 적어도 1종의 알콕시실란 화합물을 유기 용매 중에서 가수분해 처리하여 얻어지는 반응 생성물을 함유하여 이루어지는 실리카계 피막 형성용 도포액을 들 수 있다.And a reaction product obtained by hydrolyzing at least one alkoxysilane compound selected from the group consisting of monoalkyltrialkoxysilanes represented by the following general formula (1) in an organic solvent can be given as a coating liquid for forming a silica-based coating film.

상기 도포액의 조제에 사용하는 알콕시실란 화합물의 조성은, 상기 알콕시실란 화합물 외에, 후술하는 트리알콕시실란류나 테트라알콕시실란류를 함유할 수도 있고, 소성 공정 후에 얻어지는 실리카계 유기 피막 중의 탄소 함유량이 6∼18 원자량%, 바람직하게는 10∼14 원자량% 의 범위내가 되도록 설정하는 것이 바람직하다.The composition of the alkoxysilane compound used for preparing the coating liquid may contain trialkoxysilanes or tetraalkoxysilanes, which will be described later, in addition to the alkoxysilane compound. When the carbon content in the silica-based organic coating film obtained after the firing step is 6 To 18 atomic%, preferably 10 to 14 atomic%.

탄소 함유량이 적을수록 크랙이 발생하기 쉬워지거나, 산수용액 (플루오르화 수소산) 에 의한 에칭 그레이트가 커진다. 한편, 탄소 함유량이 너무 많으면 인접하는 상하층과의 밀착성이 부족할 우려가 있다. 탄소 함유량을 상기 범위 내로 설정하면, 크랙이 발생하기 어렵고, 보이드의 발생없이 미세한 오목부를 매립할 수 있음과 동시에, 인접하는 상하층과의 밀착성 및 드라이 에칭시의 가공성이 우수하고, O2 애싱시의 대미지가 작아지기 때문에 바람직하다.The smaller the carbon content, the more easily cracks are generated, or the etch rate by the acid aqueous solution (hydrofluoric acid) becomes larger. On the other hand, if the carbon content is too large, adhesion with adjacent upper and lower layers may become insufficient. By setting the carbon content is within the above range, it is difficult to crack is generated, and at the same time and can be embedded parts fine concave without generation of voids, high adhesion and processability at the time of dry etching of the upper and lower adjacent layers, O 2 ashing when Which is preferable because the damage is small.

상기 도포액을 조제하는 데에는, 상기 알콕시실란 화합물을 유기 용매에 용해시켜 알콕시실란 화합물 용액을 얻는다.To prepare the coating liquid, the alkoxysilane compound is dissolved in an organic solvent to obtain an alkoxysilane compound solution.

상기 일반식 (1) 로 표시되는 디알킬디알콕시실란류의 바람직한 예로는, 디메틸디메톡시실란, 디메틸디에톡시실란, 디메틸디프로폭시실란, 디에틸디메톡시실란, 디에틸디에톡시실란, 디에틸디프로폭시실란, 디프로필디메톡시실란, 디프로필디에톡시실란, 디프로필디프로폭시실란 등의 디알킬디알콕시실란을 들 수 있다. 또 디알킬디알콕시실란 대신 또는 이것과 조합하여 디페닐디메톡시실란, 디페닐디에톡시실란 등의 디페닐디알콕시실란을 사용할 수도 있다.Preferable examples of the dialkyldialkoxysilanes represented by the general formula (1) include dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldipropoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diethyl And dialkyldialkoxysilanes such as dipropoxysilane, dipropyldimethoxysilane, dipropyldiethoxysilane, dipropyldipropoxysilane, and the like. Instead of or in combination with dialkyldialkoxysilanes, diphenyldialkoxysilane such as diphenyldimethoxysilane or diphenyldiethoxysilane may also be used.

상기 일반식 (2) 로 표시되는 모노알킬트리알콕시실란류로서 바람직한 예로서는, 모노메틸트리메톡시실란, 모노메틸트리에톡시실란, 모노메틸트리프로폭시실란, 모노에틸트리메톡시실란, 모노에틸트리에톡시실란, 모노에틸트리프로폭시실란, 모노프로필트리메톡시실란, 모노프로필트리에톡시실란, 모노프로필트리프로폭시실란 등의 모노알킬트리알콕시실란을 들 수 있다. 또 모노알킬트리알콕시실란 대신 또는 이것과 조합하여, 모노페닐트리메톡시실란, 모노페닐트리에톡시실란 등의 모노페닐트리알콕시실란을 사용할 수도 있다.Preferable examples of the monoalkyltrialkoxysilanes represented by the general formula (2) include monomethyltrimethoxysilane, monomethyltriethoxysilane, monomethyltripropoxysilane, monoethyltrimethoxysilane, monoethyltriethoxysilane, And monoalkyltrialkoxysilanes such as ethoxysilane, monoethyltripropoxysilane, monopropyltrimethoxysilane, monopropyltriethoxysilane, monopropyltripropoxysilane, and the like. Further, monophenyltrialkoxysilane such as monophenyltrimethoxysilane or monophenyltriethoxysilane can be used instead of or in combination with monoalkyltrialkoxysilane.

상기 일반식 (1) 로 표시되는 디알킬디알콕시실란류, 및/또는 상기 일반식 (2) 로 표시되는 모노알킬트리알콕시실란류에 있어서, 특히 R1, R3 가 메틸기인 화합물은, 저가로 입수하기 쉽고, 형성되는 피막의 치밀성이 높기 때문에 보다 바람직하다.In the dialkyldialkoxysilanes represented by the general formula (1) and / or the monoalkyltrialkoxysilanes represented by the general formula (2), particularly those in which R 1 and R 3 are methyl groups, And it is more preferable because the formed film has high denseness.

상기 일반식 (1) 로 표시되는 디알킬디알콕시실란류 및/또는 상기 일반식 (2) 로 표시되는 모노알킬트리알콕시실란류는 단독으로도 2종 이상 적절하게 선택하여, 혼합해도 사용할 수 있다. 그리고 이것에 필요에 따라 트리알콕시실란류나 테트라알콕시실란류를 1종 또는 복수종 배합할 수 있다.The dialkyldialkoxysilanes represented by the general formula (1) and / or the monoalkyltrialkoxysilanes represented by the general formula (2) may be used alone or in combination as a mixture of two or more thereof . If necessary, trialkoxysilane or tetraalkoxysilane may be added to this mixture, or one or more of them may be mixed.

상기 일반식 (2) 로 표시되는 모노알킬트리알콕시실란류만을 사용하면, 후술하는 가수분해처리에 의해 래더형 반응생성물 (가수분해 축합물) 이 얻어지기 쉽고, 이 래더형 반응생성물은, 치밀한 막을 형성하기 때문에 바람직하다. 이 경우, 모노메틸트리에톡시실란만을 사용하면, 형성되는 실리카계 내세정성 가공피막의 탄소함유량은 17.9 원자량% 가 된다.When only the monoalkyltrialkoxysilane represented by the general formula (2) is used, a ladder reaction product (hydrolysis condensation product) is easily obtained by a hydrolysis treatment to be described later, and the ladder reaction product is a dense film . In this case, when only monomethyltriethoxysilane is used, the carbon content of the formed silica-based submersible processing film is 17.9 atomic%.

상기 알콕시실란 화합물을 용해하는 유기 용매로는, 종래부터 일반적으로 사용되고 있는 유기용매를 사용할 수 있다. 구체예로는 메틸알코올, 에틸알코올, 프로필알코올, 부틸알코올과 같은 1가 알코올 ; 매틸-3-메톡시프로피오네이트, 에틸-3-에톡시프로피오네이트와 같은 알킬카르복실산에스테르 ; 에틸렌글리콜, 디에틸렌글리콜, 프로필렌글리콜과 같은 다가 알코올 ; 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노프로필에테르, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노에틸에테르, 프로필렌글리콜모노프로필에테르, 프로필렌글리콜모노부틸에테르, 에틸렌글리콜모노메틸에테르아세테이트, 에틸렌글리콜모노에틸에테르아세테이트, 프로필렌글리콜모노메틸에테르아세테이트, 프로필렌글리콜모노에틸에테르아세테이트와 같은 다가 알코올 유도체 ; 아세트산, 프로피온산과 같은 지방산 ; 아세톤, 메틸에틸케톤, 2-헵탄과 같은 케톤 등을 들 수 있다. 이들 유기용매는 단독으로 사용할 수도 있고, 2종 이상 조합하여 사용할 수도 있다.As the organic solvent for dissolving the alkoxysilane compound, conventionally used organic solvents may be used. Specific examples include monohydric alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol and butyl alcohol; Alkylcarboxylic acid esters such as methyl-3-methoxypropionate and ethyl-3-ethoxypropionate; Polyhydric alcohols such as ethylene glycol, diethylene glycol and propylene glycol; Ethylene glycol monoethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, ethylene glycol Polyhydric alcohol derivatives such as monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate; Fatty acids such as acetic acid and propionic acid; And ketones such as acetone, methyl ethyl ketone, and 2-heptane. These organic solvents may be used alone or in combination of two or more.

이들 중에서도, 특히 1가 알코올, 케톤, 글리콜계의 다가 알코올 및 다가 알코올 유도체 및 알콕시카르복실산에스테르를 사용하면 양호한 도포성이 얻어진다. 유기 용매의 사용량은, 해당 알콕시실란 화합물 용액의 SiO2 환산 (분자량 = 60) 고형분 농도가 1∼30 질량% 농도로 되도록 사용하는 것이 바람직하다.Among these, good application properties can be obtained by using monohydric alcohols, ketones, glycolic polyhydric alcohols and polyhydric alcohol derivatives and alkoxycarboxylic esters. The amount of the organic solvent to be used is preferably such that the solids concentration of the alkoxysilane compound solution in terms of SiO 2 (molecular weight = 60) is 1 to 30 mass%.

