JP2005136297A - Method for forming silica-based washability working film, and the silica-based washability working film obtained by the same - Google Patents

Method for forming silica-based washability working film, and the silica-based washability working film obtained by the same Download PDF

Info

Publication number
JP2005136297A
JP2005136297A JP2003372154A JP2003372154A JP2005136297A JP 2005136297 A JP2005136297 A JP 2005136297A JP 2003372154 A JP2003372154 A JP 2003372154A JP 2003372154 A JP2003372154 A JP 2003372154A JP 2005136297 A JP2005136297 A JP 2005136297A
Authority
JP
Japan
Prior art keywords
film
silica
forming
coating
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003372154A
Other languages
Japanese (ja)
Inventor
Yasushi Fujii
恭 藤井
Isao Sato
功 佐藤
Tatsuhiko Shibuya
達彦 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP2003372154A priority Critical patent/JP2005136297A/en
Priority to KR1020040086255A priority patent/KR100632163B1/en
Priority to DE102004052411A priority patent/DE102004052411A1/en
Publication of JP2005136297A publication Critical patent/JP2005136297A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/06Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76828Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a silica-based washability working film, where a part that is worked and exposed by selective etching treatment has washability by an acid solution. <P>SOLUTION: The method for forming the silica-based washability working film comprises a paint film formation process for coating a substrate with a coating liquid for forming silica-based films for drying and forming the paint film, a first heat-treatment process for forming films by performing heat treatment on the paint film obtained by the paint film formation process, a selective etching treatment process for selectively performing etching treatment on the paint film, and a second heat-treatment process for further performing heat treatment on the paint film after the selective etching treatment for improving the degree of curing of a section exposed by the etching treatment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体素子などの製造で基板上に設けられる平坦化膜、層間絶縁膜などに用いられるシリカ系耐洗浄性加工被膜であって、洗浄処理に対する耐性が、その被膜表面のみならず、その後のエッチング処理による加工により露出した被膜断面にも付与されたシリカ系耐洗浄性加工被膜の形成方法、および該方法により得られるシリカ系耐洗浄性加工被膜に関するものである。   The present invention is a silica-based cleaning-resistant processed film used for a planarization film, an interlayer insulating film, etc. provided on a substrate in the manufacture of a semiconductor element or the like, and the resistance to cleaning processing is not only the surface of the film, The present invention relates to a method for forming a silica-based cleaning-resistant processed coating applied to a cross-section of a coating exposed by subsequent etching treatment, and a silica-based cleaning-resistant processed coating obtained by the method.

従来、半導体素子などの製造で基板上に設けられる平坦化膜、層間絶縁膜などに用いられるシリカ系被膜の形成方法としては、化学的気相成長法(CVD法)、塗布法等が知られている。   Conventionally, a chemical vapor deposition method (CVD method), a coating method, or the like is known as a method for forming a silica-based film used for a planarizing film, an interlayer insulating film, or the like provided on a substrate in the manufacture of a semiconductor element or the like. ing.

上記化学的気相成長法(CVD法)では、一般的に埋め込み性に問題があり、加えて被膜中にボイドが発生しやすく、微細なパターン形成を行うには不向きである。また、このCVD法では膜の平坦化も行いにくい。一方、塗布法では、埋め込み性がよく、微細なパターン形成を行なうには好適である。   The chemical vapor deposition method (CVD method) generally has a problem in embeddability, and in addition, voids are easily generated in the film, and is not suitable for forming a fine pattern. Further, it is difficult to flatten the film by this CVD method. On the other hand, the coating method has good embeddability and is suitable for forming a fine pattern.

前記塗布法に用いられるシリカ系被膜形成用材料としては、無機SOG(spin on glass)材料が挙げられる(例えば、特許文献1および2など)。ここで、無機SOG材料とは、有機基を持たない、シロキサン単位およびH−Si基を含むシロキサン単位のいずれか一方のみ、または両方からなるケイ素化合物を含む材料をいう。また、メチル基などの有機基を無機SOGのシロキサン骨格に導入したものを含む材料を有機SOG材料という。   Examples of the silica-based film forming material used in the coating method include inorganic SOG (spin on glass) materials (for example, Patent Documents 1 and 2). Here, the inorganic SOG material refers to a material containing a silicon compound that has no organic group and includes only one or both of a siloxane unit and a siloxane unit containing an H—Si group. A material including an organic group such as a methyl group introduced into an inorganic SOG siloxane skeleton is referred to as an organic SOG material.

この無機SOG材料を使用したシリカ系被膜の形成においては、従来、酸水溶液による洗浄処理(ウェットエッチング)耐性を向上させるために800℃程度の加熱処理を、塗膜形成後の選択的エッチング処理前に行っていた。この加熱処理により被膜表面は、酸水溶液による洗浄処理(ウェットエッチング)耐性を有するようになる。   In the formation of a silica-based film using this inorganic SOG material, conventionally, a heat treatment at about 800 ° C. is performed before the selective etching process after the coating film is formed in order to improve the resistance to the washing treatment (wet etching) with an aqueous acid solution. I went to. By this heat treatment, the surface of the coating has resistance to washing treatment (wet etching) with an acid aqueous solution.

特開平10−313002号公報Japanese Patent Laid-Open No. 10-31002 特開平10−310872号公報Japanese Patent Laid-Open No. 10-310872

しかしながら、その後の工程により被膜にコンタクトホール、スリット部分等を設けるエッチング処理により、被膜内部が露出した部分においては、酸水溶液等での洗浄工程中、基板に対して水平方向にエッチングされる、いわゆるサイドエッチングされてしまうという問題があった。このサイドエッチングは、被膜の下部方向に向かって大きくなる傾向があり、被膜の下部付近、つまり被膜と基板との界面において著しい。このサイドエッチングが生じると配線間が短絡してしまうおそれがあるため、特に配線間が非常に近接した微細な金属配線パターンの上層に設ける絶縁膜(以下、「PMD」という)用のシリカ系被膜としては、無機SOG材料の適用は困難であった。   However, the etching process of providing contact holes, slits, etc. in the film in the subsequent process, the part where the inside of the film is exposed is etched in the horizontal direction with respect to the substrate during the cleaning process with an acid aqueous solution or the like. There was a problem of side etching. This side etching tends to increase toward the lower part of the film, and is remarkable near the lower part of the film, that is, at the interface between the film and the substrate. Since this side etching may cause a short circuit between the wirings, a silica-based coating for an insulating film (hereinafter referred to as “PMD”) provided especially on a fine metal wiring pattern in which the wirings are very close to each other. As a result, application of inorganic SOG materials has been difficult.

一方、有機SOG材料を用いることも提案されていた。しかし、やはり上記のサイドエッチング等の問題があった。   On the other hand, it has also been proposed to use organic SOG materials. However, there was still a problem such as the above side etching.

近年、半導体装置の高集積化に伴い、配線間が非常に近接した微細な金属配線パターン、具体的には配線間の幅が0.25μm以下の配線パターンの形成が望まれているが、上記の問題により、その実現が難しかった。よって、上記問題を解決できるシリカ系被膜の形成方法が望まれていた。   In recent years, with the high integration of semiconductor devices, it is desired to form a fine metal wiring pattern in which wirings are very close to each other, specifically, a wiring pattern having a width between wirings of 0.25 μm or less. This problem was difficult to achieve. Therefore, a method for forming a silica-based film that can solve the above problems has been desired.

発明者等は、微細配線パターン用に適したシリカ系被膜を形成する方法として、有機SOG材料を基板上に塗布した後に、酸素濃度1000ppm以下の雰囲気で焼成して被膜を形成することにより、酸水溶液に対するウェットエッチング耐性が著しく向上することを見出し、これを特許出願している。しかし、更にウェットエッチング耐性の向上が望まれている。さらに、有機SOG材料は、アッシング時に被膜が酸化する(アルキル基が分解する)等の問題が発生することが懸念されるため、好ましくは無機SOG材料を用いたシリカ系被膜の形成方法が望まれていた。   As a method for forming a silica-based film suitable for a fine wiring pattern, the inventors have applied an organic SOG material on a substrate and then baked in an atmosphere having an oxygen concentration of 1000 ppm or less to form a film. It has been found that wet etching resistance to an aqueous solution is remarkably improved, and a patent application has been filed for this. However, further improvement in wet etching resistance is desired. Furthermore, since there is a concern that organic SOG materials may cause problems such as oxidation of the coating (decomposition of alkyl groups) during ashing, a method for forming a silica-based coating using an inorganic SOG material is desired. It was.

本発明者らは、上記課題を解決するために酸水溶液を用いた洗浄処理によるサイドエッチングが生じる理由を検討した。その結果、以下のように推測すべきであることがわかった。すなわち、上述した加熱処理により被膜表面は硬化しているが、表面から内部にいくにしたがって膜内において熱ムラを生じており、被膜内部の硬化が不十分な部分が生ずる。そのため、選択的なエッチング処理により内部の硬化が不十分な部分が断面として露出し、その部分が、酸水溶液による洗浄処理により、浸蝕を受け、サイドエッチングを生じているものと推測しえた。   In order to solve the above-mentioned problems, the present inventors have examined the reason why side etching occurs due to a cleaning treatment using an acid aqueous solution. As a result, it was found that the following should be inferred. That is, the surface of the coating is cured by the heat treatment described above, but heat unevenness occurs in the film as it goes from the surface to the inside, resulting in an insufficiently cured portion inside the coating. Therefore, it was speculated that a portion where the internal curing was insufficient due to the selective etching process was exposed as a cross section, and that portion was eroded and side-etched by the cleaning treatment with the acid aqueous solution.

そこで、本発明者らは、本推測が正しければ、被膜に対してエッチング処理を施し断面を露出した後に、再度加熱処理を行なえば、少なくとも被膜の露出断面は十分に硬化して、露出断面の硬化緻密度は膜厚方向に均一化されることになり、断面が露出した部分であっても酸水溶液に対する耐性が付与されているはずであると考え、実施したところ予測通りであった。   Therefore, if the present inference is correct, the etching process is performed on the film to expose the cross section, and then the heat treatment is performed again. Then, at least the exposed cross section of the film is sufficiently cured, and the exposed cross section is obtained. The cured density was made uniform in the film thickness direction, and even when the cross-section was exposed, it was thought that the resistance to the acid aqueous solution should have been imparted, and the results were as expected.

本発明はかかる知見に基づいてなされたもので、本発明のシリカ系耐洗浄性加工被膜の形成方法は、基板上にシリカ系被膜形成用塗布液を塗布し、乾燥し、塗膜を形成する塗膜形成工程と、前記塗膜形成工程によって得られた前記塗膜に対し、加熱処理を施し、被膜を形成する第1の加熱処理工程と、前記被膜に対して選択的にエッチング処理を行なう選択的エッチング処理工程と、前記選択的エッチング処理後の前記被膜に対して、更に加熱処理を施して前記エッチング処理により露出された断面の硬化度を向上させる第2の加熱処理工程とを有することを特徴とする。   The present invention has been made on the basis of such knowledge, and the method for forming a silica-based cleaning-resistant processed coating according to the present invention involves applying a coating solution for forming a silica-based coating onto a substrate, drying, and forming a coating. A first heat treatment step for forming a coating film by subjecting the coating film obtained by the coating film formation step and the coating film obtained by the coating film formation step, and an etching treatment to the coating film. A selective etching treatment step, and a second heat treatment step of further heating the film after the selective etching treatment to improve the degree of cure of the cross section exposed by the etching treatment. It is characterized by.

また、本発明のシリカ系耐洗浄性加工被膜は、基板上に形成され、選択的にエッチング処理により加工されてなり、前記加工により露出された断面の硬化緻密度が膜厚方向に均一になっていることを特徴とする。   Further, the silica-based cleaning-resistant processed film of the present invention is formed on a substrate and selectively processed by an etching process, and the cured density of the cross section exposed by the processing becomes uniform in the film thickness direction. It is characterized by.

本発明により、少なくとも被膜の露出断面は十分に硬化して、露出断面の硬化緻密度は膜厚方向に均一化され、断面が露出した部分であっても酸水溶液に対する耐性が付与されているシリカ系耐洗浄性加工被膜の形成方法およびその被膜を提供することができる。   According to the present invention, at least the exposed cross section of the coating is sufficiently cured, the cured density of the exposed cross section is made uniform in the film thickness direction, and the silica to which resistance to the acid aqueous solution is imparted even if the cross section is exposed A method for forming a system-cleaning-resistant processed coating and the coating can be provided.

以下に、本発明の実施形態について説明する。
本発明のシリカ系耐洗浄性加工被膜の形成方法は、基板上にシリカ系被膜形成用塗布液を塗布し、乾燥し、塗膜を形成する塗膜形成工程と、前記塗膜形成工程によって得られた前記塗膜に対し、加熱処理を施し、被膜を形成する第1の加熱処理工程と、前記被膜に対して選択的にエッチング処理を行なう選択的エッチング処理工程と、前記選択的エッチング処理後の前記被膜に対して、更に加熱処理を施して前記エッチング処理により露出された断面の硬化度を向上させる第2の加熱処理工程とを有することを特徴とする。
Hereinafter, embodiments of the present invention will be described.
The method for forming a silica-based cleaning-resistant processed coating of the present invention is obtained by applying a coating solution for forming a silica-based coating on a substrate, drying it, and forming a coating, and the coating-forming step. A first heat treatment step in which a heat treatment is performed on the coated film to form a film; a selective etching treatment step in which an etching treatment is selectively performed on the coating; and after the selective etching treatment And a second heat treatment step for further improving the degree of cure of the cross section exposed by the etching treatment.

(A)シリカ系被膜形成用塗布液
シリカ系被膜形成用塗布液であれば、特に限定はされないが、具体的には以下のようなものが挙げられる。
(A) Coating liquid for forming a silica-based film The coating liquid for forming a silica-based film is not particularly limited, and specific examples include the following.

(a−1)前記シリカ系被膜形成用塗布液としては、少なくとも下記一般式(1)
1 2Si(OR22・・・・・(1)
(式中、R1は、炭素数1〜4のアルキル基またはフェニル基を示し、R2は、炭素数1〜4のアルキル基を示す。)
で表されるジアルキルジアルコキシシラン類、および/または下記一般式(2)
3Si(OR43・・・・・(2)
(式中、R3は、炭素数1〜4のアルキル基またはフェニル基を示し、R4は、炭素数1〜4のアルキル基を示す。)
で表されるモノアルキルトリアルコキシシラン類からなる群より選ばれる少なくとも一種のアルコキシシラン化合物を有機溶媒中で加水分解処理して得られる反応生成物を含んでなるシリカ系被膜形成用塗布液が挙げられる。
(A-1) As the coating liquid for forming a silica-based film, at least the following general formula (1)
R 1 2 Si (OR 2 ) 2 (1)
(In the formula, R 1 represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and R 2 represents an alkyl group having 1 to 4 carbon atoms.)
And / or the following general formula (2)
R 3 Si (OR 4 ) 3 (2)
(In the formula, R 3 represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and R 4 represents an alkyl group having 1 to 4 carbon atoms.)
And a coating solution for forming a silica-based film comprising a reaction product obtained by hydrolyzing at least one alkoxysilane compound selected from the group consisting of monoalkyltrialkoxysilanes represented by It is done.

上記塗布液の調製に使用するアルコキシシラン化合物の組成は、上記アルコキシシラン化合物の他に、後述のトリアリコキシシラン類やテトラアルコキシシラン類を含んでいても良く、焼成工程後に得られるシリカ系有機被膜中の炭素含有量が、6〜18原子量%、好ましくは10〜14原子量%の範囲内になるように設定することが好ましい。   The composition of the alkoxysilane compound used for the preparation of the coating solution may contain trialkoxysilanes and tetraalkoxysilanes described later in addition to the alkoxysilane compound, and is a silica-based organic material obtained after the firing step. It is preferable to set the carbon content in the coating to be in the range of 6 to 18 atomic weight%, preferably 10 to 14 atomic weight%.

炭素含有量が少ないほどクラックが生じやすくなったり、酸水溶液(フッ化水素酸)によるエッチングレートが大きくなったりする。一方、炭素含有量が多すぎると隣接する上下層との密着性が不足するおそれがある。炭素含有量を上記の範囲内に設定すれば、クラックが生じ難く、ボイドの発生無く微細な凹部を埋め込むことができるとともに、隣接する上下層との密着性およびドライエッチング時の加工性に優れ、O2アッシング時のダメージが小さくなるので好ましい。 As the carbon content is lower, cracks are more likely to occur, and the etching rate with an aqueous acid solution (hydrofluoric acid) increases. On the other hand, when there is too much carbon content, there exists a possibility that adhesiveness with the adjacent upper and lower layers may be insufficient. If the carbon content is set within the above range, cracks are unlikely to occur, and it is possible to embed fine recesses without generation of voids, and excellent adhesion to adjacent upper and lower layers and workability during dry etching, This is preferable because damage during O 2 ashing is reduced.

上記塗布液を調製するには、上記アルコキシシラン化合物を有機溶媒に溶解させてアルコキシシラン化合物溶液を得る。   In order to prepare the coating solution, the alkoxysilane compound solution is obtained by dissolving the alkoxysilane compound in an organic solvent.

上記一般式(1)で表されるジアルキルジアルコキシシラン類の好ましい例としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジプロポキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジプロポキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジプロポキシシランなどのジアルキルジアルコキシシラン;ジフェニルジメトキシシラン、ジフェニルジエトキシシランなどのジフェニルジアルコキシシランが挙げられる。   Preferred examples of the dialkyl dialkoxysilanes represented by the general formula (1) include dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldipropoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diethyldipropoxysilane, di Examples thereof include dialkyl dialkoxysilanes such as propyldimethoxysilane, dipropyldiethoxysilane, and dipropyldipropoxysilane; diphenyldialkoxysilanes such as diphenyldimethoxysilane and diphenyldiethoxysilane.

上記一般式(2)で表されるモノアルキルトリアルコキシシラン類として好ましい例としては、モノメチルトリメトキシシラン、モノメチルトリエトキシシラン、モノメチルトリプロポキシシラン、モノエチルトリメトキシシラン、モノエチルトリエトキシシラン、モノエチルトリプロポキシシラン、モノプロピルトリメトキシシラン、モノプロピルトリエトキシシラン、モノプロピルトリプロポキシシランなどのモノアルキルトリアルコキシシラン;モノフェニルトリメトキシシラン、モノフェニルトリエトキシシランなどのモノフェニルトリアルコキシシランが挙げられる。   Preferred examples of the monoalkyltrialkoxysilanes represented by the general formula (2) include monomethyltrimethoxysilane, monomethyltriethoxysilane, monomethyltripropoxysilane, monoethyltrimethoxysilane, monoethyltriethoxysilane, mono Monoalkyltrialkoxysilanes such as ethyltripropoxysilane, monopropyltrimethoxysilane, monopropyltriethoxysilane, monopropyltripropoxysilane; monophenyltrialkoxysilanes such as monophenyltrimethoxysilane and monophenyltriethoxysilane It is done.

上記一般式(1)で表されるジアルキルジアルコキシシラン類、および/または上記一般式(2)で表されるモノアルキルトリアルコキシシラン類において、特に、R1、R3がメチル基である化合物は、安価で入手しやすく、形成される被膜の緻密性が高いのでより好ましい。 In the dialkyl dialkoxysilanes represented by the general formula (1) and / or the monoalkyltrialkoxysilanes represented by the general formula (2), in particular, compounds in which R 1 and R 3 are methyl groups Is more preferred because it is inexpensive and readily available and the denseness of the coating film formed is high.

上記一般式(1)で表されるジアルキルジアルコキシシラン類、および/または上記一般式(2)で表されるモノアルキルトリアルコキシシラン類は単独でも2種以上適宜選択し、混合しても用いることができる。そしてこれに、所望に応じてトリアルコキシシラン類やテトラアルコキシシラン類を1種または複数種配合することができる。   The dialkyl dialkoxysilanes represented by the above general formula (1) and / or the monoalkyltrialkoxysilanes represented by the above general formula (2) may be used alone or in combination as appropriate. be able to. Then, one or more kinds of trialkoxysilanes and tetraalkoxysilanes can be blended in as desired.

上記一般式(2)で表されるモノアルキルトリアルコキシシラン類だけを用いると、後述の加水分解処理によりラダー型の反応生成物(加水分解縮合物)が得られやすく、このラダー型の反応生成物は、緻密な膜を形成するために好ましい。この場合、モノメチルトリエトキシシランのみを用いると、形成されるシリカ系耐洗浄性加工被膜の炭素含有量は、17.9原子量%となる。   When only the monoalkyltrialkoxysilanes represented by the general formula (2) are used, a ladder-type reaction product (hydrolysis condensate) can be easily obtained by the hydrolysis treatment described later, and this ladder-type reaction product is obtained. An object is preferable in order to form a dense film. In this case, when only monomethyltriethoxysilane is used, the carbon content of the formed silica-based cleaning-resistant processed film is 17.9 atomic weight%.