상기 알콕시실란 화합물 용액에는 임의 성분으로서 예컨대 도포성을 향상시키는 계면활성제 및, 소성시의 탈수축합을 촉진시키는 산 등을 적절하게 함유시킬 수 있다.The alkoxysilane compound solution may suitably contain, as optional components, a surfactant that improves the coating property and an acid that promotes dehydration condensation upon firing.

이어서 얻어진 알콕시실란 화합물 용액에 산 촉매 및 물을 첨가하여 가수분해함으로써, 생성된 실란올의 탈수축합을 거쳐, 반응생성물을 함유하는 도포액을 얻는다. 산촉매와 물의 첨가방법은 특별히 제한되지 않고, 예컨대 상기 알콕시실란 화합물 용액에, 물 및 산 촉매를 별개로 첨가할 수도 있고, 미리 산 촉매를 물과 혼합하여 이루어지는 산 촉매 수용액으로서 이것을 상기 알콕시실란 화합물 용액에 첨가할 수도 있다.Subsequently, an acid catalyst and water are added to the obtained alkoxysilane compound solution and hydrolyzed to obtain a coating liquid containing the reaction product through dehydration condensation of the resulting silanol. The method of adding the acid catalyst and water is not particularly limited. For example, water and an acid catalyst may be separately added to the alkoxysilane compound solution, or an acid catalyst aqueous solution prepared by mixing an acid catalyst with water in advance may be added to the alkoxysilane compound solution . ≪ / RTI >

여기에서의 가수분해처리는, 용액 중의 상기 알콕시실란 화합물을 완전히 가수분해시켜도 되고, 부분적으로 가수분해시켜도 된다. 가수분해의 정도, 즉 가수분해도는 물의 첨가량에 따라 조절할 수 있다.In the hydrolysis treatment herein, the alkoxysilane compound in the solution may be completely hydrolyzed or partially hydrolyzed. The degree of hydrolysis, i.e., the degree of hydrolysis, can be controlled depending on the amount of water added.

상기 알콕시실란 화합물을 사용한 도포액의 경우, 상기 알콕시실란 화합물의 1몰에 대해, 첨가하는 물의 비율은, 바람직하게는 2∼10몰, 보다 바람직하게는 6∼9몰이다. 물의 첨가량이 하한 미만이면 가수분해도가 낮고, 피막형성시의 탈가스가 많아지고, 한편 물의 첨가량이 상한을 초과하면 겔화를 일으키기 쉬워 보존안정성이 나빠진다.In the case of the coating liquid using the alkoxysilane compound, the ratio of the water to be added to 1 mole of the alkoxysilane compound is preferably 2 to 10 moles, more preferably 6 to 9 moles. When the addition amount of water is less than the lower limit, the degree of hydrolysis is low and the amount of degassing at the time of film formation increases. On the other hand, when the amount of water added exceeds the upper limit, gelation tends to occur and storage stability is deteriorated.

산촉매로서는 종래부터 일반적으로 사용되고 있는 유기산, 무기산 모두 사용할 수 있다. 유기산의 구체예로는 아세트산, 프로피온산, 부티르산 등의 유기 카르복실산을 들 수 있다. 무기산의 구체예로는 염산, 질산, 황산, 인산 등을 들 수 있다.As the acid catalyst, organic acids and inorganic acids generally used conventionally can be used. Concrete examples of the organic acid include organic carboxylic acids such as acetic acid, propionic acid and butyric acid. Specific examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and the like.

산촉매의 첨가량은 첨가 후의 상기 알콕시실란 화합물 용액에서의 산의 농도가 1∼1000ppm, 바람직하게는 5∼500ppm 범위내가 되도록 설정하는 것이 바람직하다.The addition amount of the acid catalyst is preferably set such that the concentration of the acid in the alkoxysilane compound solution after the addition is in the range of 1 to 1000 ppm, preferably 5 to 500 ppm.

산촉매 및 물은, 상기 알콕시실란 화합물 용액을 교반하면서 서서히 첨가하는 것이 바람직하고, 첨가 후, 정치함으로써 가수분해반응이 진행된다. 이 가수분해반응에는 5∼100 시간 정도를 필요로 하는데, 상기 알콕시실란 화합물 용액을 80℃ 를 초과하지 않는 온도에서 가열하면서, 산촉매 수용액을 적하하여 반응시키면, 가수분해의 반응시간을 단축시킬 수 있다.The acid catalyst and water are preferably added slowly while stirring the alkoxysilane compound solution, and after the addition, the hydrolysis reaction proceeds by standing. This hydrolysis reaction requires about 5 to 100 hours. When the alkoxysilane compound solution is heated at a temperature not exceeding 80 캜 and the acid catalyst solution is added dropwise, the reaction time for hydrolysis can be shortened .

상기 알콕시실란 화합물이, 산촉매의 존재하에서 가수분해되면 알콕시기가 실란올기로 변화되고, 동시에 실란올기가 분자 사이에서 탈수축합을 일으키고, 그 결과 규소원자에 유기기가 결합된 실록산 결합이 생성된다. 이와 같은 실록산 결합은 피막형성능을 갖는다.When the alkoxysilane compound is hydrolyzed in the presence of an acid catalyst, an alkoxy group is changed to a silanol group, and at the same time, a silanol group causes dehydration condensation between molecules, and as a result, a siloxane bond in which an organic group is bonded to a silicon atom is produced. Such siloxane bonds have film-forming ability.

상기 알콕시실란 화합물을 유기용매 중, 산촉매의 존재하에서 가수분해처리하여 얻어지는 반응생성물에는, 중합도가 2∼20 정도의 실록산올리고머가 주로 함유된다. The reaction product obtained by hydrolyzing the alkoxysilane compound in an organic solvent in the presence of an acid catalyst mainly contains a siloxane oligomer having a degree of polymerization of about 2 to 20.

상기 알콕시실란 화합물을 가수분해처리하여 얻어지는 실록산올리고머의 질량 평균분자량은 1000∼4000 의 범위내이면 피막의 표면 평탄성이 양호하다. 이 범위보다 크면 겔화되기 쉽고, 작으면 피막형성능이 떨어진다. 상기 알콕시실란 화합물을 가수분해처리하여 얻어지는 실록산올리고머의 질량 평균분자량은 가수분해반응에 사용하는 물의 첨가량, 반응시간, 반응온도 등에 따라 제어할 수 있다.When the mass average molecular weight of the siloxane oligomer obtained by subjecting the alkoxysilane compound to hydrolysis treatment is in the range of 1,000 to 4,000, the surface flatness of the coating film is good. If it is larger than this range, gelation tends to occur, and if it is small, film-forming ability deteriorates. The mass average molecular weight of the siloxane oligomer obtained by subjecting the alkoxysilane compound to hydrolysis treatment can be controlled according to the amount of water used for the hydrolysis reaction, the reaction time, the reaction temperature, and the like.

이와 같이 하여 얻어지는 도포액은, 얻고자 하는 피막의 막두께를 고려하여, 유기용매로 적절하게 희석하여 사용할 수 있다. 희석에 사용하는 유기용매는, 상기 알콕시실란 화합물을 용해하는 유기용매로서 전술한 것을 사용할 수 있다. 도포액의 고형분 농도는 특별히 제한되지 않지만, 너무 많으면 도포액의 제조가 곤란해지고, 한편 적으면 소정의 막두께가 얻어지지 않게 된다. 따라서 통상 SiO2 환산 (분자량 = 60) 고형분 농도가 2∼25 질량% 정도의 범위내에서, 도포면의 표면형상, 도포방법, 얻고자 하는 도막의 두께 등에 따라 적절하게 설정하는 것이 바람직하다.The coating liquid thus obtained can be appropriately diluted with an organic solvent in consideration of the film thickness of the film to be obtained. As the organic solvent to be used for the dilution, the above-mentioned organic solvent for dissolving the alkoxysilane compound may be used. The solid content concentration of the coating liquid is not particularly limited, but if it is too large, it becomes difficult to produce a coating liquid, while if it is too small, a predetermined film thickness can not be obtained. Therefore, it is preferable to appropriately set the solid content concentration in terms of SiO 2 (molecular weight = 60) in the range of about 2 to 25 mass%, depending on the surface shape of the coated surface, the coating method and the thickness of the coating film to be obtained.

또 이 도포액은 고형분을 제외한 전체 용액 중에서의 수분함량이 1∼30 질량% 인 것이 바람직하고, 5∼15 질량% 수분을 함유하는 것이 보다 바람직하다. 도포액에서의 이 수분 함유량을 상기 범위내로 함으로써, 플루오르화 수소산 수용액으로 대표되는 산수용액에 의한 웨트 에칭 내성을 효과적으로 향상시킬 수 있다.The coating liquid preferably has a water content of 1 to 30 mass%, more preferably 5 to 15 mass%, in the total solution excluding the solid content. By setting the water content in the coating liquid within the above range, wet etching resistance by an aqueous acid solution represented by an aqueous solution of hydrofluoric acid can be effectively improved.

도포액 중의 이 수분 함유량을 제어하는 방법은 특별히 한정되지 않지만, 예컨대 상기 알콕시실란 화합물 용액에 물을 첨가하여 가수분해처리할 때에, 이 가수분해반응에 필요한 물의 양에 대해 과잉량의 물을 첨가해 두고, 반응종료 후의 도포액 중에 상기 바람직한 범위 내의 수분이 남도록 반응시간을 컨트롤하여 가수분해반응을 종료시키는 방법이 있다.The method for controlling the water content in the coating liquid is not particularly limited. For example, when water is added to the alkoxysilane compound solution and subjected to hydrolysis, an excessive amount of water is added to the amount of water required for the hydrolysis reaction There is a method of terminating the hydrolysis reaction by controlling the reaction time so that water remains in the above-mentioned preferable range in the coating liquid after completion of the reaction.

또 상기 알콕시실란 화합물의 가수분해처리를 마친 용액 중에서 일단 수분을 제거한 후, 새로 물을 첨가하는 방법에 의해, 상기 도포액에서의 상기 수분 함유량을 상기의 바람직한 범위내로 할 수도 있다.The moisture content in the coating liquid may be adjusted to fall within the above-mentioned preferable range by first removing water in the solution after the hydrolysis treatment of the alkoxysilane compound, and then adding new water.

또, 상기 알콕시실란 화합물의 가수분해처리를 마친 용액에 물을 첨가하는 방법에 의해서도, 상기 도포액에서의 상기 수분 함유량을 상기 바람직한 범위내로 할 수 있다. 또한 상기 도포액에서의 상기 수분 함유량, 즉 도포액의 고형분을 제외하는 용액 중에서의 수분 함유량은 가스크로마토그래피에 의해 측정할 수 있다.The water content in the coating liquid can also be kept within the preferred range by adding water to the hydrolysis-treated solution of the alkoxysilane compound. The water content in the coating liquid, that is, the water content in the solution excluding the solid content of the coating liquid, can be measured by gas chromatography.

(a-2) 또, 상기 실리카계 피막형성용 도포액은, 적어도 트리알콕시실란류 및/또는 테트라알콕시실란류로 이루어지는 군에서 선택되는 적어도 1종의 알콕시실란 화합물을 유기용매 중에서 가수분해처리하여 얻어지는 반응생성물을 함유하여 이루어지는 실리카계 피막형성용 도포액일 수도 있다. 또한 상기 일반식 (1), (2) 로 표시되는 알콕시실란 화합물은 배합되지 않는다. 상기 일반식 (1), (2) 로 표시되는 알콕시실란 화합물을 배합하면 (a-1) 에 기재한 유기 SOG 재료로 되기 때문이다.(a-2) In the coating liquid for forming a silica-based coating film, at least one alkoxysilane compound selected from the group consisting of at least trialkoxysilanes and / or tetraalkoxysilanes is subjected to hydrolysis treatment in an organic solvent Based coating film-forming coating liquid containing a reaction product to be obtained. Also, the alkoxysilane compounds represented by the above general formulas (1) and (2) are not mixed. This is because the alkoxysilane compound represented by the above general formulas (1) and (2) is mixed with the organic SOG material described in (a-1).

상기 트리알콕시실란류로는 예컨대 트리메톡시실란, 트리에톡시실란, 트리프로폭시실란, 트리부톡시실란, 디에톡시모노메톡시실란, 모노메톡시디프로폭시실란, 디부톡시모노메톡시실란, 에톡시메톡시프로폭시실란, 모노에톡시디메톡시실란, 모노에톡시디프로폭시실란, 부톡시에톡시프로폭시실란, 디메톡시모노프로폭시실란, 디에톡시모노프로폭시실란, 모노부톡시디메톡시실란 등을 들 수 있다. 이들 중에서 실용상 바람직한 화합물은 트리메톡시실란, 트리에톡시실란, 트리프로폭시실란, 트리부톡시실란이고, 그 중에서도 특히 트리메톡시실란, 트리에톡시실란이 바람직하다. 이들 트리알콕시실란은 단독으로 사용해도 되고, 2종 이상을 조합하여 사용할 수도 있다.Examples of the trialkoxysilanes include trimethoxysilane, triethoxysilane, tripropoxysilane, tributoxysilane, diethoxymonomethoxysilane, monomethoxydipropoxysilane, dibutoxymonomethoxysilane, Butoxymethoxypropoxysilane, monoethoxydimethoxysilane, monoethoxydipropoxysilane, butoxyethoxypropoxysilane, dimethoxymonopropoxysilane, diethoxymonopropoxysilane, monobutoxydimethoxy Silane, and the like. Of these, practically preferable compounds are trimethoxysilane, triethoxysilane, tripropoxysilane and tributoxysilane, and among them, trimethoxysilane and triethoxysilane are particularly preferable. These trialkoxysilanes may be used alone or in combination of two or more.

상기 테트라알콕시실란류로는, 예컨데 테트라메톡시실란, 테트라에톡시실란, 테트라프로폭시실란, 테트라부톡시실란, 디에톡시디메톡시실란, 디메톡시디프로폭시실란, 디부톡시디메톡시실란, 에톡시디메톡시프로폭시실란, 모노에톡시트리메톡시실란, 모노에톡시트리프로폭시실란, 부톡시디에톡시프로폭시실란, 트리메톡시모노프로폭시실란, 트리에톡시모노프로폭시실란, 모노부톡시트리메톡시실란 등을 들 수 있다. 이들 중에서 실용상 바람직한 화합물은 테트라메톡시실란, 테트라에톡시실란, 테트라프로폭시실란, 테트라부톡시실란이고, 그 중에서도 특히 테트라메톡시실란, 테트라에톡시실란이 바람직하다. 이들 테트라알콕시실란은 단독으로 사용해도 되고, 2종 이상을 조합하여 사용할 수도 있다.The tetraalkoxysilanes include, for example, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, diethoxydimethoxysilane, dimethoxydipropoxysilane, dibutoxydimethoxysilane, But are not limited to, ethoxydimethoxypropoxysilane, monoethoxytrimethoxysilane, monoethoxytripropoxysilane, butoxydiethoxypropoxysilane, trimethoxymonopropoxysilane, triethoxymonopropoxysilane, Trimethoxysilane, etc., and the like. Of these, practically preferable compounds are tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane and tetrabutoxysilane. Of these, tetramethoxysilane and tetraethoxysilane are particularly preferable. These tetraalkoxysilanes may be used alone or in combination of two or more.

또 상기 알콕시실란 화합물을 용해하는 유기용매로서는 특별히 제한은 없고, 여러 용매를 사용할 수 있으나, 특히 알킬렌글리콜디알킬에테르가 바람직하다. 이 알킬렌글리콜디알킬에테르를 사용함으로써, 저급 알코올을 용매로 사용한 종래 방법에서의 트리알콕시실란의 H-Si기의 분해반응이나 중간에 생성되는 실란올의 수산기가 알콕시기로 치환하는 반응을 억제할 수 있어, 겔화를 방지할 수 있다.The organic solvent for dissolving the alkoxysilane compound is not particularly limited and various solvents may be used, and alkylene glycol dialkyl ether is particularly preferable. By using the alkylene glycol dialkyl ether, the decomposition reaction of the H-Si group of the trialkoxysilane in the conventional method using a lower alcohol as a solvent and the reaction of replacing the hydroxyl group of the silanol produced in the middle with the alkoxy group are suppressed And gelation can be prevented.

이 알킬렌글리콜디알킬에테르로서는 예컨대 에틸렌글리콜디메틸에테르, 에틸렌글리콜디에틸에테르, 에틸렌글리콜디프로필에테르, 에틸렌글리콜디부틸에테르, 디에틸렌글리콜디메틸에테르, 디에틸렌글리콜디에틸에테르, 디에틸렌글리콜디프로필에테르, 디에틸렌글리콜디부틸에테르, 프로필렌글리콜디메틸에테르, 프로필렌글리콜디에틸에테르, 프로필렌글리콜디프로필에테르, 프로필렌글리콜디부틸에테르 등의 알킬렌글리콜의 디알킬에테르류를 들 수 있다. 이들 중에서 바람직한 것은 에틸렌글리콜 또는 프로필렌글리콜의 디알킬에테르이고, 보다 바람직하게는 디메틸에테르이다. 이들 유기용매는 단독으로 사용할 수도 있고 2 종 이상 조합하여 사용할 수도 있다.Examples of the alkylene glycol dialkyl ether include ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl Dialkyl ethers of alkylene glycol such as ether, diethylene glycol dibutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether and propylene glycol dibutyl ether. Of these, preferred are dialkyl ethers of ethylene glycol or propylene glycol, more preferably dimethyl ether. These organic solvents may be used alone or in combination of two or more.

이 도포액은 이들 유기용매 중에 상기 알콕시실란 화합물의 산가수분해 생성물을 함유하지만, 특히 용매 제거 후의 피막형성 성분이 열중량측정 (TG) 에 있어서 질량증가를 나타내는 것이 바람직하다. 또 이와 같은 도포액은 적외 흡수 스펙트럼에서 통상 3000㎝-1 부근에 피크를 갖지 않는다. 종래의 도포액, 예컨대 일본 공개특허공보 평4-216827호에 기재된 도포액의 경우는, 열중량측정 결과, 질량감소를 나타내고, 또 적외 흡수 스펙트럼에서 3000㎝-1 부근에 피크를 갖는 점에서, 잔존 알콕시기가 존재하는 것을 나타내고 있다.It is preferable that the coating liquid contains the acid hydrolysis product of the alkoxysilane compound in these organic solvents, but particularly the film forming component after solvent removal shows a mass increase in the thermogravimetric analysis (TG). Such a coating liquid does not have a peak in the infrared absorption spectrum in the vicinity of usually 3000 cm -1 . In the case of the conventional coating liquid, for example, the coating liquid described in Japanese Patent Application Laid-Open No. 4-216827, as a result of thermogravimetry, a mass decrease is shown, and a peak is observed in the infrared absorption spectrum in the vicinity of 3000 cm -1 . The remaining alkoxy group is present.