上記アルコキシシラン化合物を溶解する有機溶媒としては、従来より一般的に使用されている有機溶媒が使用できる。具体例としては、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコールのような一価アルコール;メチル‐3‐メトキシプロピオネート、エチル‐3‐エトキシプロピオネートのようなアルキルカルボン酸エステル;エチレングリコール、ジエチレングリコール、プロピレングリコールのような多価アルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートのような多価アルコール誘導体;酢酸、プロピオン酸のような脂肪酸;アセトン、メチルエチルケトン、2‐へプタノンのようなケトンなどを挙げることができる。これらの有機溶媒は、単独で用いてもよいし、2種以上組み合わせて用いてもよい。   As the organic solvent for dissolving the alkoxysilane compound, organic solvents that have been generally used can be used. Specific examples include monohydric alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol; alkyl carboxylic acid esters such as methyl-3-methoxypropionate and ethyl-3-ethoxypropionate; ethylene glycol Polyhydric alcohols such as diethylene glycol and propylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether , Propylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate Polyhydric alcohol derivatives such as ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate; fatty acids such as acetic acid and propionic acid; ketones such as acetone, methyl ethyl ketone and 2-heptanone Can be mentioned. These organic solvents may be used alone or in combination of two or more.

これらの中でも、特に、一価アルコール、ケトン、グリコール系の多価アルコールおよび多価アルコール誘導体やアルコキシカルボン酸エステルを用いると良好な塗布性が得られる。有機溶媒の使用量は、当該アルコキシシラン化合物溶液のSiO2換算(分子量=60)固形分濃度が1〜30質量%濃度になるように用いるのが好ましい。 Among these, in particular, when a monohydric alcohol, a ketone, a glycol-based polyhydric alcohol, a polyhydric alcohol derivative, or an alkoxycarboxylic acid ester is used, good coatability can be obtained. It is preferable to use the organic solvent so that the alkoxysilane compound solution has a SiO 2 equivalent (molecular weight = 60) solid content concentration of 1 to 30% by mass.

上記アルコキシシラン化合物溶液には、任意成分として、例えば、塗布性を向上させる界面活性剤や、焼成時の脱水縮合を促進させる酸等を適宜含有させることができる。   In the alkoxysilane compound solution, as optional components, for example, a surfactant that improves coatability, an acid that promotes dehydration condensation during firing, and the like can be appropriately contained.

次いで、得られたアルコキシシラン化合物溶液に酸触媒および水を加えて加水分解することにより、生成したシラノールの脱水縮合を経て、反応生成物を含む塗布液を得る。酸触媒と水の添加方法は特に制限はなく、例えば、上記アルコキシシラン化合物溶液に、水および酸触媒を別個に添加してもよく、予め酸触媒と水とを混合してなる酸触媒水溶液として、これを上記アルコキシシラン化合物溶液に添加してもよい。   Next, the resulting alkoxysilane compound solution is hydrolyzed by adding an acid catalyst and water to obtain a coating solution containing the reaction product through dehydration condensation of the produced silanol. The method for adding the acid catalyst and water is not particularly limited. For example, water and an acid catalyst may be added separately to the alkoxysilane compound solution, and an acid catalyst aqueous solution obtained by mixing an acid catalyst and water in advance is used. This may be added to the alkoxysilane compound solution.

ここでの加水分解処理は、溶液中の上記アルコキシシラン化合物を完全に加水分解させてもよく、部分的に加水分解させてもよい。加水分解の程度、すなわち、加水分解度は水の添加量により調節することができる。   In the hydrolysis treatment here, the alkoxysilane compound in the solution may be completely hydrolyzed or partially hydrolyzed. The degree of hydrolysis, that is, the degree of hydrolysis can be adjusted by the amount of water added.

上記アルコキシシラン化合物を用いた塗布液の場合、上記アルコキシシラン化合物の1モルに対して、加える水の割合は、好ましくは2〜10倍モル、より好ましくは6〜9倍モルである。水の添加量が下限以下だと加水分解度が低く、被膜形成時の脱ガスが多くなり、一方、水の添加量が上限以上だとゲル化を起こし易く保存安定性が悪くなる。   In the case of the coating liquid using the alkoxysilane compound, the ratio of water to be added is preferably 2 to 10 times mol, more preferably 6 to 9 times mol, with respect to 1 mol of the alkoxysilane compound. If the amount of water added is less than the lower limit, the degree of hydrolysis is low and degassing during film formation increases. On the other hand, if the amount of water added is more than the upper limit, gelation tends to occur and storage stability is deteriorated.

酸触媒としては、従来より一般的に使用されている有機酸、無機酸いずれも使用できる。有機酸の具体例としては、酢酸、プロピオン酸、酪酸等の有機カルボン酸が挙げられる。無機酸の具体例としては、塩酸、硝酸、硫酸、リン酸等が挙げられる。   As the acid catalyst, any organic acid or inorganic acid generally used conventionally can be used. Specific examples of the organic acid include organic carboxylic acids such as acetic acid, propionic acid, and butyric acid. Specific examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and the like.

酸触媒の添加量は、添加後の上記アルコキシシラン化合物溶液における酸の濃度が、1〜1000ppm、好ましくは、5〜500ppmの範囲内となるように設定することが好ましい。   The addition amount of the acid catalyst is preferably set so that the acid concentration in the alkoxysilane compound solution after the addition is in the range of 1 to 1000 ppm, preferably 5 to 500 ppm.

酸触媒および水は、上記アルコキシシラン化合物溶液を攪拌しながら徐々に添加することが好ましく、添加後、静置することによって加水分解反応が進む。該加水分解反応には5〜100時間程度を要するが、上記アルコキシシラン化合物溶液を80℃を超えない温度で加熱しながら、酸触媒水溶液を滴下して反応させれば、加水分解の反応時間を短縮させることができる。   The acid catalyst and water are preferably added gradually while stirring the alkoxysilane compound solution, and the hydrolysis reaction proceeds by allowing to stand after the addition. The hydrolysis reaction takes about 5 to 100 hours. If the above-mentioned alkoxysilane compound solution is heated at a temperature not exceeding 80 ° C. and the acid catalyst aqueous solution is dropped and reacted, the hydrolysis reaction time is reduced. It can be shortened.

上記アルコキシシラン化合物が、酸触媒の存在下で加水分解されるとアルコキシ基がシラノール基に変化し、同時に該シラノール基が分子間で脱水縮合を起こし、その結果、ケイ素原子に有機基が結合したシロキサン結合が生成する。このようなシロキサン結合は被膜形成能を有する。   When the alkoxysilane compound is hydrolyzed in the presence of an acid catalyst, the alkoxy group changes to a silanol group, and at the same time, the silanol group undergoes dehydration condensation between molecules, and as a result, an organic group is bonded to the silicon atom. Siloxane bonds are formed. Such a siloxane bond has a film forming ability.

上記アルコキシシラン化合物を有機溶媒中、酸触媒の存在下で加水分解処理して得られる反応生成物には、重合度が2〜20程度のシロキサンオリゴマーが主に含まれる。   The reaction product obtained by hydrolyzing the alkoxysilane compound in an organic solvent in the presence of an acid catalyst mainly contains a siloxane oligomer having a degree of polymerization of about 2 to 20.

上記アルコキシシラン化合物を加水分解処理して得られるシロキサンオリゴマーの質量平均分子量は、1000〜4000の範囲内であれば、被膜の表面平坦性が良好である。この範囲より大きいとゲル化しやすく、小さいと被膜形成能が劣る。上記アルコキシシラン化合物を加水分解処理して得られるシロキサンオリゴマーの質量平均分子量は、加水分解反応に使用する水の添加量、反応時間、反応温度等によって制御することができる。   If the mass average molecular weight of the siloxane oligomer obtained by hydrolyzing the alkoxysilane compound is in the range of 1000 to 4000, the surface flatness of the coating is good. If it is larger than this range, gelation tends to occur, and if it is smaller, the film-forming ability is poor. The mass average molecular weight of the siloxane oligomer obtained by hydrolyzing the alkoxysilane compound can be controlled by the amount of water used for the hydrolysis reaction, the reaction time, the reaction temperature, and the like.

このようにして得られる塗布液は、得ようとする被膜の膜厚を考慮して、有機溶媒で適宜希釈して用いることができる。希釈に用いる有機溶媒は、上記アルコキシシラン化合物を溶解する有機溶媒として前述したものを用いることができる。塗布液の固形分濃度は特に限定されないが、多すぎると塗布液の製造が困難となり、一方、少ないと所定の膜厚が得られなくなる。従って、通常SiO2換算(分子量=60)固形分濃度が2〜25質量%程度の範囲内で、塗布面の表面形状、塗布方法、得ようとする塗膜の厚さなどに応じて適宜設定するのが好ましい。 The coating solution thus obtained can be used by appropriately diluting with an organic solvent in consideration of the film thickness to be obtained. As the organic solvent used for the dilution, those described above as the organic solvent for dissolving the alkoxysilane compound can be used. The solid content concentration of the coating solution is not particularly limited, but if it is too large, it becomes difficult to produce the coating solution, while if it is too small, a predetermined film thickness cannot be obtained. Accordingly, it is usually set as appropriate according to the surface shape of the coated surface, the coating method, the thickness of the coating film to be obtained, etc., within a range where the solid content concentration in terms of SiO 2 (molecular weight = 60) is about 2 to 25% by mass. It is preferable to do this.

また、該塗布液は、固形分を除く全溶液中における水分含有量が1〜30質量%であることが好ましく、5〜15質量%の水分を含有していることがより好ましい。塗布液における該水分含有量を上記の範囲内にすることにより、フッ化水素酸水溶液に代表される酸水溶液によるウェットエッチング耐性を効果的に向上させることができる。   Moreover, it is preferable that this coating liquid is 1-30 mass% in water content in all the solutions except solid content, and it is more preferable that it contains 5-15 mass% of water | moisture content. By setting the water content in the coating solution within the above range, wet etching resistance by an acid aqueous solution typified by a hydrofluoric acid aqueous solution can be effectively improved.