이와 같은 도포액은 예컨대 이하에 나타내는 방법에 의해 바람직하게 조제할 수 있다. 먼저 상기 알킬렌글리콜디알킬에테르 중에, 상기 알콕시실란 화합물을, SiO2 환산 (분자량 = 60) 고형분농도로 1∼5 질량%, 바람직하게는 2∼4 질량% 농도가 되도록 용해한다. 반응계에서의 SiO2 환산농도가 너무 많아지면 겔화가 일어나 보존안정성이 열화될 우려가 있기 때문이다. 그 상세한 원인에 대해서는 명확하지 않지만, 반응계에서의 SiO2 환산 농도가 작은 것이 가수분해의 반응이 완만하게 진행되어, H-Si기가 분해되기 어려운 점에서, 래더 구조를 형성하기 쉽기 때문인 것으로 생각된다.Such a coating liquid can be suitably prepared, for example, by the following method. First, the alkoxysilane compound is dissolved in the alkylene glycol dialkyl ether so as to have a concentration of 1 to 5% by mass, preferably 2 to 4% by mass, in terms of solid content in terms of SiO 2 (molecular weight = 60). If the concentration in terms of SiO 2 in the reaction system becomes too large, gelation may occur and the storage stability may deteriorate. The detailed reason for this is not clear, but it is considered that the reason why the ladder structure is easy to form is that the concentration in terms of SiO 2 in the reaction system is small, the hydrolysis reaction proceeds slowly and the H-Si group is difficult to decompose.

다음에 이들 알콕시실란 화합물에 물을 반응시켜 가수분해하는데, 이 물은 알콕시실란 화합물 1 몰에 대해 2.5∼3.0몰, 바람직하게는 2.8∼3.0몰의 범위내의 양으로 사용하는 것이 가수분해도를 높이기 때문에 유리하다. 이 범위보다 적으면 보존안정성은 높아지지만, 가수분해도가 낮아져 가수분해물 중의 유기기의 함유량이 많아져 피막형성시의 가스의 발생이 발생하기 쉬워진다. 한편 이 범위보다 많으면 보존안정성이 나빠진다.The alkoxysilane compound is then hydrolyzed by reacting it with water. The water is used in an amount within a range of 2.5 to 3.0 mol, preferably 2.8 to 3.0 mol, per mol of the alkoxysilane compound, which increases the degree of hydrolysis It is advantageous. When the amount is less than this range, the storage stability is enhanced, but the degree of hydrolysis is lowered, and the content of organic matters in the hydrolyzate is increased, and gas is liable to be generated at the time of film formation. On the other hand, if it is larger than this range, the storage stability is deteriorated.

알콕시실란 화합물의 가수분해는 산촉매의 존재하에서 실행되는데, 그 때에 사용하는 산촉매로는 종래 이와 같은 실란계 피막형성용 도포액 제조에 관용되고 있는 유기산 또는 무기산을 사용할 수 있다. 이 유기산의 예로는 아세트산, 프로피온산, 부티르산 등, 무기산의 예로는 염산, 질산, 황산, 인산 등을 들 수 있다. 특히 바람직하게는 질산이다.The hydrolysis of the alkoxysilane compound is carried out in the presence of an acid catalyst. As the acid catalyst to be used at this time, an organic acid or an inorganic acid conventionally used for preparing a coating liquid for forming a silane coating film may be used. Examples of the organic acid include acetic acid, propionic acid and butyric acid, and examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid. Particularly preferred is nitric acid.

이 경우, 산촉매를 도포액 중의 산의 농도가 통상 1∼200ppm, 바람직하게는 1∼40ppm 의 범위가 되도록 첨가하거나 또는 산과 물을 혼합하여 산수용액으로 첨가하여 가수분해시킨다.In this case, the acid catalyst is added so that the concentration of the acid in the coating liquid is usually in the range of 1 to 200 ppm, preferably 1 to 40 ppm, or the acid and water are mixed and added as an acid aqueous solution to be hydrolyzed.

가수분해반응은 통상 5∼100 시간 정도로 완료한다. 또, 실온 내지 70℃ 를 초과하지 않는 온도에서, 알콕시실란 화합물을 함유하는 알킬렌글리콜디알킬에테르 중에서 선택되는 적어도 1종의 용매에 물과 산촉매를 적하하여 반응시킴으로써, 짧은 반응시간에 반응을 완료시킬 수도 있다.The hydrolysis reaction is usually completed in about 5 to 100 hours. Also, by dropping water and an acid catalyst into at least one solvent selected from alkylene glycol dialkyl ethers containing an alkoxysilane compound at a temperature not exceeding room temperature to 70 ° C, the reaction is completed in a short reaction time .

본 발명에 사용하는 알콕시실란 화합물의 가수분해는, 용매에 알코올을 사용하지 않고, 알킬렌글리콜디알킬에테르 중에서 선택되는 적어도 1종을 사용하였다고 해도 알콕시실란 화합물의 가수분해에서는 알킬기에 상당하는 알코올이 반드시 생성되게 되므로, 반응계로부터 이 생성되게 되는 알코올을 제거하는 것이 좋다. 구체적으로는 알코올을 도포액 중 15 질량% 이하, 바람직하게는 8 질량% 이하까지 제거한다. 알코올분은 적으면 적을수록 바람직하고, 알코올분이 15 질량% 를 초과하여 잔존해 있으면, H-Si기와 생성된 알코올이 반응하여, RO-Si기가 생성되고, 크랙 한계가 저하되는 경향이나 피막형성시에 가스가 발생되는 경향이 있다. 알코올의 제거방법으로는 진공도 30∼300mmHg, 바람직하게는 50∼200mmHg, 온도 20∼50℃ 에서 2∼6시간 감압증류하는 방법이 바람직하다.In the hydrolysis of the alkoxysilane compound used in the present invention, even if at least one selected from alkylene glycol dialkyl ethers is used without using an alcohol as the solvent, in the hydrolysis of the alkoxysilane compound, the alcohol equivalent to the alkyl group It is preferable to remove the alcohol to be produced from the reaction system. Concretely, the alcohol is removed to 15% by mass or less, preferably 8% by mass or less in the coating liquid. When the alcohol content is more than 15% by mass, the H-Si group reacts with the produced alcohol to generate an RO-Si group, and the crack limit tends to decrease. When the alcohol content exceeds 15% There is a tendency that gas is generated. As a method of removing the alcohol, a vacuum degree of 30 to 300 mmHg, preferably 50 to 200 mmHg, and a method of distillation under reduced pressure at 20 to 50 DEG C for 2 to 6 hours are preferable.

(a-3) 또, 상기 실리카계 피막형성용 도포액은, 적어도 하기 일반식 (3) 으로 표시되는 반복 단위로 이루어지는 폴리실라잔계 수지를 용해하여 이루어지는 실리카계 피막형성용 도포액이어도 된다.(a-3) Alternatively, the coating liquid for forming a silica-based coating film may be a coating liquid for forming a silica-based coating film formed by dissolving a polysilazane-based resin comprising a repeating unit represented by the following general formula (3).

[화학식 1][Chemical Formula 1]

(3) (3)

일반식 (3) 중, R5, R6 및 R7 은 수소원자, 탄화수소기, 탄화수소 치환 실릴기 혹은 아미노기 또는 카르빌옥시기이고, R5∼R7 의 적어도 1개는 수소원자이다.In the general formula (3), R 5 , R 6 and R 7 are each a hydrogen atom, a hydrocarbon group, a hydrocarbon-substituted silyl group or an amino group or a carbyloxy group, and at least one of R 5 to R 7 is a hydrogen atom.

상기 일반식 (3) 중의 R5, R6 및 R7 은 각각 수소원자, 탄화수소기, 탄화수소 치환 실릴기, 탄화수소 치환 아미노기 또는 카르빌옥시기이다. 여기에서 탄화수소기로는 예컨대 알킬기, 알케닐기, 시클로알킬기, 아릴기, 아랄킬기 등을 들 수 있다. 탄화수소 치환 실릴기로는 이들 탄화수소기를 1∼3 개 갖는 실릴기, 바람직하게는 알킬실릴기를 들 수 있고, 탄화수소 치환 아미노기로는 상기 탄화수소기를 1 또는 2 개 갖는 아미노기, 바람직하게는 알킬아미노기를 들 수 있다. 카르빌옥시기로는 예컨대 알콕시기, 알케닐옥시기, 시클로알콕시기, 아릴옥시기, 아랄킬옥시기 등을 들 수 있다. 또, R5, R6 및 R7 은 서로 동일할 수도 있고 다를 수도 있으나, 그 적어도 1 개는 수소원자이다.In the general formula (3), R 5 , R 6 and R 7 are each a hydrogen atom, a hydrocarbon group, a hydrocarbon-substituted silyl group, a hydrocarbon-substituted amino group or a carbamoyl group. Examples of the hydrocarbon group include an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, and an aralkyl group. Examples of the hydrocarbon-substituted silyl group include a silyl group having 1 to 3 of these hydrocarbon groups, preferably an alkylsilyl group, and examples of the hydrocarbon-substituted amino group include an amino group having one or two hydrocarbon groups, preferably an alkylamino group . Examples of the carbyloxy group include an alkoxy group, an alkenyloxy group, a cycloalkoxy group, an aryloxy group, and an aralkyloxy group. R 5 , R 6 and R 7 may be the same or different, and at least one of them is a hydrogen atom.