塗布液中の該水分含有量を制御する方法は、特に限定されないが、例えば、上記アルコキシシラン化合物溶液に水を加えて加水分解処理する際に、該加水分解反応に必要な水の量に対して過剰量の水を添加しておき、反応終了後の塗布液中に上記好ましい範囲内の水分が残るように反応時間をコントロールして加水分解反応を終了させる方法がある。   A method for controlling the water content in the coating solution is not particularly limited. For example, when water is added to the alkoxysilane compound solution for hydrolysis treatment, the amount of water required for the hydrolysis reaction is reduced. There is a method in which an excessive amount of water is added, and the hydrolysis reaction is terminated by controlling the reaction time so that the water within the preferred range remains in the coating solution after the reaction is completed.

また、上記アルコキシシラン化合物の加水分解処理を終えた溶液中から、一旦水分を除去した後、新たに水を添加する方法によって、前記塗布液における前記水分含有量を上記の好ましい範囲内とすることもできる。   Further, the water content in the coating solution is set within the above-mentioned preferred range by removing water from the solution after the hydrolysis treatment of the alkoxysilane compound and then adding water. You can also.

また、上記アルコキシシラン化合物の加水分解処理を終えた溶液に水を添加する方法によっても、前記塗布液における前記水分含有量を上記の好ましい範囲内とすることができる。なお、上記塗布液における前記水分含有量、すなわち塗布液の固形分を除く溶媒中における水分含有量は、ガスクロマトグラフィーによって測定することができる。   Also, the water content in the coating solution can be within the above-mentioned preferable range by a method of adding water to the solution after the hydrolysis treatment of the alkoxysilane compound. The water content in the coating solution, that is, the water content in the solvent excluding the solid content of the coating solution can be measured by gas chromatography.

(a−2)また、前記シリカ系被膜形成用塗布液は、少なくともトリアルコキシシラン類および/またはテトラアルコキシシラン類からなる群より選ばれる少なくとも一種のアルコキシシラン化合物を有機溶媒中で加水分解処理して得られる反応生成物を含んでなるシリカ系被膜形成用塗布液であってもよい。なお、前記一般式(1)、(2)で表されるアルコキシシラン化合物は配合されない。前記一般式(1)、(2)で表されるアルコキシシラン化合物を配合すると(a−1)に記載した有機SOG材料となるためである。   (A-2) The silica-based coating forming coating solution hydrolyzes at least one alkoxysilane compound selected from the group consisting of at least trialkoxysilanes and / or tetraalkoxysilanes in an organic solvent. A coating solution for forming a silica-based film comprising the reaction product obtained in this manner may be used. In addition, the alkoxysilane compound represented by the general formulas (1) and (2) is not blended. This is because when the alkoxysilane compound represented by the general formulas (1) and (2) is blended, the organic SOG material described in (a-1) is obtained.

前記トリアルコキシシラン類としては、例えばトリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリブトキシシラン、ジエトキシモノメトキシシラン、モノメトキシジプロポキシシラン、ジブトキシモノメトキシシラン、エトキシメトキシプロポキシシラン、モノエトキシジメトキシシラン、モノエトキシジプロポキシシラン、ブトキシエトキシプロポキシシラン、ジメトキシモノプロポキシシラン、ジエトキシモノプロポキシシラン、モノブトキシジメトキシシランなどを挙げることができる。これらの中で実用上好ましい化合物は、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリブトキシシランであり、中でも特にトリメトキシシラン、トリエトキシシランが好ましい。これらのトリアルコキシシランは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   Examples of the trialkoxysilanes include trimethoxysilane, triethoxysilane, tripropoxysilane, tributoxysilane, diethoxymonomethoxysilane, monomethoxydipropoxysilane, dibutoxymonomethoxysilane, ethoxymethoxypropoxysilane, and monoethoxy. Examples include dimethoxysilane, monoethoxydipropoxysilane, butoxyethoxypropoxysilane, dimethoxymonopropoxysilane, diethoxymonopropoxysilane, and monobutoxydimethoxysilane. Among these, preferred compounds for practical use are trimethoxysilane, triethoxysilane, tripropoxysilane, and tributoxysilane, and trimethoxysilane and triethoxysilane are particularly preferable. These trialkoxysilanes may be used alone or in combination of two or more.

前記テトラアルコキシシラン類としては、例えばテトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、ジエトキシジメトキシシラン、ジメトキシジプロポキシシラン、ジブトキシジメトキシシラン、エトキシジメトキシプロポキシシラン、モノエトキシトリメトキシシラン、モノエトキシトリプロポキシシラン、ブトキシジエトキシプロポキシシラン、トリメトキシモノプロポキシシラン、トリエトキシモノプロポキシシラン、モノブトキシトリメトキシシランなどを挙げることができる。これらの中で実用上好ましい化合物は、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランであり、中でも特にテトラメトキシシラン、テトラエトキシシランが好ましい。これらのテトラアルコキシシランは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   Examples of the tetraalkoxysilanes include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, diethoxydimethoxysilane, dimethoxydipropoxysilane, dibutoxydimethoxysilane, ethoxydimethoxypropoxysilane, and monoethoxytrimethoxysilane. And monoethoxytripropoxysilane, butoxydiethoxypropoxysilane, trimethoxymonopropoxysilane, triethoxymonopropoxysilane, monobutoxytrimethoxysilane, and the like. Of these, preferred compounds for practical use are tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, with tetramethoxysilane and tetraethoxysilane being particularly preferred. These tetraalkoxysilanes may be used alone or in combination of two or more.

また、前記アルコキシシラン化合物を溶解する有機溶媒としては特に制限はなく、様々な溶媒を用いることができるが、特にアルキレングリコールジアルキルエーテルが好ましい。このアルキレングリコールジアルキルエーテルを用いることにより、低級アルコールを溶媒として用いた従来方法におけるトリアルコキシシランのH−Si基の分解反応や中間に生成するシラノールの水酸基がアルコキシ基に置換する反応を抑制することができ、ゲル化を防止することができる。   Moreover, there is no restriction | limiting in particular as an organic solvent which melt | dissolves the said alkoxysilane compound, Although various solvents can be used, An alkylene glycol dialkyl ether is especially preferable. By using this alkylene glycol dialkyl ether, the decomposition reaction of the H-Si group of trialkoxysilane and the reaction of replacing the hydroxyl group of silanol formed in the middle with the alkoxy group in the conventional method using a lower alcohol as a solvent are suppressed. And gelation can be prevented.

このアルキレングリコールジアルキルエーテルとしては、例えばエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテルなどのアルキレングリコールのジアルキルエーテル類を挙げることができる。これらの中で好ましいのはエチレングリコール又はプロピレングリコールのジアルキルエーテルであり、より好ましくはジメチルエーテルである。これらの有機溶媒は、単独で用いてもよいし2種以上組み合わせて用いてもよい。   Examples of the alkylene glycol dialkyl ether include ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, propylene glycol dimethyl ether, and propylene. Mention may be made of dialkyl ethers of alkylene glycols such as glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl ether. Among these, a dialkyl ether of ethylene glycol or propylene glycol is preferable, and dimethyl ether is more preferable. These organic solvents may be used alone or in combination of two or more.

該塗布液は、これらの有機溶媒中に前記アルコキシシラン化合物の酸加水分解生成物を含有するものであるが、特に、溶媒除去後の被膜形成成分が、熱重量測定(TG)において、質量増加を示すものが好ましい。また、このような塗布液は、赤外吸収スペクトルにおいて、通常3000cm-1付近にピークを有していない。従来の塗布液、例えば特開平4−216827号公報記載の塗布液の場合は、熱重量測定の結果、質量減少を示し、また、赤外吸収スペクトルにおいて、3000cm-1付近にピークを有することから、残存アルコキシ基が存在していることを示している。 The coating solution contains an acid hydrolysis product of the alkoxysilane compound in these organic solvents. In particular, the film-forming component after removal of the solvent increases in mass in thermogravimetry (TG). Is preferable. Further, such a coating solution usually has no peak in the vicinity of 3000 cm −1 in the infrared absorption spectrum. In the case of a conventional coating solution, for example, a coating solution described in JP-A-4-216828, the result of thermogravimetry shows a decrease in mass, and it has a peak in the vicinity of 3000 cm −1 in the infrared absorption spectrum. This indicates that a residual alkoxy group is present.

このような塗布液は、例えば以下に示す方法により、好ましく調製することができる。まず、前記アルキレングリコールジアルキルエーテル中に、前記アルコキシシラン化合物を、SiO2換算(分子量=60)固形分濃度で1〜5質量%、好ましくは2〜4質量%の濃度になるように溶解する。反応系におけるSiO2換算濃度が多くなりすぎるとゲル化が起こり保存安定性が劣化するおそれがあるためである。その詳細な原因については不明であるが、反応系におけるSiO2換算濃度が小さい方が加水分解の反応がゆるやかに進み、H−Si基が分解されにくいことから、ラダー構造を形成しやすいためと考えられる。 Such a coating liquid can be preferably prepared by, for example, the following method. First, the alkoxysilane compound is dissolved in the alkylene glycol dialkyl ether so as to have a concentration of 1 to 5% by mass, preferably 2 to 4% by mass in terms of SiO 2 (molecular weight = 60) solid content. This is because if the concentration in terms of SiO 2 in the reaction system is too high, gelation may occur and storage stability may be deteriorated. Although the detailed cause is unknown, the smaller the SiO 2 equivalent concentration in the reaction system, the easier the hydrolysis reaction proceeds, and the H—Si group is less likely to be decomposed. Conceivable.

次に、これらアルコキシシラン化合物に水を反応させて加水分解を行うが、この水は、アルコキシシラン化合物1モルに対し2.5〜3.0モル、好ましくは2.8〜3.0モルの範囲内の量で用いることが加水分解度を高めるために、有利である。この範囲より少ないと保存安定性は高くなるものの、加水分解度が低くなり加水分解物中の有機基の含有量が多くなり、被膜形成時のガスの発生が起こりやすくなる。一方、この範囲より多いと保存安定性が悪くなる。   Next, the alkoxysilane compound is hydrolyzed by reacting with water, and this water is 2.5 to 3.0 mol, preferably 2.8 to 3.0 mol, per mol of the alkoxysilane compound. Use of an amount in the range is advantageous in order to increase the degree of hydrolysis. If it is less than this range, the storage stability will be high, but the degree of hydrolysis will be low, the content of organic groups in the hydrolyzate will increase, and gas will be easily generated during film formation. On the other hand, if it exceeds this range, the storage stability will deteriorate.

アルコキシシラン化合物の加水分解は酸触媒の存在下で行われるが、その際に用いる酸触媒としては、従来、この種のシラン系被膜形成用塗布液製造に慣用されている有機酸又は無機酸を用いることができる。この有機酸の例としては、酢酸、プロピオン酸、酪酸など、無機酸の例としては、塩酸、硝酸、硫酸、リン酸などを挙げることができる。特に好ましくは硝酸である。   Hydrolysis of the alkoxysilane compound is carried out in the presence of an acid catalyst. As the acid catalyst used at that time, an organic acid or an inorganic acid conventionally used for producing a coating liquid for forming this kind of silane-based film is used. Can be used. Examples of the organic acid include acetic acid, propionic acid, butyric acid, and examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and the like. Nitric acid is particularly preferred.

この場合、酸触媒を塗布液中の酸の濃度が、通常1〜200ppm、好ましくは、1〜40ppmの範囲になるように加えるか、又は酸と水を混合し、酸水溶液として加えて、加水分解させる。   In this case, the acid catalyst is added so that the concentration of the acid in the coating solution is usually in the range of 1 to 200 ppm, preferably 1 to 40 ppm, or the acid and water are mixed and added as an aqueous acid solution. Decompose.

加水分解反応は、通常5〜100時間程度で完了する。また、室温から70℃を超えない温度で、アルコキシシラン化合物を含むアルキレングリコールジアルキルエーテルの中から選ばれる少なくとも1種の溶媒に水と酸触媒を滴下して反応させることにより、短い反応時間で反応を完了させることもできる。   The hydrolysis reaction is usually completed in about 5 to 100 hours. In addition, the reaction can be carried out in a short reaction time by dropping water and an acid catalyst into at least one solvent selected from alkylene glycol dialkyl ethers containing an alkoxysilane compound at a temperature not exceeding 70 ° C. from room temperature. Can also be completed.

本発明に用いるアルコキシシラン化合物の加水分解は、溶媒にアルコールを用いず、アルキレングリコールジアルキルエーテルの中から選ばれる少なくとも1種を用いたとしてもアルコキシシラン化合物の加水分解においてはアルコキシ基に相当するアルコールが必ず生成してくるので、反応系からこの生成してくるアルコールを除去したほうがよい。具体的には、アルコールを塗布液中15質量%以下、好ましくは8質量%以下まで除去する。アルコール分は少なければ少ないほど好ましく、アルコール分が15質量%を超えて残存していると、H−Si基と生成したアルコールが反応し、RO−Si基が生成し、クラック限界が低下する傾向や被膜形成時にガスが発生する傾向がある。アルコールの除去方法としては、真空度30〜300mmHg、好ましくは、50〜200mmHg、温度20〜50℃で2〜6時間減圧蒸留する方法が好適である。   In the hydrolysis of the alkoxysilane compound used in the present invention, the alcohol corresponding to the alkoxy group is used in the hydrolysis of the alkoxysilane compound even if at least one selected from alkylene glycol dialkyl ethers is used without using an alcohol as a solvent. It is better to remove this generated alcohol from the reaction system. Specifically, the alcohol is removed to 15% by mass or less, preferably 8% by mass or less in the coating solution. The smaller the alcohol content, the better. When the alcohol content exceeds 15% by mass, the H-Si group reacts with the generated alcohol to generate RO-Si groups, and the crack limit tends to decrease. Gas tends to be generated during film formation. As a method for removing alcohol, a method of vacuum distillation at a vacuum degree of 30 to 300 mmHg, preferably 50 to 200 mmHg and a temperature of 20 to 50 ° C. for 2 to 6 hours is suitable.

(a−3)また、前記シリカ系被膜形成用塗布液は、少なくとも下記一般式(3)で表わされる繰り返し単位から成るポリシラザン系樹脂を溶解してなるシリカ系被膜形成用塗布液であってもよい。   (A-3) Further, the silica-based film forming coating solution may be a silica-based film forming coating solution obtained by dissolving a polysilazane resin composed of a repeating unit represented by the following general formula (3). Good.

Figure 2005136297
Figure 2005136297

一般式(3)中、R5、R6及びR7は水素原子、炭化水素基、炭化水素置換シリル基若しくはアミノ基又はカルビルオキシ基で、R5〜R7の少なくとも1個は水素原子である。 In general formula (3), R 5 , R 6 and R 7 are a hydrogen atom, a hydrocarbon group, a hydrocarbon-substituted silyl group, an amino group or a carbyloxy group, and at least one of R 5 to R 7 is a hydrogen atom. .

前記一般式(3)中のR5、R6及びR7はそれぞれ水素原子、炭化水素基、炭化水素置換シリル基、炭化水素置換アミノ基又はカルビルオキシ基である。ここで、炭化水素基としては、例えばアルキル基、アルケニル基、シクロアルキル基、アリール基、アラルキル基などが挙げられる。炭化水素置換シリル基としては、これらの炭化水素基を1〜3個有するシリル基、好ましくはアルキルシリル基が挙げられ、炭化水素置換アミノ基としては、前記炭化水素基を1又は2個有するアミノ基、好ましくはアルキルアミノ基が挙げられる。カルビルオキシ基としては、例えばアルコキシ基、アルケニルオキシ基、シクロアルコキシ基、アリールオキシ基、アラルキルオキシ基などが挙げられる。また、R5、R6及びR7はたがいに同一であってもよいし、異なっていてもよいが、その少なくとも1個は水素原子である。 R 5 , R 6 and R 7 in the general formula (3) are each a hydrogen atom, a hydrocarbon group, a hydrocarbon-substituted silyl group, a hydrocarbon-substituted amino group or a carbyloxy group. Here, examples of the hydrocarbon group include an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, and an aralkyl group. Examples of the hydrocarbon-substituted silyl group include silyl groups having 1 to 3 of these hydrocarbon groups, preferably alkylsilyl groups, and examples of the hydrocarbon-substituted amino group include amino having 1 or 2 hydrocarbon groups. A group, preferably an alkylamino group. Examples of the carbyloxy group include an alkoxy group, an alkenyloxy group, a cycloalkoxy group, an aryloxy group, an aralkyloxy group, and the like. R 5 , R 6 and R 7 may be the same or different from each other, but at least one of them is a hydrogen atom.

このようなポリシラザン系樹脂は公知のものであり(特開昭60−145903号公報、特開昭61−287930号公報、特開昭63−309526号公報、特開平3−119077号公報、特開平3−232709号公報、特開平5−238827号公報、特開平6−136130号公報、特開平6−136131号公報、特開平6−157764号公報、特開平6−136323号公報、特開平6−157989号公報、特開平6−240208号公報、特開平6−299118号公報、特開2000−12536号公報など)、本発明に用いるポリシラザン系樹脂においては、その種類については特に制限はなく、前記一般式(3)におけるR5、R6及びR7として、水素原子及び前記した基の中から適宜選んだもの(ただし、R5、R6及びR7の少なくとも1個は水素原子である)を用いることができる。また、このポリシラザン系樹脂は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Such polysilazane resins are known (Japanese Patent Laid-Open No. 60-145903, Japanese Patent Laid-Open No. 61-287930, Japanese Patent Laid-Open No. 63-309526, Japanese Patent Laid-Open No. 3-119077, Japanese Patent Laid-Open No. JP-A-3-232709, JP-A-5-238827, JP-A-6-136130, JP-A-6-136131, JP-A-6-157764, JP-A-6-136323, JP-A-6-136323. No. 157989, JP-A-6-240208, JP-A-6-299118, JP-A 2000-12536, etc.), and the polysilazane resin used in the present invention is not particularly limited, and R 5 , R 6 and R 7 in the general formula (3) are appropriately selected from a hydrogen atom and the aforementioned groups (provided that R 5 , At least one of R 6 and R 7 is a hydrogen atom). Moreover, this polysilazane resin may be used independently and may be used in combination of 2 or more type.

ポリシラザン系樹脂を溶解する有機溶媒としては、特に制限はなく、例えばメタノール、エタノールなどのアルコール類、メチルイソブチルケトンのようなケトン類、エチレングリコールモノメチルエーテルのようなグリコールエーテル類、シクロヘキサン、トルエン、キシレン、メシチレン、シクロヘキセン、ジメチルシクロヘキサン、エチルシクロヘキサン、p−メンタン、デカリン、2,2,5−トリメチルヘキサン、ジペンテン、デカン、イソノナン、オクタンなどの炭化水素類、エチルブチルエーテル、ジブチルエーテル、ジオキサン、テトラヒドロフランなどのエーテル類が挙げられる。これらは単独で用いても良いし、2種以上を組み合わせて用いても良い。   The organic solvent for dissolving the polysilazane resin is not particularly limited. For example, alcohols such as methanol and ethanol, ketones such as methyl isobutyl ketone, glycol ethers such as ethylene glycol monomethyl ether, cyclohexane, toluene, and xylene Hydrocarbons such as mesitylene, cyclohexene, dimethylcyclohexane, ethylcyclohexane, p-menthane, decalin, 2,2,5-trimethylhexane, dipentene, decane, isononane, octane, ethyl butyl ether, dibutyl ether, dioxane, tetrahydrofuran, etc. And ethers. These may be used alone or in combination of two or more.

本発明に使用されるポリシラザン系塗布液は、ポリシラザン系樹脂を、前記有機溶媒に溶解させたものであり、該ポリシラザン系樹脂の濃度は、使用するポリシラザン系樹脂の平均分子量、分子量分布、構造などにより異なるが、通常は50質量%以下である。この濃度が50質量%を超えると塗布特性、保存安定性及び取扱い性などが悪くなる。また、濃度があまり低すぎると厚膜化が困難となる。塗布特性、保存安定性、取扱い性、厚膜化などの点から、ポリシラザン系樹脂の好ましい濃度は10〜40質量%の範囲であり、特に20〜30質量%の範囲が好適である。   The polysilazane coating solution used in the present invention is a polysilazane resin dissolved in the organic solvent. The concentration of the polysilazane resin is the average molecular weight, molecular weight distribution, structure, etc. of the polysilazane resin used. Usually, it is 50 mass% or less, although it varies depending on the situation. If this concentration exceeds 50% by mass, the coating properties, storage stability, handleability, and the like will deteriorate. If the concentration is too low, it is difficult to increase the film thickness. From the viewpoints of coating properties, storage stability, handleability, thickening, etc., the preferred concentration of the polysilazane resin is in the range of 10 to 40% by mass, and particularly preferably in the range of 20 to 30% by mass.