이와 같은 폴리실라잔계 수지는 공지된 것으로 (일본 공개특허공보 소60-145903호, 동 공보 소61-287930호, 동 공보 소63-309526호, 일본 공개특허공보 평3-119077호, 동 공보 평3-232709호, 동 공보 평5-238827호, 동 공보 평6-136130호, 동 공보 평6-136131호, 동 공보 평6-157764호, 동 공보 평6-136323호, 동 공보 평6-157989호, 동 공보 평6-240208, 동 공보 평6-299118호, 일본 공개특허공보 2000-12536호 등), 본 발명에 사용하는 폴리실라잔계 수지에 있어서는, 그 종류에 대해 특별히 제한되지 않고, 상기 일반식 (3) 에서의 R5, R6 및 R7 로서, 수소원자 및 상기한 기 중에서 적절하게 선택된 것 (단, R5, R6 및 R7 의 적어도 1개는 수소원자임) 을 사용할 수 있다. 또, 이 폴리실라잔계 수지는 단독으로 사용해도 되고, 2종 이상을 조합하여 사용할 수도 있다.Such polysilazane-based resins are known (JP-A-60-145903, JP-A-61-287930, JP-A-63-309526, JP-A-3-119077, 3-232709, 5-238827, 6-136130, 6-136131, 6-157764, 6-136323, 6- 157989, 6-240208, 6-299118, and 2000-12536), the type of the polysilazane-based resin used in the present invention is not particularly limited, the R 5, to as R 6 and R 7, is selected as appropriate from among a hydrogen atom and the above-mentioned group (where, R 5, and at least one of R 6 and R 7 is a hydrogen atom) in the general formula (3) Can be used. These polysilazane resins may be used alone or in combination of two or more.

폴리실라잔계 수지를 용해하는 유기용매로는 특별히 제한되지 않고, 예컨대 메탄올, 에탄올 등의 알코올류, 메틸이소부틸케톤과 같은 케톤류, 에틸렌글리콜모노메틸에테르와 같은 글리콜에테르류, 시클로헥산, 톨루엔, 자일렌, 메시틸렌, 시클로헥센, 디메틸시클로헥산, 에틸시클로헥산, p-멘탄, 데카린, 2,2,5-트리메틸헥산, 디펜텐, 데칸, 이소노난, 옥탄 등의 탄화수소류, 에틸부틸에테르, 디부틸에테르, 디옥산, 테트라히드로푸란 등의 에테르류를 들 수 있다. 이들은 단독으로 사용해도 되고, 2종 이상을 조합하여 사용할 수도 있다.Examples of the organic solvent for dissolving the polysilazane resin include, but are not limited to, alcohols such as methanol and ethanol, ketones such as methyl isobutyl ketone, glycol ethers such as ethylene glycol monomethyl ether, cyclohexane, toluene, Hydrocarbons such as benzene, toluene, xylene, mesitylene, cyclohexene, dimethylcyclohexane, ethylcyclohexane, p-menthane, decalin, 2,2,5-trimethylhexane, dipentene, decane, isononane, And ethers such as dibutyl ether, dioxane, and tetrahydrofuran. These may be used alone or in combination of two or more.

본 발명에 사용되는 폴리실라잔계 도포액은, 폴리실라잔계 수지를, 상기 유기용매에 용해시킨 것으로서, 이 폴리실라잔계 수지의 농도는 사용하는 폴리실라잔계 수지의 평균분자량, 분자량분포, 구조 등에 따라 다르지만, 통상은 50 질량% 이하이다. 이 농도가 50 질량% 를 초과하면 도포특성, 보존안정성 및 취급성 등이 나빠진다. 또 농도가 너무 낮으면 후막화가 곤란해진다. 도포특성, 보존안정성, 취급성, 후막화 등의 점에서, 폴리실라잔계 수지의 바람직한 농도는 10∼40 질량% 범위이고, 특히 20∼30 질량% 범위가 적합하다.The polysilazane-based coating liquid used in the present invention is obtained by dissolving a polysilazane-based resin in the above-mentioned organic solvent. The concentration of the polysilazane-based resin depends on the average molecular weight, molecular weight distribution and structure of the polysilazane- Usually, however, it is 50 mass% or less. When the concentration exceeds 50% by mass, the coating properties, storage stability, handling properties and the like are deteriorated. If the concentration is too low, it becomes difficult to form a thick film. The preferred concentration of the polysilazane based resin is preferably in the range of 10 to 40 mass%, particularly preferably in the range of 20 to 30 mass%, from the viewpoints of coating properties, storage stability, handleability, thickening and the like.

전술한 (a-1), (a-2) 및 (a-3) 의 도포액 중에서는, 적어도 트리알콕시실란을 유기용매 중에서 가수분해처리하여 얻어지는 반응생성물을 함유하는 실리카계 피막형성용 도포액이 보다 바람직하다. 애싱시의 산화에 의한 막질변화의 문제가 발생하지 않기 때문이다. 본 발명에 사용되는 도포액은, 도포법에 유효하게 사용될 수 있다.In the coating liquids (a-1), (a-2) and (a-3) described above, at least a coating liquid for forming a silica-based coating film containing a reaction product obtained by subjecting a trialkoxysilane to hydrolysis treatment in an organic solvent Is more preferable. The problem of the change in the film quality due to oxidation at the time of ashing does not occur. The coating liquid used in the present invention can be effectively used in a coating method.

(B) 실리카계 내세정성 가공피막의 형성방법(B) Method for forming a silica-based submersible processing film

본 발명 방법에 있어서는, 먼저 전술한 바와 같이 하여 조제한 도포액을 기판 상에 도포, 건조시켜 도막을 형성한다. 이 때 사용하는 기판으로는 특별히 제한은 없고, 형성되는 실리카 피막의 용도에 따라 적절하게 선택된다. 예컨대 실리콘 웨이퍼 상에 금속 배선층을 갖는 것 (층간절연막), 실리콘 웨이퍼 상에 금속 배선층과 그 위에 플라즈마 CVD 법 등에 의한 층간절연막을 갖는 것 (평탄화막), 다층 레지스트법에서의 하층 레지스트 (중간막), 유리 기판 상에 크롬층을 갖는 것 (위상 시프트 재료), 유리 기판 상에 ITO (인듐틴옥시드) 등의 투명도전막을 갖는 것 (보호막, 배향막) 등을 사용할 수 있다. 또한 상기 괄호내는 형성되는 실리카 피막의 용도를 나타낸다.In the method of the present invention, the coating liquid prepared as described above is applied on a substrate and dried to form a coating film. The substrate to be used at this time is not particularly limited and is appropriately selected depending on the use of the silica film to be formed. (Interlayer insulating film) on a silicon wafer, a metal wiring layer on a silicon wafer, an interlayer insulating film (planarization film) thereon by a plasma CVD method or the like, a lower layer resist (interlayer film) in a multilayer resist method, Those having a chromium layer (phase shift material) on a glass substrate, those having a transparent conductive film such as ITO (indium tin oxide) on a glass substrate (protective film, orientation film), or the like. The parentheses indicate the use of the formed silica coating.

이들 기판 상에 이 도포액을 도포하는 방법으로는 예컨대 스프레이법, 스핀코트법, 딥코트법, 롤코트법 등, 임의의 방법을 사용할 수 있으나, 반도체 소자의 제조에는, 통상 스핀코트법이 사용된다. 또 건식처리는 도포액 중의 용매가 휘산되어 도막이 형성되면 되므로, 그 수단, 온도, 시간 등에 대해서는 특별히 제한되지 않지만, 일반적으로는 80∼30℃ 정도의 핫플레이트 상에서 1∼6분간 정도 가열하면 된다. 바람직하게는 3단계 이상, 단계적으로 승온하는 것이 유리하다. 구체적으로는 대기중 또는 질소 등의 불활성 가스 분위기하, 80∼120℃ 정도의 핫플레이트 상에서 30초∼2분간 정도 1회째의 건조처리를 실행한 후, 130∼220℃ 정도에서 30초∼2분간 정도 2회째의 건조처리를 하고, 다시 230∼300℃ 정도에서 30초∼2분간 정도 3회째의 건조처리를 한다. 이와 같이 3단계 이상, 바람직하게는 3∼6단계 정도의 단계적인 건조처리를 행함으로써, 형성된 도막의 표면이 균일한 것으로 된다.As a method of applying the coating liquid on these substrates, any method such as a spraying method, a spin coating method, a dip coating method, a roll coating method, or the like can be used. In the production of semiconductor devices, a spin coating method is usually used do. The means for drying, the temperature, the time, and the like are not particularly limited, since the solvent in the coating liquid is volatilized to form a coating film. Generally, it is heated on a hot plate of about 80 to 30 DEG C for about 1 to 6 minutes. Preferably, it is advantageous to raise the temperature stepwise by three or more steps. Concretely, it is preferable to carry out a first drying treatment for about 30 seconds to 2 minutes on a hot plate at about 80 to 120 DEG C in the atmosphere or in an inert gas atmosphere such as nitrogen, then heat the substrate at about 130 to 220 DEG C for 30 seconds to 2 minutes The second drying treatment is carried out at about 230 to 300 DEG C for about 30 seconds to about 2 minutes. By performing the stepwise drying treatment in three or more stages, preferably in the order of 3 to 6 stages, the surface of the formed coating film becomes uniform.