上述した(a−1)、(a−2)および(a−3)の塗布液の中では、少なくともトリアルコキシシランを有機溶媒中で加水分解処理して得られる反応生成物を含むシリカ系被膜形成用塗布液がより好ましい。アッシング時の酸化による膜質変化の問題が発生しないためである。本発明に用いられる塗布液は、塗布法に有効に用いられることができる。   Among the coating liquids (a-1), (a-2) and (a-3) described above, a silica-based film containing a reaction product obtained by hydrolyzing at least trialkoxysilane in an organic solvent A forming coating solution is more preferable. This is because the problem of film quality change due to oxidation during ashing does not occur. The coating liquid used in the present invention can be effectively used in a coating method.

(B)シリカ系耐洗浄性加工被膜の形成方法
本発明方法においては、まず、上述のようにして調製した塗布液を基板上に塗布、乾燥して塗膜を形成する。この際用いる基板としては特に制限はなく、形成されるシリカ被膜の用途に応じて適宜選ばれる。例えばシリコンウエーハ上に金属配線層を有するもの(層間絶縁膜)、シリコンウエーハ上に金属配線層とその上にプラズマCVD法などによる層間絶縁膜を有するもの(平坦化膜)、多層レジスト法における下層レジスト(中間膜)、ガラス基板上にクロム層を有するもの(位相シフト材料)、ガラス基板上にITO(インジウムチンオキシド)などの透明導電膜を有するもの(保護膜、配向膜)などを用いることができる。なお、上記かっこ内は形成されるシリカ被膜の用途を示す。
(B) Method for Forming Silica-Based Wash-resistant Processed Film In the method of the present invention, first, the coating solution prepared as described above is applied on a substrate and dried to form a coating film. There is no restriction | limiting in particular as a board | substrate used in this case, According to the use of the silica coating film formed, it selects suitably. For example, one having a metal wiring layer on a silicon wafer (interlayer insulating film), one having a metal wiring layer on a silicon wafer and an interlayer insulating film formed thereon by a plasma CVD method (planarization film), a lower layer in a multilayer resist method Use resist (intermediate film), one having a chromium layer on a glass substrate (phase shift material), one having a transparent conductive film such as ITO (indium tin oxide) on a glass substrate (protective film, alignment film), etc. Can do. In addition, the inside of the said parenthesis shows the use of the silica film formed.

これらの基板上に、該塗布液を塗布する方法としては、例えばスプレー法、スピンコート法、ディップコート法、ロールコート法など、任意の方法を用いることができるが、半導体素子製造には、通常スピンコート法が用いられる。また、乾燥処理は、塗布液中の溶媒が揮散して塗膜が形成されればよく、その手段、温度、時間などについては特に制限はないが、一般的には、80〜300℃程度のホットプレート上で1〜6分間程度加熱すればよい。好ましくは、3段階以上、段階的に昇温するのが有利である。具体的には、大気中又は窒素などの不活性ガス雰囲気下、80〜120℃程度のホットプレート上で30秒〜2分間程度第1回目の乾燥処理を行ったのち、130〜220℃程度で30秒〜2分間程度第2回目の乾燥処理を行い、さらに230〜300℃程度で30秒〜2分間程度第3回目の乾燥処理を行う。このように3段階以上、好ましくは3〜6段階程度の段階的な乾燥処理を行うことにより、形成された塗膜の表面が均一なものとなる。   As a method for applying the coating solution onto these substrates, for example, a spray method, a spin coat method, a dip coat method, a roll coat method or the like can be used. A spin coat method is used. Moreover, the drying process should just form the coating film by volatilizing the solvent in a coating liquid, and there is no restriction | limiting in particular about the means, temperature, time, etc., Generally, about 80-300 degreeC. What is necessary is just to heat about 1 to 6 minutes on a hotplate. Preferably, it is advantageous to raise the temperature stepwise by three steps or more. Specifically, after performing the first drying process for about 30 seconds to 2 minutes on a hot plate at about 80 to 120 ° C. in an air or an inert gas atmosphere such as nitrogen, the temperature is about 130 to 220 ° C. A second drying process is performed for about 30 seconds to 2 minutes, and a third drying process is performed at about 230 to 300 ° C. for about 30 seconds to 2 minutes. Thus, the surface of the formed coating film becomes uniform by performing the stepwise drying process of 3 steps or more, preferably about 3 to 6 steps.

本発明方法においては、さらに、前記塗布液を塗布する操作を所望に応じて1回以上繰り返して所要の膜厚とする。   In the method of the present invention, the operation of applying the coating solution is repeated once or more as desired to obtain a required film thickness.

本発明においては、このようにして所要の膜厚に形成された塗膜に対して第1の加熱処理を行なう。ここで前記(a−1)の塗布液を用いて形成した塗膜については、酸素濃度1000ppm以下の雰囲気下で加熱処理することが好ましく、前記(a−2)または(a−3)の塗布液を用いて形成した塗膜については、大気中、もしくは酸化雰囲気下で加熱処理を行うことが好ましい。加熱処理の温度は、500〜900℃の範囲の温度が好ましい。この温度が500℃未満では、熱処理が不十分で、緻密な被膜が得られない。一方、900℃を超えると基板に熱的ダメージを与えることが懸念されるため好ましくない。このようにして、膜厚が200nm以上のシリカ系被膜が形成される。膜厚の上限は特に制限はないが、今のところ800nm程度である。第1の加熱処理の時間は、温度により変動するが、800℃では30分程度で十分である。
なお、前記(a−1)の塗布液を用いる場合においては、500〜700℃の温度範囲が特に好ましく、前記(a−2)または(a−3)の塗布液を用いる場合においては、550〜900℃の温度範囲が特に好ましい。
In the present invention, the first heat treatment is performed on the coating film thus formed to have a required film thickness. Here, the coating film formed using the coating liquid (a-1) is preferably heat-treated in an atmosphere having an oxygen concentration of 1000 ppm or less, and the coating process (a-2) or (a-3). About the coating film formed using a liquid, it is preferable to heat-process in air | atmosphere or an oxidizing atmosphere. The temperature of the heat treatment is preferably in the range of 500 to 900 ° C. If this temperature is less than 500 ° C., the heat treatment is insufficient and a dense film cannot be obtained. On the other hand, if the temperature exceeds 900 ° C., there is a concern that the substrate may be thermally damaged, which is not preferable. In this way, a silica-based film having a film thickness of 200 nm or more is formed. The upper limit of the film thickness is not particularly limited, but is currently about 800 nm. The first heat treatment time varies depending on the temperature, but about 800 minutes is sufficient at 800 ° C.
In addition, when using the said coating liquid of (a-1), the temperature range of 500-700 degreeC is especially preferable, and when using the said coating liquid of (a-2) or (a-3), it is 550. A temperature range of ˜900 ° C. is particularly preferred.

形成されるシリカ系被膜の膜厚は、塗布液の固形分濃度や塗布方法などに左右され、また塗布操作を繰り返せば繰り返すほど、得られる被膜の膜厚は厚くなるので、目的に応じて、所要の膜厚が得られるように、塗布液、塗布方法、塗布操作の繰り返し回数を適宜調整すればよい。しかし、過度に繰り返し回数が多くなると、スループットが落ちるので、一回の塗布により得られる被膜の膜厚がなるべく厚くなるように調製した塗布液を用い、塗布操作の繰り返し回数をできだけ少なくして、所要の膜厚が得られるようにするのが有利である。最も実用的には、塗布液を塗布する操作は1回で行うのがよい。   The film thickness of the silica-based film to be formed depends on the solid content concentration of the coating solution, the coating method, and the like, and the more the coating operation is repeated, the thicker the film thickness of the coating film obtained. What is necessary is just to adjust a coating liquid, a coating method, and the repetition frequency of coating operation suitably so that a required film thickness may be obtained. However, if the number of repetitions increases excessively, the throughput decreases, so use a coating solution prepared so that the film thickness obtained by a single application becomes as thick as possible, and reduce the number of repetitions of the coating operation as much as possible. It is advantageous to obtain the required film thickness. Most practically, the operation of applying the coating solution is preferably performed once.

続いて、このようにして形成したシリカ系被膜に対してエッチング処理を行う。当該エッチング処理は特に限定されるものではなく、既に一般的に知られているエッチング方法を採用することができる。
例えば、当該シリカ系被膜上にCVD膜等を形成した後、当該CVD膜上にホトレジスト材料を用いたホトリソグラフィによりレジストパターンを形成し、当該レジストパターンをマスクとして、公知のドライエッチング技術によりCVD膜およびシリカ系被膜をエッチング除去する。そしてエッチング処理後は、上記レジストパターンをアッシング除去し、剥離液、洗浄液等により洗浄処理を行う。このようにして、エッチング処理を行い、当該シリカ系被膜を加工することができる。
Subsequently, an etching process is performed on the silica-based film thus formed. The etching process is not particularly limited, and an etching method that is already generally known can be employed.
For example, after forming a CVD film or the like on the silica-based film, a resist pattern is formed on the CVD film by photolithography using a photoresist material, and the CVD film is formed by a known dry etching technique using the resist pattern as a mask. And the silica-based coating is removed by etching. After the etching process, the resist pattern is removed by ashing, and a cleaning process is performed using a stripping solution, a cleaning solution, or the like. In this way, the silica coating can be processed by performing an etching process.

なお、本明細書において「エッチング処理による加工」とは広く被膜内部を露出させる加工処理をいい、具体的にはコンタクトホールの作製、スリット部分の作製、配線用トレンチの作製等を含む。   In the present specification, “processing by etching processing” widely refers to processing that exposes the inside of the film, and specifically includes preparation of contact holes, preparation of slit portions, preparation of wiring trenches, and the like.

続いて、エッチング処理により加工された被膜を、大気中、もしくは酸化雰囲気下で第2の加熱処理を行なう。   Subsequently, the coating film processed by the etching treatment is subjected to a second heat treatment in the air or in an oxidizing atmosphere.

第2の加熱処理を行わないと、被膜の内部において熱硬化が不十分であるため、選択的エッチング処理により露出した被膜内部が、その後に行なわれる酸水溶液による洗浄処理工程において、サイドエッチングされる現象が生じる。   If the second heat treatment is not performed, heat curing is insufficient inside the coating, and therefore the inside of the coating exposed by the selective etching treatment is side-etched in a subsequent cleaning process using an acid aqueous solution. A phenomenon occurs.