본 발명 방법에 있어서는, 또한 상기 도포액을 도포하는 조작을 필요에 따라 1회 이상 반복하여 필요한 막두께로 한다.In the method of the present invention, the application of the coating liquid is repeated one or more times as necessary to obtain a required film thickness.

본 발명에 있어서는, 이와 같이 하여 필요한 막두께에 형성된 도막에 대해 제1 가열처리를 한다. 여기에서 상기 (a-1) 의 도포액을 사용하여 형성한 도막에 대해서는, 산소농도 1000ppm 이하의 분위기하에서 가열처리하는 것이 바람직하고, 상기 (a-2) 또는 (a-3) 의 도포액을 사용하여 형성한 도막에 대해서는, 대기중, 혹은 산화분위기하에서 가열처리하는 것이 바람직하다. 가열처리의 온도는 500∼900℃ 범위의 온도가 바람직하다. 이 온도가 500℃ 미만에서는, 열처리가 불충분하여 치밀한 피막이 얻어지지 않는다. 한편 900℃ 를 초과하면 기판에 열적 대미지를 주는 것이 우려되기 때문에 바람직하지 않다. 이와 같이 하여 막두께가 200㎚ 이상의 실리카계 피막이 형성된다. 막두께의 상한은 특별히 제한은 없지만, 현 상태로는 800㎚ 정도이다. 제1 가열처리 시간은 온도에 따라 변동되지만, 800℃ 에서는 30분 정도에서 충분하다.In the present invention, the first heat treatment is applied to the coating film formed at the necessary film thickness in this manner. The coating film formed using the coating liquid of the above (a-1) is preferably subjected to heat treatment in an atmosphere having an oxygen concentration of 1000 ppm or less, and the coating liquid of the above (a-2) or (a- It is preferable that the coating film formed by using the coating film is subjected to heat treatment in the air or in an oxidizing atmosphere. The temperature of the heat treatment is preferably in the range of 500 to 900 占 폚. If the temperature is lower than 500 占 폚, heat treatment is insufficient and a dense film is not obtained. On the other hand, if it exceeds 900 ° C, it is not preferable because thermal damage is given to the substrate. Thus, a silica-based coating film having a film thickness of 200 nm or more is formed. The upper limit of the film thickness is not particularly limited, but is about 800 nm in the present state. Though the first heat treatment time varies with temperature, about 30 minutes at 800 ° C is sufficient.

또한 상기 (a-1) 의 도포액을 사용하는 경우에 있어서는, 500∼700℃ 온도범위가 특히 바람직하고, 상기 (a-2) 또는 (a-3) 의 도포액을 사용하는 경우에 있어서는, 550∼900℃ 의 온도범위가 특히 바람직하다.In the case of using the coating liquid of (a-1), the temperature range of 500 to 700 占 폚 is particularly preferable. In the case of using the coating liquid of (a-2) or (a- A temperature range of 550 to 900 占 폚 is particularly preferable.

형성되는 실리카계 피막의 막두께는 도포액의 고형분 농도나 도포방법 등에 좌우되고, 또 도포조작을 반복하면 할수록 얻어지는 피막의 막두께는 두꺼워지므로, 목적에 따라 필요한 막두께가 얻어지도록, 도포액, 도포방법, 도포조작의 반복 회수를 적절하게 조정하면 된다. 그러나 과도하게 반복 회수가 많아지면, 스루풋이 떨어지므로, 1회의 도포에 의해 얻어지는 피막의 막두께가 가능한 한 두꺼워지도록 조제한 도포액을 사용하여, 도포 조작의 반복 회수를 가능한 한 적게 하여, 필요한 막두께가 얻어지도록 하는 것이 유리하다. 가장 실용적으로는 도포액을 도포하는 조작을 1회로 하는 것이 좋다.The film thickness of the silica-based coating film to be formed depends on the solid content concentration of the coating liquid, the coating method and the like, and the film thickness of the coating film becomes thicker as the coating operation is repeated, so that the coating liquid, The application method, and the number of repetitions of the application operation may be appropriately adjusted. However, when the number of repetitions is excessively large, the throughput is reduced. Therefore, the coating liquid prepared so that the film thickness obtained by one application is as thick as possible is used to reduce the repetition number of application operations as much as possible, Is obtained. The most practical application of the coating liquid is one cycle.

계속해서, 이와 같이 하여 형성한 실리카계 피막에 대해 에칭 처리를 실행한다. 당해 에칭 처리는 특별히 한정되지 않고, 이미 일반적으로 알려져 있는 에칭 방법을 채택할 수 있다.Subsequently, the silica-based coating film thus formed is subjected to an etching treatment. The etching treatment is not particularly limited, and an etching method generally known in the art can be adopted.

예컨대 해당 실리카계 피막 상에 CVD 막 등을 형성한 후, 해당 CVD 막 상에 포토레지스트 재료를 사용한 포토리소그래피에 의해 레지스트 패턴을 형성하고, 해당 레지스트 패턴을 마스크로 하여, 공지된 드라이에칭 기술에 의해 CVD 막 및 실리카계 피막을 에칭 제거한다. 그리고 에칭 처리 후는 상기 레지스트 패턴을 애싱 제거하고, 박리 후, 세정액 증에 의해 세정 처리한다. 이와 같이 하여 에칭 처리하여, 해당 실리카계 피막을 가공할 수 있다.For example, a CVD film or the like is formed on the silica-based coating film, a resist pattern is formed on the CVD film by photolithography using a photoresist material, and the resist film is used as a mask by a known dry- The CVD film and the silica-based coating film are removed by etching. After the etching process, the resist pattern is removed by ashing, and after the removal, the cleaning process is performed by the cleaning liquid. Thus, the silica-based coating film can be processed by etching.

또한 본 명세서에서 「에칭 처리에 의한 가공」이란 넓게 피막 내부를 노출시키는 가공처리를 말하고, 구체적으로는 콘택트홀의 제작, 슬릿부분의 제작, 배선용 트렌치의 제작 등을 포함한다.In the present specification, the term " etching by etching " refers to a processing process that exposes the inside of the film to a large extent. Specifically, it includes production of a contact hole, production of a slit portion, and fabrication of a wiring trench.

계속해서, 에칭 처리에 의해 가공된 피막을, 대기중, 혹은 산화분위기하에서 제2 가열처리를 한다.Subsequently, the film processed by the etching treatment is subjected to the second heat treatment in the atmosphere or in an oxidizing atmosphere.

제2 가열처리를 하지 않으면, 피막 내부에서 열경화가 불충분하기 때문에, 선택적 에칭 처리에 의해 노출된 피막 내부가, 그 후에 실행되는 산수용액에 의한 세정처리공정에 있어서, 사이드 에칭되는 현상이 발생한다.If the second heat treatment is not carried out, the inside of the film is insufficiently thermally cured, so that the inside of the film exposed by the selective etching treatment is subjected to a side etching phenomenon in the cleaning treatment step with the aqueous acid solution .

제2 가열처리의 온도는 500∼900℃ 범위의 온도가 바람직하다. 이 온도가 500℃ 미만에서는 경화가 관찰되기 어렵고, 900℃ 를 초과하면 기판에 열적 대미지를 주는 것이 우려되기 때문에 바람직하지 않다. 제2 가열처리 시간은, 온도에 따라 변동되는데, 800℃ 에서는 30분 정도로 충분하다.The temperature of the second heat treatment is preferably in the range of 500 to 900 占 폚. If the temperature is less than 500 ° C, hardening is hardly observed, and if it exceeds 900 ° C, heat damage to the substrate is likely to be caused. The second heat treatment time varies depending on the temperature, and it takes about 30 minutes at 800 占 폚.

또한 상기 (a-1) 의 도포액을 사용하는 경우에 있어서는, 500∼700℃ 온도범위가 특히 바람직하고, 상기 (a-2) 또는 (a-3) 의 도포액을 사용하는 경우에서는 550∼900℃ 온도범위가 특히 바람직하다.In the case of using the coating liquid of (a-1), the temperature range of 500 to 700 占 폚 is particularly preferable, and in the case of using the coating liquid of (a-2) A 900 < 0 > C temperature range is particularly preferred.

상기 에칭 처리한 후에 500∼900℃ 범위의 가열온도에서 제2 가열처리를 행함으로써, 노출된 부분의 피막이 충분히 경화되기 때문에, 웨트 에칭 내성이 향상되고, 특히 피막의 기판 계면에서의 사이드 에칭의 문제가 대폭 감소된다. 또 피막표면도 1회만 가열처리하는 경우에 비하여, 보다 경화되어 있다.The second heat treatment is performed at a heating temperature in the range of 500 to 900 占 폚 after the etching treatment, so that the coating of the exposed portion is sufficiently cured, so that the wet etching resistance is improved and the problem of side etching . Further, the surface of the coating film is harder than the case of performing heat treatment only once.

본 발명의 실리카계 내세정성 가공피막의 형성방법에 의해 형성된 피막은, 노출단면의 경화에 의해, 단면 전체의 경화치밀성이 막두께 방향으로 대략 균일하게 되어 있다. 이것은 디바이스 제품을 절단하여 요부를 관찰, 측정 등을 하면 용이하게 확인할 수 있다. 이에 의해, 종래의 에칭 처리 전에 가열처리를 행하는 피막형성법에 의해 얻어진 피막과 용이하게 식별할 수 있다. 또 도포방법에 의한 피막과 CVD법에 의한 피막은 조성분석에 의해 용이하게 식별할 수 있다. 따라서 본 발명 방법에 의해 얻어진 피막은, 그 구성 및 미시적 조성에 의해, 다른 방법에 의한 피막과 식별할 수 있고, 피막 그 자체도 신규인 것으로, 현저한 특성을 갖는 것이다.The coating formed by the method of forming a silica-based submersible processing film of the present invention has a substantially uniform cross-sectional denseness in the film thickness direction due to the hardening of the exposed end face. This can be easily confirmed by cutting the device and observing and measuring the recess. This makes it possible to easily distinguish the film obtained by the film forming method in which the heating process is performed before the conventional etching process. Further, the coating by the coating method and the coating by the CVD method can be easily identified by composition analysis. Therefore, the coating film obtained by the method of the present invention can be distinguished from the coating film by other methods depending on its composition and microscopic composition, and the coating itself is also novel, and has remarkable properties.