第2の加熱処理の温度は、500〜900℃の範囲の温度が好ましい。この温度が500℃未満では、硬化が認められにくいし、900℃を超えると基板に熱的ダメージを与えることが懸念されるため好ましくない。第2の加熱処理の時間は、温度により変動するが、800℃では30分程度で十分である。
なお、前記(a−1)の塗布液を用いる場合においては、500〜700℃の温度範囲が特に好ましく、前記(a−2)または(a−3)の塗布液を用いる場合においては、550〜900℃の温度範囲が特に好ましい。
The temperature of the second heat treatment is preferably in the range of 500 to 900 ° C. If this temperature is less than 500 ° C., curing is hardly recognized, and if it exceeds 900 ° C., it is feared that thermal damage is caused to the substrate, which is not preferable. The time of the second heat treatment varies depending on the temperature, but about 800 minutes is sufficient at 800 ° C.
In addition, when using the said coating liquid of (a-1), the temperature range of 500-700 degreeC is especially preferable, and when using the said coating liquid of (a-2) or (a-3), it is 550. A temperature range of ˜900 ° C. is particularly preferred.

上記エッチング処理した後に500〜900℃の範囲の加熱温度で第2の加熱処理を行うことにより、露出した部分の被膜が十分に硬化されるため、ウェットエッチング耐性が向上し、特に被膜の基板界面でのサイドエッチングの問題が大幅に減少する。また、被膜表面も1回のみ加熱処理する場合に比べて、より硬化している。   By performing the second heat treatment at a heating temperature in the range of 500 to 900 ° C. after the above etching treatment, the exposed portion of the film is sufficiently cured, so that the wet etching resistance is improved, particularly the substrate interface of the film The problem of side etching at is greatly reduced. Also, the surface of the coating is more cured than when the heat treatment is performed only once.

本発明のシリカ系耐洗浄性加工被膜の形成方法により形成された被膜は、露出断面の硬化によって、断面全体の硬化緻密性が膜厚方向にほぼ均一となっている。これはデバイス製品を切断して要部を観察、測定等すれば容易に確認することができる。これによって、従来のエッチング処理前に加熱処理を行なう被膜形成法により得られた被膜と容易に識別することができる。また、塗布法による被膜とCVD法による被膜とは組成分析により容易に識別できる。従って、本発明方法により得られた被膜は、その構成および微視的組成によって、他の方法による被膜と識別でき、被膜そのものも新規な物であり、顕著な特性を有するものである。   The film formed by the method for forming a silica-based cleaning-resistant processed film of the present invention has a substantially uniform cured density in the film thickness direction due to curing of the exposed section. This can be easily confirmed by cutting the device product and observing and measuring the main part. Thereby, it can be easily distinguished from a film obtained by a film forming method in which a heat treatment is performed before the conventional etching process. Further, the coating film formed by the coating method and the coating film formed by the CVD method can be easily distinguished by composition analysis. Therefore, the film obtained by the method of the present invention can be distinguished from the film formed by other methods depending on its constitution and microscopic composition, and the film itself is a novel material and has remarkable characteristics.

次いで、第2の加熱処理工程の後に、洗浄処理を行なってもよい。洗浄処理により基板露出面の酸化膜を除去することができる。洗浄処理工程(ウェットエッチング)には、酸水溶液が用いられる。好ましい酸水溶液としては、フッ化水素酸の水溶液が挙げられる。   Next, a cleaning process may be performed after the second heat treatment step. The oxide film on the exposed surface of the substrate can be removed by the cleaning process. An acid aqueous solution is used in the cleaning process (wet etching). A preferable aqueous acid solution includes an aqueous solution of hydrofluoric acid.

なお、本発明のシリカ系耐洗浄性加工被膜は、図1に示す例のように、基板上に形成された微細な配線パターンを覆う平坦化膜として特に好適である。前記配線パターンが、配線間距離(図1中、符号D)が0.25μm以下である配線パターンに好適に用いることができる。   In addition, the silica type cleaning-resistant processed film of this invention is especially suitable as a planarization film which covers the fine wiring pattern formed on the board | substrate like the example shown in FIG. The said wiring pattern can be used suitably for the wiring pattern whose distance between wirings (symbol D in FIG. 1) is 0.25 micrometer or less.

ここで詳細に本発明の方法によって作製されうる基材の構成の一例を図1を参照して説明する。基板1としては、シリカ系耐洗浄性加工被膜4を形成するための焼成温度に耐えうる耐熱性を有するものであればよく、シリコン基板等の半導体基板、金属基板、セラミック基板などを用いることができる。   Here, an example of the structure of the substrate that can be produced by the method of the present invention will be described in detail with reference to FIG. The substrate 1 may be any substrate having heat resistance that can withstand the firing temperature for forming the silica-based cleaning-resistant processed film 4, and a semiconductor substrate such as a silicon substrate, a metal substrate, a ceramic substrate, or the like may be used. it can.

第一の配線パターン2を構成する材料は、シリカ系耐洗浄性加工被膜4を形成するための焼成温度に耐えうる耐熱性を有するものであればよく、耐熱温度が600℃以上の材料が好ましく用いられる。具体例としては、多結晶シリコン等が挙げられる。   The material which comprises the 1st wiring pattern 2 should just have the heat resistance which can endure the calcination temperature for forming the silica type | system | group cleaning-resistant processed film 4, and the material whose heat-resistant temperature is 600 degreeC or more is preferable. Used. Specific examples include polycrystalline silicon.

本発明のシリカ系耐洗浄性加工被膜は、前述したように、特に基板1上に形成される第一の配線パターン2における配線間距離Dの最小値が0.25μm以下、より好ましくは、0.05〜0.25μmの範囲内である基板上に好適に用いることができる。なお、本明細書において、配線パターンにおける配線間距離は、シリカ系耐洗浄性加工被膜を形成する直前の状態、図1の例では中間層3で覆われた状態での距離とする。   As described above, in the silica-based cleaning-resistant processed film of the present invention, the minimum value of the inter-wiring distance D in the first wiring pattern 2 formed on the substrate 1 is 0.25 μm or less, more preferably 0. It can be suitably used on a substrate having a thickness in the range of 0.05 to 0.25 μm. In this specification, the inter-wiring distance in the wiring pattern is the distance immediately before the formation of the silica-based cleaning-resistant processed film, that is, the distance covered with the intermediate layer 3 in the example of FIG.

また、基材の構成は図1に示したものに限定されない。さらに、平坦化膜に限らず、層間絶縁膜やパッシベーション膜を形成するのにも好適に用いることができる。   Moreover, the structure of a base material is not limited to what was shown in FIG. Furthermore, it can be suitably used not only for the planarizing film but also for forming an interlayer insulating film and a passivation film.

本発明方法は、特殊な装置、試薬等を必要としないため、安価かつ簡便に選択的エッチングされ露出した部分がウェットエッチング耐性を有するシリカ系耐洗浄性加工被膜を提供することができる。   Since the method of the present invention does not require a special apparatus, reagent, etc., it is possible to provide a silica-based cleaning-resistant processed film in which the exposed portion that has been selectively etched inexpensively and easily has wet etching resistance.

以下、実施例に基づき、本発明についてさらに詳細に説明する。なお、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples. In addition, this invention is not limited to the following Example.

(実施例1)
トリアルコキシシランの加水分解生成物を主成分とする無機SOG材料である「OCD T−12」(製品名;東京応化工業社製)を、配線間の幅250nm、高さ680nmの配線パターン(表面に厚さ60nmのCVD窒化膜が形成されている)の上に回転塗布し、厚さ750nmの塗膜を形成した。
(Example 1)
“OCD T-12” (product name; manufactured by Tokyo Ohka Kogyo Co., Ltd.), which is an inorganic SOG material mainly composed of hydrolysis products of trialkoxysilane, has a wiring pattern (surface surface) having a width of 250 nm and a height of 680 nm. (A CVD nitride film having a thickness of 60 nm is formed), and a coating film having a thickness of 750 nm is formed.

次いで、該塗膜を80℃、150℃、200℃の順にホットプレート上で全て60秒間で加熱処理(乾燥)を施し、乾燥被膜を形成した。該乾燥被膜に対し、大気中、800℃で30分間の第1の加熱処理を施した。   Next, the coating film was subjected to heat treatment (drying) for 60 seconds on a hot plate in the order of 80 ° C., 150 ° C., and 200 ° C. to form a dried coating film. The dry film was subjected to a first heat treatment at 800 ° C. for 30 minutes in the air.

エッチング処理を施す代わりに、該被膜が形成された基板を、上記配線パターンに対して直交するように切断して、配線パターン部分の当該被膜部分を露出させた。次いで当該被膜に対し、大気中、800℃で30分間の第2の加熱処理を施した。   Instead of performing the etching treatment, the substrate on which the coating film was formed was cut so as to be orthogonal to the wiring pattern to expose the coating film portion of the wiring pattern portion. Next, the coating film was subjected to a second heat treatment at 800 ° C. for 30 minutes in the air.

次いで、該加熱処理を施した被膜に対し、25℃に設定された0.25質量%濃度のフッ化水素酸(HF)の水溶液中に30秒間浸し、その後のシリカ系耐洗浄性加工被膜のサイドエッチング状況をSEM(走査型電子顕微鏡)写真にて観察した。その結果、サイドエッチングの現象はほとんど観察されなかった。   Next, the heat-treated film was immersed in an aqueous solution of 0.25% by weight hydrofluoric acid (HF) set at 25 ° C. for 30 seconds, and then the silica-based cleaning-resistant processed film was coated. The side etching state was observed with a SEM (scanning electron microscope) photograph. As a result, almost no side etching phenomenon was observed.

(実施例2)
実施例1において、HF水溶液に浸す時間を30秒から60秒に代えた以外は、実施例1と同様にして、その後のシリカ系耐洗浄性加工被膜のサイドエッチング状況をSEM(走査型電子顕微鏡)写真にて観察した。その結果、サイドエッチングの現象はほとんど観察されなかった。
(Example 2)
In Example 1, except that the time of immersing in the HF aqueous solution was changed from 30 seconds to 60 seconds, the side etching state of the subsequent silica-based cleaning-resistant processed film was measured by SEM (scanning electron microscope). ) Observed with a photograph. As a result, almost no side etching phenomenon was observed.

(比較例1)
実施例1において、第2の加熱処理を行わなかった以外は、実施例1と同様にして、その後のシリカ系耐洗浄性加工被膜のサイドエッチング状況をSEM(走査型電子顕微鏡)写真にて観察した。その結果、サイドエッチングの現象が観察された。
(Comparative Example 1)
In Example 1, except that the second heat treatment was not performed, the side etching state of the subsequent silica-based cleaning-resistant processed film was observed with a SEM (scanning electron microscope) photograph in the same manner as in Example 1. did. As a result, a side etching phenomenon was observed.

以上のように、本発明のシリカ系耐洗浄性加工被膜の形成方法は、半導体のパターン形成に有用であり、特に、配線間が非常に近接した微細な金属配線パターンの形成に適している。   As described above, the method for forming a silica-based cleaning-resistant processed film of the present invention is useful for forming a semiconductor pattern, and is particularly suitable for forming a fine metal wiring pattern in which wirings are very close to each other.

本発明に係る基材の一実施形態における主要部分の断面図である。It is sectional drawing of the principal part in one Embodiment of the base material which concerns on this invention.

符号の説明Explanation of symbols

D 配線間距離
1 基板
2 第一の配線パターン
3 中間層
4 シリカ系耐洗浄性加工被膜
5 P−TEOS膜
6 コンタクトホール
7 TiN膜
8 W−プラグ(導電性材料)
9 第二の配線パターン
D Inter-wiring distance 1 Substrate 2 First wiring pattern 3 Intermediate layer 4 Silica-based cleaning resistant coating 5 P-TEOS film 6 Contact hole 7 TiN film 8 W-plug (conductive material)
9 Second wiring pattern

Claims (11)

基板上にシリカ系被膜形成用塗布液を塗布し、乾燥し、塗膜を形成する塗膜形成工程と、
前記塗膜形成工程によって得られた前記塗膜に対し、加熱処理を施し、被膜を形成する第1の加熱処理工程と、
前記被膜に対して選択的にエッチング処理を行なう選択的エッチング処理工程と、
前記選択的エッチング処理後の前記被膜に対して、更に加熱処理を施して前記エッチング処理により露出された断面の硬化度を向上させる第2の加熱処理工程と、
を有することを特徴とするシリカ系耐洗浄性加工被膜の形成方法。
Applying a silica-based coating forming coating solution on a substrate, drying, and forming a coating film,
A heat treatment is performed on the coating film obtained by the coating film forming step, and a first heat treatment step of forming a coating film,
A selective etching process step of selectively etching the coating;
A second heat treatment step of further applying a heat treatment to the film after the selective etching treatment to improve the degree of cure of the cross section exposed by the etching treatment;
A method for forming a silica-based cleaning-resistant processed film, comprising:
前記第1の加熱処理工程における処理温度が500〜900℃であることを特徴とする請求項1に記載のシリカ系耐洗浄性加工被膜の形成方法。   2. The method for forming a silica-based cleaning-resistant processed film according to claim 1, wherein a processing temperature in the first heat treatment step is 500 to 900 ° C. 3. 前記第2の加熱処理工程における加熱処理温度が、500〜900℃であることを特徴とする請求項1または2に記載のシリカ系耐洗浄性加工被膜の形成方法。   The method for forming a silica-based cleaning-resistant processed film according to claim 1 or 2, wherein the heat treatment temperature in the second heat treatment step is 500 to 900 ° C. 前記シリカ系被膜形成用塗布液が、少なくともトリアルコキシシラン類および/またはテトラアルコキシシラン類からなる群より選ばれる少なくとも一種のアルコキシシラン化合物を有機溶媒中で加水分解処理して得られる反応生成物を含んでなるシリカ系被膜形成用塗布液であることを特徴とする請求項1〜3のいずれか1項に記載のシリカ系耐洗浄性加工被膜の形成方法。   A reaction product obtained by hydrolyzing at least one alkoxysilane compound selected from the group consisting of at least trialkoxysilanes and / or tetraalkoxysilanes in an organic solvent, wherein the coating liquid for forming a silica-based film is at least one selected from the group consisting of trialkoxysilanes and / or tetraalkoxysilanes. The method for forming a silica-based cleaning-resistant processed film according to any one of claims 1 to 3, which is a coating liquid for forming a silica-based film. 前記第2の加熱処理工程の後に、該第2の加熱処理工程における加熱処理が施された被膜に対して酸水溶液による洗浄処理を施す洗浄処理工程を有することを特徴とする請求項1〜4のいずれか1項に記載のシリカ系耐洗浄性加工被膜の形成方法。   5. The method according to claim 1, further comprising a cleaning step of performing a cleaning process with an acid aqueous solution on the coating film that has been subjected to the heat treatment in the second heat treatment step after the second heat treatment step. The method for forming a silica-based cleaning-resistant processed film according to any one of the above. 前記酸水溶液が、フッ化水素酸水溶液であることを特徴とする請求項5に記載のシリカ系耐洗浄性加工被膜の形成方法。   6. The method for forming a silica-based cleaning-resistant processed film according to claim 5, wherein the acid aqueous solution is a hydrofluoric acid aqueous solution. 前記基板が、金属配線パターンが形成されている基板であることを特徴とする請求項1〜6のいずれか1項に記載のシリカ系耐洗浄性加工被膜の形成方法。   The said board | substrate is a board | substrate with which the metal wiring pattern is formed, The formation method of the silica type washing | cleaning-resistant processed film of any one of Claims 1-6 characterized by the above-mentioned. 前記金属配線パターンの配線間距離が0.25μm以下であることを特徴とする請求項7に記載のシリカ系耐洗浄性加工被膜の形成方法。   The method for forming a silica-based cleaning-resistant processed film according to claim 7, wherein a distance between wirings of the metal wiring pattern is 0.25 μm or less. 基板上に形成され、選択的にエッチング処理により加工されてなり、前記加工により露出された断面の硬化緻密度が膜厚方向に均一になっていることを特徴とするシリカ系耐洗浄性加工被膜。   A silica-based cleaning-resistant coated film formed on a substrate and selectively processed by an etching process, wherein a cured density of a cross section exposed by the processing is uniform in a film thickness direction. . 前記露出された断面の膜厚方向の硬化緻密度の均一性が、前記選択的エッチング処理後の被膜に加熱処理を施すことにより実現されたものであることを特徴とする請求項9の記載のシリカ系耐洗浄性加工被膜。   The uniformity of the cured density in the film thickness direction of the exposed cross section is realized by performing a heat treatment on the film after the selective etching treatment. Silica-based cleaning resistant coating. 前記加熱処理の加熱温度が、500〜900℃としたことを特徴とする請求項10に記載のシリカ系耐洗浄性加工被膜。   The heating temperature of the said heat processing was 500-900 degreeC, The silica type cleaning-resistant processed film of Claim 10 characterized by the above-mentioned.
JP2003372154A 2003-10-31 2003-10-31 Method for forming silica-based washability working film, and the silica-based washability working film obtained by the same Pending JP2005136297A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003372154A JP2005136297A (en) 2003-10-31 2003-10-31 Method for forming silica-based washability working film, and the silica-based washability working film obtained by the same
KR1020040086255A KR100632163B1 (en) 2003-10-31 2004-10-27 A method of forming a silica-based submersible processing film, and a silica-based submersible processing film obtained by this method
DE102004052411A DE102004052411A1 (en) 2003-10-31 2004-10-28 Production of a film based on silicon dioxide used in the production of a semiconductor device comprises applying a coating solution on a substrate to form a film and drying, heat treating, etching, and further heat treating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003372154A JP2005136297A (en) 2003-10-31 2003-10-31 Method for forming silica-based washability working film, and the silica-based washability working film obtained by the same

Publications (1)

Publication Number Publication Date
JP2005136297A true JP2005136297A (en) 2005-05-26

Family

ID=34567049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372154A Pending JP2005136297A (en) 2003-10-31 2003-10-31 Method for forming silica-based washability working film, and the silica-based washability working film obtained by the same

Country Status (3)

Country Link
JP (1) JP2005136297A (en)
KR (1) KR100632163B1 (en)
DE (1) DE102004052411A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141361A (en) * 2010-03-18 2010-06-24 Renesas Technology Corp Semiconductor device and manufacturing method therefor
JP2011100858A (en) * 2009-11-06 2011-05-19 Asahi Kasei E-Materials Corp Method for forming insulating film
JP2012208206A (en) * 2011-03-29 2012-10-25 Olympus Corp Antireflection film and optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100858A (en) * 2009-11-06 2011-05-19 Asahi Kasei E-Materials Corp Method for forming insulating film
JP2010141361A (en) * 2010-03-18 2010-06-24 Renesas Technology Corp Semiconductor device and manufacturing method therefor
JP2012208206A (en) * 2011-03-29 2012-10-25 Olympus Corp Antireflection film and optical element

Also Published As

Publication number Publication date
DE102004052411A1 (en) 2005-06-09
KR20050041909A (en) 2005-05-04
KR100632163B1 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
JP3631236B2 (en) Method for producing silica-based organic coating
EP1035183B1 (en) Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
JP4021131B2 (en) Coating liquid for forming low dielectric constant silica-based coating and substrate with low dielectric constant silica-based coating
JPH09137121A (en) Coating liquid for silica coating and reparation thereof
TW200536621A (en) Method for producing polymer, polymer, composition for forming insulating film, method for producing insulating film, and insulating film
WO2005108469A1 (en) Method for forming organic silica film, organic silica film, wiring structure, semiconductor device, and composition for film formation
WO2006025500A1 (en) Method for manufacturing semiconductor device and semiconductor device manufactured by such method
US20130109123A1 (en) Diffusing agent composition and method of forming impurity diffusion layer
JP3998979B2 (en) Method for forming low dielectric constant silica-based film and semiconductor substrate with low dielectric constant film
US20040188846A1 (en) Porous film, composition and manufacturing method, interlayer dielectric film, and semiconductor device
US20040195660A1 (en) Composition for forming porous film, porous film and method for forming the same, interlayer insulator film, and semiconductor device
KR100823819B1 (en) Coating film forming method
JP3909912B2 (en) Silica-based thick film coating method
JP2000077410A (en) Forming method of multilayer interconnection structure
KR100334550B1 (en) Silica-based coating film on substrate and coating solution therefor
JP2005136297A (en) Method for forming silica-based washability working film, and the silica-based washability working film obtained by the same
JP4079383B2 (en) Silica-based coating solution
JP2004307693A (en) Composition for forming porous film, method for producing porous film, porous film, interlayer dielectric film and semiconductor device
JP3973335B2 (en) Film formation method
JP5128044B2 (en) Method for producing a silica-based coating material for coating a silicon substrate provided with a silicon substrate or a metal wiring pattern
JP3635443B2 (en) Method for forming SiO2 film
JP3228714B2 (en) Silica-based coating and method for producing the same
JP2007254678A (en) Composition for forming silica-based film and silica-based film
KR20110025207A (en) Electronic device having glass base containing sodium and method for manufacturing the same
JP2004096085A (en) Silica-based organic coating film and substrate equipped with it