이어서, 제2 가열 처리 공정 후에 세정처리를 해도 된다. 세정처리에 의해 기판 노출면의 산화막을 제거할 수 있다. 세정처리공정 (웨트 에칭) 에는 산수용액이 사용된다. 바람직한 산수용액으로는 플루오르화수소산의 수용액을 들 수 있다.Then, a cleaning treatment may be performed after the second heat treatment step. The oxide film on the substrate-exposed surface can be removed by the cleaning process. For the cleaning process (wet etching), an aqueous acid solution is used. A preferred aqueous acid solution is an aqueous solution of hydrofluoric acid.

또한, 본 발명의 실리카계 내세정성 가공피막은 도 1 에 나타내는 예와 같이 기판 상에 형성된 미세한 배선 패턴을 덮는 평탄화막으로서 특히 바람직하다. 상기 배선 패턴을 배선간 거리 (도 1 중, 부호 D) 가 0.25㎛ 이하인 배선 패턴에 적합하게 사용할 수 있다.Further, the silica-based gas-sensitive processing coat of the present invention is particularly preferable as a planarizing film covering a fine wiring pattern formed on a substrate as shown in Fig. The wiring pattern can be suitably used for a wiring pattern having a wiring distance (indicated by D in Fig. 1) of 0.25 mu m or less.

여기에서 본 발명의 방법에 의해 제작될 수 있는 기재 구성의 일례를 도 1 을 참조하여 상세하게 설명한다. 기판 (1) 으로는 실리카계 내세정성 가공피막 (4) 을 형성하기 위한 소성온도에 견딜 수 있는 내열성을 갖는 것이면 되고, 실리콘 기판 등의 반도체 기판, 금속 기판, 세라믹 기판 등을 사용할 수 있다.Hereinafter, an example of a base structure that can be produced by the method of the present invention will be described in detail with reference to Fig. The substrate 1 may be a semiconductor substrate such as a silicon substrate, a metal substrate, a ceramic substrate, or the like as long as the substrate 1 has heat resistance capable of withstanding the firing temperature for forming the silica-based immersible processing film 4.

제1 배선 패턴 (2) 을 구성하는 재료는, 실리카계 내세정성 가공피막 (4) 을 형성하기 위한 소성온도에 견딜 수 있는 내열성을 갖는 것이면 되고, 내열온도가 600℃ 이상인 재료가 바람직하게 사용된다. 구체예로는 다결정 실리콘 등을 들 수 있다.The material constituting the first wiring pattern 2 is not limited as long as it has heat resistance capable of withstanding the firing temperature for forming the silica based submersible processing film 4 and a material having a heat resistance temperature of 600 캜 or higher is preferably used . Specific examples include polycrystalline silicon and the like.

본 발명의 실리카계 내세정성 가공피막은, 전술한 바와 같이 특히 기판 (1) 상에 형성되는 제1 배선패턴 (2) 에서의 배선간 거리 (D) 의 최소값이 0.25㎛ 이하, 보다 바람직하게는 0.05∼0.25㎛ 범위내인 기판 상에 적합하게 사용할 수 있다. 또한 본 명세서에서 배선패턴에서의 배선간 거리는 실리카계 내세정성 가공피막을 형성하기 직전의 상태, 도 1 의 예에서는 중간층 (3) 으로 덮인 상태에서의 거리로 한다.As described above, the silica-based dielectric-constant processed film of the present invention preferably has a minimum inter-wiring distance D in the first wiring pattern 2 formed on the substrate 1 of 0.25 탆 or less, It can be suitably used on a substrate within the range of 0.05 to 0.25 mu m. In the present specification, the inter-wiring distance in the wiring pattern is a distance just before the formation of the silica-based immersion treatment film, and a distance in a state in which the intermediate layer 3 is covered in the example of Fig.

또 기재의 구성은 도 1 에 나타낸 것에 한정되지 않는다. 또한 평탄화막에 한정하지 않고, 층간절연막이나 패시베이션막을 형성하는 데에도 적합하게 사용할 수 있다.The structure of the substrate is not limited to that shown in Fig. It is not limited to the planarizing film but can be suitably used for forming an interlayer insulating film or a passivation film.

본 발명 방법은, 특수한 장치, 시약 등을 필요로 하지 않기 때문에, 저가이면서 간편하게 선택적 에칭되어 노출된 부분이 웨트 에칭 내성을 갖는 실리카계 내세정성 가공피막을 제공할 수 있다.Since the method of the present invention does not require special devices, reagents, and the like, it is possible to provide a silica-based immersible processing film which is inexpensive and easily selectively etched so that the exposed portion has a wet etching resistance.

실시예Example

이하 실시예에 근거하여 본 발명에 대해 더욱 상세하게 설명한다. 또한 본 발명은 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on examples. The present invention is not limited to the following examples.

(실시예 1)(Example 1)

트리알콕시실란의 가수분해 생성물을 주성분으로 하는 무기 SOG 재료인 「OCD T-12」 (제품명 ; 도꾜오우카 공업사 제조) 을 배선간의 폭 250㎚, 높이 680㎚ 의 배선 패턴 (표면에 두께 60㎚ 의 CVD 질화막이 형성되어 있음) 위에 회전 도포하고, 두께 750㎚ 의 도막을 형성하였다.OCD T-12 " (product name; manufactured by Tokyo Ouka Kogyo Co., Ltd.), which is an inorganic SOG material containing a hydrolysis product of trialkoxysilane as a main component, was used as a wiring pattern having a width of 250 nm and a height of 680 nm A nitride film was formed thereon) to form a coating film having a thickness of 750 nm.

이어서, 이 도막을 80℃, 150℃, 200℃ 의 순서로 핫플레이트 상에서 전부 60초 동안에 가열처리 (건조) 를 실시하여 건조 피막을 형성하였다. 이 건조피막에 대해 대기중, 800℃ 에서 30분간의 제1 가열처리를 실시하였다.Subsequently, the coating film was subjected to heat treatment (drying) on a hot plate in all the order of 80 캜, 150 캜 and 200 캜 for 60 seconds to form a dried film. This dry film was subjected to a first heat treatment in air at 800 캜 for 30 minutes.

에칭 처리를 실시하는 대신에, 이 피막이 형성된 기판을, 상기 배선 패턴에 대해 직교하도록 절단하여, 배선 패턴 부분의 해당 피막 부분을 노출시켰다. 이어서 해당 피막에 대해, 대기중 800℃ 에서 30분간의 제2 가열처리를 실시하였다.Instead of performing the etching treatment, the substrate on which the coating was formed was cut so as to be orthogonal to the wiring pattern to expose the corresponding coating portion of the wiring pattern portion. Subsequently, the coating film was subjected to a second heat treatment at 800 占 폚 for 30 minutes in the atmosphere.

이어서, 이 가열처리를 실시한 피막에 대해, 25℃ 로 설정된 0.25 질량% 농도의 플루오르화수소산 (HF) 의 수용액 중에 30초간 침지하고, 그 후의 실리카계 내세정성 가공피막의 사이드 에칭 상황을 SEM (주사형 전자현미경) 사진으로 관찰하였다. 그 결과, 사이드 에칭 현상은 거의 관찰되지 않았다.Subsequently, the film subjected to the heat treatment was dipped in an aqueous solution of hydrofluoric acid (HF) at a concentration of 0.25 mass% set at 25 占 폚 for 30 seconds, and the side etching state of the silica- A scanning electron microscope). As a result, the side etching phenomenon was hardly observed.

(실시예 2)(Example 2)

실시예 1 에 있어서, HF 수용액에 침지하는 시간을 30초 내지 60초로 변경한 것 이외에는, 실시예 1 과 동일하게 하여, 그 후의 실리카계 내세정성 가공피막의 사이드 에칭 상황을 SEM (주사형 전자현미경) 사진으로 관찰하였다. 그 결과, 사이드 에칭 현상은 거의 관찰되지 않았다.In the same manner as in Example 1, except that the time for immersion in the HF aqueous solution was changed from 30 seconds to 60 seconds in Example 1, the side etching state of the following silica-based gas-sensitive processed film was evaluated by SEM (scanning electron microscope ) Photographs. As a result, the side etching phenomenon was hardly observed.

(비교예 1)(Comparative Example 1)

실시예 1 에 있어서, 제2 가열처리를 실시하지 않은 것 이외에는, 실시예 1 과 동일하게 하고, 그 후의 실리카계 내세정성 가공피막의 사이드 에칭 상황을 SEM (주사형 전자현미경) 사진으로 관찰하였다. 그 결과, 사이드 에칭 현상이 관찰되었다.In the same manner as in Example 1 except that the second heat treatment was not carried out in Example 1, the side etching state of the subsequent silica based immersion treatment film was observed with an SEM (scanning electron microscope) photograph. As a result, a side etching phenomenon was observed.

이상과 같이 본 발명의 실리카계 내세정성 가공피막의 형성방법은, 반도체의 패턴 형성에 유용하고, 특히 배선 사이가 매우 근접한 미세한 금속 배선 패턴의 형성에 적합하다.As described above, the method for forming a silica-based dielectric-constant processed film of the present invention is useful for forming a pattern of a semiconductor, and is particularly suitable for forming a fine metal wiring pattern in which wiring lines are very close to each other.

도 1 은 본 발명에 관련되는 기재의 일 실시형태에서의 주요 부분의 단면도이다.1 is a cross-sectional view of a main part in an embodiment of the substrate related to the present invention.

(도면의 주요 부호에 대한 설명)(Description of Main Symbols in Drawings)

D : 배선 사이 거리 D: Distance between wires

1 : 기판1: substrate

2 : 제1 배선 패턴2: first wiring pattern

3 : 중간층3: Middle layer

4 : 실리카계 내세정성 가공피막4: silica-based submersible processing film

5 : P-TEOS 막5: P-TEOS film

6 : 콘택트 홀6: Contact hole

7 : TiN막7: TiN film

8 : W-플러그 (도전성 재료)8: W-plug (conductive material)

9 : 제2 배선 패턴9: Second wiring pattern

Claims (11)

기판 상에 실리카계 피막 형성용 도포액을 도포하고 건조시켜 도막을 형성하는 도막 형성 공정과, A coating film forming step of applying a coating liquid for forming a silica-based coating film on a substrate and drying to form a coating film; 상기 도막 형성 공정에 의해 얻어진 상기 도막에 대해 가열처리하여 피막을 형성하는 제1 가열 처리 공정과, A first heat treatment step of performing heat treatment on the coating film obtained by the coating film formation step to form a coating film; 상기 피막에 대해 선택적으로 에칭 처리하는 선택적 에칭 처리 공정과, A selective etching treatment step of selectively etching the coating; 상기 선택적 에칭 처리 후의 상기 피막에 대해 추가로 가열처리하여 상기 에칭 처리에 의해 노출된 단면의 경화도를 향상시키는 제2 가열 처리 공정을 갖는 것을 특징으로 하는 실리카계 내세정성 가공피막의 형성방법.And a second heat treatment step of further heating the coating after the selective etching treatment to improve the degree of curing of the cross section exposed by the etching treatment. 제 1 항에 있어서, 상기 제1 가열 처리 공정에서의 처리 온도가 500∼900℃ 인 것을 특징으로 하는 실리카계 내세정성 가공피막의 형성방법.The method according to claim 1, wherein the treatment temperature in the first heat treatment step is 500 to 900 占 폚. 제 1 항 또는 제 2 항에 있어서, 상기 제2 가열 처리 공정에서의 가열처리 온도가 500∼900℃ 인 것을 특징으로 하는 실리카계 내세정성 가공피막의 형성방법.The method according to claim 1 or 2, wherein the heat treatment temperature in the second heat treatment step is 500 to 900 占 폚. 제 1 항 또는 제 2 항에 있어서, 상기 실리카계 피막형성용 도포액이 트리알콕시실란류 및/또는 테트라알콕시실란류로 이루어지는 군에서 선택되는 적어도 1종의 알콕시실란 화합물을 유기용매 중에서 가수분해처리하여 얻어지는 반응생성물을 함유하여 이루어지는 실리카계 피막형성용 도포액인 것을 특징으로 하는 실리카계 내세정성 가공피막의 형성방법.The coating liquid for forming a silica-based coating film according to claim 1 or 2, wherein at least one alkoxysilane compound selected from the group consisting of trialkoxysilanes and / or tetraalkoxysilanes is hydrolyzed in an organic solvent Based coating film for forming a silica-based film, wherein the coating film is a coating liquid for forming a silica-based coating film. 제 1 항 또는 제 2 항에 있어서, 상기 제2 가열 처리 공정이 실시된 피막에 대해 산수용액에 의한 세정처리를 실시하는 세정 처리 공정을 갖는 것을 특징으로 하는 실리카계 내세정성 가공피막의 형성방법.The method according to any one of claims 1 to 4, further comprising a cleaning treatment step of carrying out a cleaning treatment with an aqueous acid solution on the coating film subjected to the second heat treatment step. 제 5 항에 있어서, 상기 산수용액이 플루오르화수소산 수용액인 것을 특징으로 하는 실리카계 내세정성 가공피막의 형성방법.The method according to claim 5, wherein the acid aqueous solution is an aqueous solution of hydrofluoric acid. 제 1 항 또는 제 2 항에 있어서, 상기 기판이 금속 배선 패턴이 형성되어 있는 기판인 것을 특징으로 하는 실리카계 내세정성 가공피막의 형성방법.3. The method according to claim 1 or 2, wherein the substrate is a substrate on which a metal wiring pattern is formed. 제 7 항에 있어서, 상기 금속 배선 패턴의 배선간 거리가 0.25㎛ 이하인 것을 특징으로 하는 실리카계 내세정성 가공피막의 형성방법.The method according to claim 7, wherein the inter-wiring distance of the metal wiring pattern is 0.25 탆 or less. 기판 상에 형성되고, 선택적으로 에칭 처리에 의해 가공되어 이루어지고, 상기 가공에 의해 노출된 단면의 경화 치밀도가 막두께 방향으로 균일하게 되어 있는 것을 특징으로 하는 실리카계 내세정성 가공피막.Wherein the film is formed on a substrate and selectively processed by an etching treatment, and a hardness density of a cross-section exposed by the processing is uniform in a film thickness direction. 제 9 항에 있어서, 상기 노출된 단면의 막두께 방향의 경화 치밀도의 균일성이, 상기 선택적 에칭 처리 후의 피막에 가열처리를 실시함으로써 실현된 것임을 특징으로 하는 실리카계 내세정성 가공피막.10. The silica based immersion treatment film according to claim 9, wherein the uniformity of the hardening density in the film thickness direction of the exposed end face is realized by applying heat treatment to the film after the selective etching treatment. 제 10 항에 있어서, 상기 가열 처리의 가열 온도를 500∼900℃ 로 한 것을 특징으로 하는 실리카계 내세정성 가공피막. The silica-based gas-impervious workable coating film according to claim 10, wherein the heating temperature for the heat treatment is 500 to 900 占 폚.
KR1020040086255A 2003-10-31 2004-10-27 A method of forming a silica-based submersible processing film, and a silica-based submersible processing film obtained by this method KR100632163B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2003-00372154 2003-10-31
JP2003372154A JP2005136297A (en) 2003-10-31 2003-10-31 Method for forming silica-based washability working film, and the silica-based washability working film obtained by the same

Publications (2)

Publication Number Publication Date
KR20050041909A true KR20050041909A (en) 2005-05-04
KR100632163B1 KR100632163B1 (en) 2006-10-11

Family

ID=34567049

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040086255A KR100632163B1 (en) 2003-10-31 2004-10-27 A method of forming a silica-based submersible processing film, and a silica-based submersible processing film obtained by this method

Country Status (3)

Country Link
JP (1) JP2005136297A (en)
KR (1) KR100632163B1 (en)
DE (1) DE102004052411A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5596960B2 (en) * 2009-11-06 2014-09-24 旭化成イーマテリアルズ株式会社 Insulating film formation method
JP5213897B2 (en) * 2010-03-18 2013-06-19 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
JP5881303B2 (en) * 2011-03-29 2016-03-09 オリンパス株式会社 Antireflection film and optical element

Also Published As

Publication number Publication date
DE102004052411A1 (en) 2005-06-09
KR100632163B1 (en) 2006-10-11
JP2005136297A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
US10043658B2 (en) Precursors for silicon dioxide gap fill
JP3631236B2 (en) Method for producing silica-based organic coating
JP4021131B2 (en) Coating liquid for forming low dielectric constant silica-based coating and substrate with low dielectric constant silica-based coating
KR100588833B1 (en) Process for producing semiconductor substrates and semiconductor substrates
WO2005108469A1 (en) Method for forming organic silica film, organic silica film, wiring structure, semiconductor device, and composition for film formation
JPH09137121A (en) Coating liquid for silica coating and reparation thereof
TW200536621A (en) Method for producing polymer, polymer, composition for forming insulating film, method for producing insulating film, and insulating film
US7084505B2 (en) Porous film, composition and manufacturing method, interlayer dielectric film, and semiconductor device
US6930393B2 (en) Composition for forming porous film, porous film and method for forming the same, interlayer insulator film, and semiconductor device
JP3998979B2 (en) Method for forming low dielectric constant silica-based film and semiconductor substrate with low dielectric constant film
JP4437456B2 (en) Coating method
JP2000077410A (en) Forming method of multilayer interconnection structure
KR100334550B1 (en) Silica-based coating film on substrate and coating solution therefor
KR100632163B1 (en) A method of forming a silica-based submersible processing film, and a silica-based submersible processing film obtained by this method
JP3939408B2 (en) Low dielectric constant siliceous film
JP3973335B2 (en) Film formation method
JP5128044B2 (en) Method for producing a silica-based coating material for coating a silicon substrate provided with a silicon substrate or a metal wiring pattern
JP3635443B2 (en) Method for forming SiO2 film
JP2007254678A (en) Composition for forming silica-based film and silica-based film
JP2004096085A (en) Silica-based organic coating film and substrate equipped with it
JP4150922B2 (en) Method for forming laminate
KR100835659B1 (en) Method for processing coating film and method for manufacturing semiconductor element with use of the same method
JP2004006890A (en) Method for forming multi-layered wiring structure
JPH11236530A (en) Coating solution for forming silica film, and silica film
WO2005122228A1 (en) Method for preparing a gap-filling dielectric film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee