KR20050007530A - 박막의 특성을 변화시키는 방법 및 상기 방법을 구현한 기판 - Google Patents

박막의 특성을 변화시키는 방법 및 상기 방법을 구현한 기판 Download PDF

Info

Publication number
KR20050007530A
KR20050007530A KR10-2004-7017951A KR20047017951A KR20050007530A KR 20050007530 A KR20050007530 A KR 20050007530A KR 20047017951 A KR20047017951 A KR 20047017951A KR 20050007530 A KR20050007530 A KR 20050007530A
Authority
KR
South Korea
Prior art keywords
thin layer
support
substrate
layer
top surface
Prior art date
Application number
KR10-2004-7017951A
Other languages
English (en)
Other versions
KR100855784B1 (ko
Inventor
올리비에 마르띠
볼로디미르 리상꼬
Original Assignee
위니베르시테 끌로드 베르나르 리옹 Ⅰ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 위니베르시테 끌로드 베르나르 리옹 Ⅰ filed Critical 위니베르시테 끌로드 베르나르 리옹 Ⅰ
Publication of KR20050007530A publication Critical patent/KR20050007530A/ko
Application granted granted Critical
Publication of KR100855784B1 publication Critical patent/KR100855784B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/0038Processes for creating layers of materials not provided for in groups B81C1/00357 - B81C1/00373
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • B81C1/00714Treatment for improving the physical properties not provided for in groups B81C1/0065 - B81C1/00706
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/082Shaping or machining of piezoelectric or electrostrictive bodies by etching, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming superconductor layers
    • H10N60/0576Processes for depositing or forming superconductor layers characterised by the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/72On an electrically conducting, semi-conducting, or semi-insulating substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/811Of specified metal oxide composition, e.g. conducting or semiconducting compositions such as ITO, ZnOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/825Heterojunction formed between semiconductor materials that differ in that they belong to different periodic table groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Abstract

본 발명은 지지대(2)의 표면에 배치되어 있는 박막(1)의 특성을 변경하는 방법에 관한 것으로, 마이크로- 및 나노-일렉트로닉스 및 마이크로- 및 나노-테크놀로지 분야에서 사용되는 기판을 형성하게 된다. 본 발명의 방법은 큰 특정 표면 영역을 갖는 나노 구조 지지대 상에 하나 이상의 박막(1)을 생성하고 그리고 지지대 안에 내부 응력을 생성하도록 상기 나노 구조 지지대를 처리하는 단계들로 이루어진다. 이러한 방식으로 인해, 상기 지지대에서는 상기 박막 평면에 변형이 발생되고 따라서 박막의 특성이 변하게 된다.

Description

박막의 특성을 변화시키는 방법 및 상기 방법을 구현한 기판{METHOD OF ALTERING THE PROPERTIES OF A THIN FILM AND SUBSTRATE IMPLEMENTING SAID METHOD}
본 발명은 특히 전자, 광전자, 초전도체 또는 압전 작용을 갖는 재료 분야에서 유리하게 적용된다.
예를 들어, 일부 전자 및 광전자 응용에서는 삼원 또는 사원 화합물(ternary or quaternary) 반도체 재료가 사용될 필요가 있을 것이다. 그러나, 에피택셜 성장에 의해 획득할 수 있는 높은 구조적 특성을 갖는 이러한 삼원 또는 사원 화합물 재료의 수는 제한되는데, 그 이유는 기판의 결정망이 반도체 층(성장되는)의 결정망에 채택되는 것이 거의 불가능하기 때문이다. 따라서, 격자 충돌에서 이루어진 헤테로에피탁시는 임계 두께 이상을 초과하는 구조적 결함에 따라 심각한 정도의 변형을 일으킴으로써, 성장되는 층에서 예상되는 물리적 특성의 경우 돌이킬 수 없는 원치 않는 변경이 일어나게 된다. 또한, 응력받은 화합물이나 단순 반도체 층은일부 특성들을 개선하는데 이용될 수 있다. 그리고, 상기 층들을 균질하게 변형시키는 기술이 유리할 것이다.
이러한 문제점을 해결하기 위해, 기판과 에피탁시형 박층 사이의 격자 매개 변수에서의 차이에 의해 유발된 스트레인을 흡수하는 버퍼 층들을 생성하는 것을 포함한 성장 기술들이 이용되었다.
첫 번째 기술은 컴플라이언트(compliant) 기판을 사용하여, 핵 층으로 작용하는 미세 막 위의 격자와 충돌하는 에피택시를 생성한다. 스트레인 에너지는 상기 막에 의해 탄력적으로 또는 유연하게 이완될 것이다.
핵 막의 탄력적인 컴플라이언시(compliancy)의 예시적 기술은 Romanov 등에 의한 Appl. Phys. Lett. 75, (1999) p.4118 에 설명되어 있다.
상기 기술은
- 특정 상부 표면을 갖는 두 개의 다공 층을 형성하도록 실리콘 기판 표면을 다공질화하고, 이때 표면 층은 낮은 다공도(porosity)를 나타내지만 상기 표면 층과 기판 사이에 삽입된 다공 층은 증가된 다공도를 나타내며,
- 결정체를 기계적으로 안정화시키도록 기판의 표면을 약하게 산화시키며(최대 단층),
- 실리콘의 미세 층의 에피택시 직전에 성장 구조에서 기판을 환원시키고, 그리고
- 실리콘의 미세 층 위에 SiGe 층의 격자와 충돌하여 성장을 생성하는
단계들로 구성된다.
Romanov 외의 사람들에 의해 설명된 프로세스는 다공성 실리콘 위에서 획득된 실리콘 막 위의 격자와 충돌하는 에피택셜 성장의 생성을 포함한다. 다공성 층들의 컴플라이언스(변형)의 효과는 관찰될 것이다.
컴플라이언트 기판에 관한 다른 연구가 수행되어 왔다. A.M.Jones에 의한 논문 Appl. Phys. Lett. 74(1999) p.1000은 실시예를 이용하여 자유 막 위에서의 성장 기술을 설명하고 있으며, 기판 위에 두 개의 층, 즉 희생 층이라 불리는 제 1 층 및 그후 에피탁시가 이루어지는 미세 막을 증착하는 것을 목적으로 한다. 상기 희생층(sacrificial layer)은 용액에 대한 화학적 공격 속도가 상기 막의 화학적 공격 속도보다 상당한 층이다. 리소그래픽 단계는 상기 화학적 공격 용액에 담겨 있는 샘플의 표면에 단지 하나의 디스크 막이 남도록 이루어진다. 상기 희생 층은 서브-에칭에 의하여 상기 디스크 아래에서 에칭된다. 상기 화학적 공격은 상기 막의 디스크 위에 에피탁시 층의 성장이 이루어지는 상기 막의 디스크를 운반하기 위하여 단지 하나의 필러(pillar)가 남을 때 중단된다. 상기 막은 상기 에피탁시 층의 변형을 제한하도록 변형할 수 있다. 이러한 방법의 장점은 상기 에피탁시 층의 스트레인이 비교적 탄성적으로 잘 이완된다는 것이다. 그러나, 이 방법은 구조의 취약함, 표면의 비평면성, 생산 공정의 어려움, 및 획득된 부분의 작은 크기 등과 같은 많은 단점을 가지고 있다.
오정렬된 퓨전(misaligned fusion) 방법 또는 <<트위스트 본딩(twist bonding)>> 이 또한 Y.H.Lo에 의한 논문 Appl. Phys. Lett. 59, (1991) p.2311에 인용되어 있으며, 막 스트레인을 전달하든 전달하지 않든 간에, 막의 결정학적인방향과 기판의 결정학적인 방향 사이의 회전 발생에 의한 기판 호스트를 설명하고 있다. 이는 막과 기판 사이의 인터페이스에 이탈된 망을 형성하게 한다. 이는 막 위에 스트레인 층의 성장을 생성한다. 스트레인 에너지 효과 아래에서, 상기 이탈(dislocations)은 모서리 특성 상에서 취할 방향을 변화시키게 되어 상기 에너지를 최소화시킨다. 이러한 기술의 장점은 기판 전체에서 막을 이동시킨다. 그러나, 결과적으로 이완되지도 않고 그리고 결과적으로 균질하게 이완되지는 않는다.
분자 접착 기술이나 웨이퍼 본딩 기술이 또한 인용될 수 있는데, 이는 D.M.Hansen의 논문 J. Cryst. Growth. 195, (1998) p.144에서 설명되는데, 표면-산화된 기판에서 문자 접착에 의한 막의 이동을 목적으로 한다. 층 스트레인의 성장은 이후 상기 막 위에서 생성된다. 인터페이스에 주어진 막의 원자들은 상기 스트레인 층을 이완하도록 약간 이동할 수 있다. 이러한 기술은 결과적으로 표면의 큰 사이즈가 주된 장점이 된다. 비록 컴플라이언스 효과가 관찰되더라도 상기 이완은 전체적이지 않다. 증착된 층들의 임계 두께가 증가되지만, 구조적 결함이 없는 두꺼운 층들을 생성하는 것은 여전히 가능하지 않다.
이러한 모든 컴플라이언스 유연한 또는 탄성적 기술들은 예상된 특성을 나타내지는 않는다. 상기 에피택셜 층에 의하여 상기 핵층의 유연한 또는 탄성적 변형은 관찰되지 않거나 혹은 단지 부분적으로만 관찰된다. 반면에, 결함이 없는 구역의 측면 치수들은 매우 작다.
종전 기술에서, 또 다른 공지된 해결책은 파라몰픽(paramorphic) 기술에 관한 것으로, 스트레인 막의 에피탁시를 이루고 이후 격자와 일치하는 에피탁시를 이루도록 상기 스트레인 막을 탄성적으로 이완시키는 단계들로 구성된다. 이 기술의 목적은 기판 위에 희생 층 및 에피탁시를 통한 스트레인 막을 연속적으로 증착시키는 것이다. 리소그래픽 단계는 이후 상기 디스크를 생성하도록 상기 막을 선택적으로 에칭한다. 습식 화학적 에칭은 서브-에칭에 의한 디스크 아래에서 상기 희생 층을 전체적으로 에칭하도록 실행된다. 상기 스트레인 막은 탄성적으로 이완하지만 더 이상 유지되지는 않는다. 상기 스트레인 막은 이후 기판 위에서 증착된다. 이 기술의 주된 장점은 격자와 일치하는 성장의 반복으로부터 나타난다. 그러나, 상기 획득된 디스크는 사이즈에 있어서 제한되고(몇 백 마이크론), 막의 초기 매개변수의 충돌은 작다(1% 정도).
D.S.Cao의 J. Appl. Phys. 65(1989) p.2451에서 설명되는 또 다른 해결책은 고정된 혹은 점진적인 복합 버퍼 층이나 심지어 수퍼네트워크(super-networks)를 이용한 메타몰픽(metamorphic) 방법이다. 상기 버퍼 층은 기판의 격자 매개변수와는 다른 격자 매개변수를 갖는다. 상기 버퍼 층의 성장은 임계 두께 보다 큰 두께로 생성된다. 상기 버퍼 층은 이탈의 발생을 통해 이완되고, 스트레인 받지 않은 격자 매개변수들을 회복한다. 원하는 활성 층의 성장은 본래 기판의 격자 매개 변수와 다른 격자 매개변수의 버퍼 층 위에서 구현된다. 이 기술의 첫 번째 어려운 점은 버퍼 층에서 전체적이지 않는 이탈의 제한으로부터 발생한다는 점이고, 따라서 상기 활성 층에서 항상 이탈이 발생함으로써 격자의 특성을 저하시키게 한다. 두 번째 어려운 점은 버프 층의 표면이 거칠어진다는 점으로서 상기 활성 층의 예상되는 특성을 저하시킬 수 있다.
종전 기술은 또한 문서 JP 2000 0091 627을 통해 발광 장치를 제조하는 기술을 설명하고 있으며, 이는 미세한 알갱이를 갖는 다중결정체의 증착을 하고 뒤이어 고온 처리가 되는 기술을 설명하고 있다. 이러한 어닐링(annealing)은 알갱이 크기를 증가시키는 원자 재배열을 가능하게 한다. 그러나, 이 기술은 균질한 재구성을 보장하지 못하고, 기판의 격자와 동일한 크기의 어떤 층의 에피택셜 성장을 이루지 못한다.
현재까지 알려진 서로 다른 기술들은 실제로 만족스럽지 않다. 기판의 격자와 동일한 크기의 어떤 층이 에피택셜 성장을 하는 기술을 이용할 수 있는 필요성이 분명히 있다.
본 출원인은 두 개 이상의 화학적 성분을 갖는 혼합물의 격자와 동일한 크기의 에피탁시를 가능하게 하기 위하여 기판의 격자 매개변수를 변경하는 기술을 이용할 수 있는 필요성을 제시하였다. 이러한 필요성을 충족하기 위하여, 본 출원인은 기판의 지지대 위에 스트레인이 직접적으로 혹은 간접적으로 형성되건 또는 형성되지 않던 간에 박층의 격자 매개변수를 변경하는 기술을 제시한다. 특히, 이 기술은 격자 매개변수가 변경되도록 할 뿐 아니라, 지지대의 표면에 증착된 박층의 다른 특성들이 마이크로일렉트로닉스, 나노일렉트로닉스, 또는 마이크로테크놀로지, 나노테크놀로지 분야에 사용될 수 있게 한다.
본 발명의 목적은 박층의 특성을 변경하는 프로세스에 관한 것이다. 상기 프로세스는
- 특정 상부 표면을 갖는 나노 구조 지지대 위에 하나 이상의 박층을 형성하고, 그리고
- 상기 박층의 상응하는 변형에 따라 박층의 특성을 변경하기 위해, 상기 박층의 평면에서의 변형을 일으키는 상기 지지대에서의 내부 스트레인을 생성함으로써 나노 구조 지지대를 처리하는
단계들로 구성된다.
본 발명은 지지대의 표면에 형성된 하나 이상의 박층을 포함하는 기판을 생성하는 분야에 관한 것으로, 이 기판은 마이크로일렉트로닉스, 나노일렉트로닉스, 혹은 일반적 의미에서 마이크로테크놀로지, 나노테크놀로지 분야에서 사용된다.
도 1은 본 발명에 따라 상기 프로세스에 적용된 기판을 도시하고 있다.
도 2a-2d는 에피택셜 성장에 따른 박층을 포함하는 기판의 제 1 실시예의 서로 다른 상을 도시하고 있다.
도 3, 3a, 4a, 5a는 본 발명에 따르는 프로세스를 이용한 기판의 제 1 실시예의 서로 다른 상을 도시하고 있다.
도 3b 및 4b는 본 발명에 따른 프로세스를 이용하여 기판의 제 2 실시예의 서로 다른 상을 도시하고 있다.
도 6a, 6b, 6c는 압전 재료에 사용된 본 발명의 프로세스의 서로 다른 특징적 상을 도시하고 있다.
선호되는 실시예에 따라, 상기 프로세스는 나노 구조체의 팽창이나 수축에 따른 변형을 보장하기 위해 특정 상부 표면을 갖는 나노 구조 지지대를 화학적으로 처리하는 것으로 이루어진다.
본 발명의 특징에 따라, 상기 프로세스는 금속, 반도체, 또는 유전체 재료를 바탕으로한 다양한 나노 구조체들로부터 특정 상부 표면을 갖는 나노 구조 지지대를 선택하는 것으로 이루어진다.
선호되는 실시예에 따라, 특정 상부 표면을 갖는 나노 구조 지지대의 처리 후, 상기 프로세스는 결정 재료의 박층의 에피택셜 성장으로 이루어진다.
특정 상부 표면을 갖는 나노 구조 지치에의 처리 후, 상기 프로세스는 박층 위의 에피택셜 성장에 의해 형성될 결정 재료의 격자 매개변수에 상응하는 격자 매개변수를 가질 수 있는 박층을 선택하는 것으로 이루어지는 것이 선호된다.
상기 프로세스는 특정 상부 표면을 갖는 나노 구조 지지대 위에 이미 응력을 받은 또는 응력을 받지 않은 박층을 형성하는 것으로 이루어지는 것이 선호된다.
다른 실시예에 따라, 상기 프로세스는 특정 상부 표면을 갖는 나노 구조 지지대 위에 상기 박층과 상기 특정 상부 표면을 갖는 나노 구조 지지대 사이에 하나 이상의 중간 층으로 이루어진다.
상기 프로세스는 상기 박층위에 반도체, 자기 재료, 초전도체 중에서 선택된 결정 재료의 에피택셜 성장을 형성하는 것으로 이루어지는 것이 선호된다.
상기 프로세스는 상기 특정 상부 표면을 갖는 나노 구조 지지대 위에 압전 특성을 갖는 재료로 만들어진 박층을 형성하는 것으로 이루어지는 것이 선호된다.
다른 실시예에 따라, 상기 프로세스는 압전 부분이 나타나도록 상기 박층 위에 리소그래픽 동작을 실행하는 것으로 이루어진다.
또 다른 실시예에 따라, 상기 프로세스는 상기 박층의 레벨에 전하가 발생하도록 상기 특정 상부 표면을 갖는 나노 구조 지지대를 변형시키는 것으로 이루어진다.
본 발명의 또 다른 목적은 마이크로일렉트로닉스, 나노일렉트로닉스, 혹은 마이크로테크놀로지, 나노테크놀로지용 기판을 제공하는 것이며, 이때 상기 기판은 특정 상부 표면을 갖는 나노 구조 지지대에 의해 형성되고, 후속 처리에 의해 변형되며, 기판의 표면은 상기 지지대에 따라 변형된 하나 이상의 박층이다.
상기 기판은 결정 반도체, 자기 재료 혹은 초전도체의 에피택셜 층(상기 박층위에 형성됨)을 포함하는 것이 선호된다.
상기 기판은 압전 재료로 이루어진 박층을 포함하는 것이 선호된다.
본 발명의 또 다른 목적은 광전 소자를 제작하도록 기판을 응용하는 것에 초점을 둔다.
본 발명의 또 다른 목적은 전자 부품을 제작하도록 기판을 응용하는 것에 초점을 둔다.
도 1에서와 같이, 본 발명의 목적은 지지대(2)의 평면 표면에 형성된 박층(1)의 특성을 변화시키는 프로세스에 관한 것으로, 마이크로일렉트로닉스, 나노일렉트로닉스 또는 마이크로테코놀로지, 나노테크놀로지 분야에서의 사용되는 기판(3)을 형성하게 된다.
본 발명에 따르는 프로세스는 특정 상부 표면을 나타내는 나노 구조 지지대(2)를 취하는 단계로 구성되며, 이때 상기 지지대는 서로 연결된 다양한 구조 형태의 나노결정체 및/또는 나노입자로 구성된 하나 이상의 층을 포함하고 있으며, 상기 나노결정체 및/또는 나노입자의 적어도 한 치수는 1,000㎚ 이하이고, 상기 각 나노결정체 및/또는 나노입자의 표면들의 합은 상기 층이 차지하고 있는 평면 표면보다 크다. 본 발명에 따른 상기 나노 구조체(2)를 구성하는데 다양한 나노 구조 재료들이 사용될 수 있으며, 그 예로는
- 금속 또는 반-금속의 특정 상부 표면을 갖는 나노 구조체,
- 가령, 다공성 실리콘 또는 타입 Ⅳ, Ⅳ-Ⅳ, Ⅲ-Ⅴ, Ⅱ-Ⅵ 등의 반도체 나노 구조체와 같은 특정 상부 표면을 갖는 반도체 나노 구조체, 또는
- TiO2(anatase, rutile), Al2O3, ZnO 등의 특정 상부 표면을 갖는 나노 구조의 유전체 재료들
이 있다.
본 발명에 따른 프로세스의 목적은 상기 나노구조 지지대(2)의 평면 표면에 하나 이상의 스트레인 박층(1)을 형성하는 것이다. 상기 스트레인 박층(1)은 가령, 분자 접착 수단을 이용한 접착 수단에 의하여 상기 나노 구조 지지대(2)에 직접 혹은 간접적으로 부착되어지거나, 또는 어떤 방법에 의해 증착되거나, 또는 상기 나노 구조 지지대(2)로부터 만들어진다.
상기 박층은 기판(3)에 적용되는 재료 가령, 금속, 유전체, 반도체, 또는 폴리머 등과 같은 재료로 만들어진다.
본 발명에 따른 프로세스의 목적은 상기 구조체 내에 내부 응력을 발생하도록 상기 나노 구조 지지대(2)를 처리하고, 따라서 상기 박층(1)의 평면에 변형을야기함으로써 박층의 특성을 변화시키게 된다. 상기 나노 구조 지지대(2)는 부피가 변하도록 즉, 팽창되거나 수축하도록 처리됨으로써, 상기 나노 구조 지지대(2)와 상기 박층(1) 사이의 인터페이스가 상기 나노 구조 지지대(2)와 동일한 변형을 겪게 된다. 상기 박층(1)은 따라서 팽팽해지거나 압축된다.
상기 처리에 의해 나노 구조 지지대(2)에서 생성된 내부 스트레인은 나노 구조 지지대(2)의 매크로스코픽(macroscopic) 변형을 야기하는 나노메트릭(nanometric) 스케일의 나노결정체 및/또는 나노입자의 변형에 의하여 부분적으로 또는 완전히 이완된다.
상기의 내부 스트레인을 생성하는데 이용될 수 있는 다수의 수단은 독립적으로 또는 결합하여 사용될 수 있다. 이러한 수단들 중 하나는 상기 나노결정체 및/또는 나노 입자들의 물리화학적 특성을 변경하는 것으로 구성된다. 예에서와 같이, 나노 결정체의 화학적 특성을 변경하게 되면, 나노 결정체를 형성하는 원자들의 원자간 평균 거리가 바뀌게 된다. 이러한 화학적 특성의 변화는 상기 나노 결정체의 변형에 의해 이완하는 나노메트릭 스케일의 내부 스트레인에 의하여 이루어지며, 동시에 상기 나노 구조 지지대의 매크로스코픽 변형을 야기한다. 다른 수단은 삽입 물질(가령, 증기 상태의 증착과정 동안)을 삽입함으로써 상기 나노결정체들 사이의 공간을 채우는 것으로 구성된다. 상기 추가되는 물질에는 변형되는 나노결정체들이 포함된다. 이러한 기술의 장점 중 하나는 나노결정체들 사이에 이루어진 증착물의 특성을 선택함으로써 상기 지지대의 전체 열 팽창 계수를 변경을 촉진하는 것으로서, 에픽택시 층의 특성에 상응하는 열 팽창 계수를 가지도록 한다. 이러한 변형을얻기 위하여 상기 나노 구조 지지대(2)의 처리 과정은 가령, 적절한 화학적 수단에 의하여 이루어진다.
본 발명에 따른 프로세스는 팽창 또는 수축 효과를 사용하여 상기 나노 구조 지지대(2)의 부피를 변화를 돕게 되고, 따라서 상기 지지대와의 인터페이스에서 상기 박층(1)의 팽창이나 수축과 같은 상응하는 변형을 보장하도록 한다. 이러한 프로세스는 상기 박층(1)의 특성들을 변화시키는데, 가령 물리적 또는 형태적 특성(두께, 격자 매개변수의 변화 등), 전기적 특성(반도체에서 가전도대 축퇴의 발생, 압전 층에 대한 전하의 출현, 유전체 상수의 변화, 규소에서 전자 및 홀 유동성에서의 변화와 같은 전기적 이동 특성의 변화), 자기적 특성(강자성체에 대한 결정체 대칭의 변화에 따른 히스테리시스 사이클에서의 변화) 또는 광학적 특성(광자의 흡수 에너지 변화, 반사율 등) 등을 변화시킨다.
본 발명에 따른 프로세스는 크기 제한을 없지만 소자들의 집합적 제조를 위한 나노테크놀로지나 마이크로테크놀로지에 적합한 기판(3)을 생성한다. 이는 제조 원가를 절감하게 되는 장점을 또한 갖고 있다.
도 2a-2d는 본 발명에 따른 프로세스에 의해 생산되고 완전 혹은 준-완전 격자에 적합한 에피택셜 층의 성장을 가능하게 하는 기판(3)의 제 1 실시예를 도시하고 있다.
도 2a는 결정체 구조의 나노메트릭 다공성을 가능하게 하는 프로세스에 의해서 혹은 지지대의 표면에 나노 구조 층의 성장을 가능하게 하는 프로세스에 의해서 부분적으로 나노 구조를 갖는 지지대(2)를 도시하고 있다. 상기 나노 구조의 지지대(2)는 나노 구조 층(22) 및 비-나노 구조 층(21)을 부분적으로 포함하고 있다. 물론, 상기 층(21)은 서로 다른 화학적 특성의 연속된 층들로 구성될 수 있다. 상기 층(21)은 변형 작용 이전에 상기 층(22)은에 대하여 변형될 수 있다. 비슷하게, 본 발명의 목적은 완전한 나노 구조의 지지대(2)와 함께 구현될 수 있다.
도시된 예에서, 상기 나노 구조 지지대(2)는 단결정 실리콘 층(21) 및 나노 구조의 다공성 실리콘 층(22)을 포함한다. 도 2b에서와 같이, 박층(1)은 상기 지지대 위에, 즉 나노 구조의 다공성 실리콘 층(22) 위에 형성된다. 상기 박층(1)은 InP(indium phosphorous)에 의해 구성되고 그리고 분자 제트(molecular jets) 등에 의한 에피택시를 통해 형성된다.
도 2c에서, 상기 지지대(2)는 가령 산화, 수소 첨가와 같은 화학적 처리를 받게 되고, 따라서 상기 나노 구조 지지대(2)에서 스트레인 상태가 크게 변화되게 함으로써 나노 구조체의 팽창이나 수축을 유발한다. 이러한 나노 구조 지지대(2)의 팽창이나 수축은 상기 나노 구조 지지대(2)와의 인터페이스에서 상기 박층(1)의 상응하는 팽창이나 수축을 유발한다. 나노 구조 지지대(2)의 수축 또는 팽창은 상기 인터페이스의 평면에서 상기 박층(1)의 격자 매개변수를 각각 감소시키거나 또는 증가시킨다.
본 발명에 따른 프로세스는 가령, 변형된 박층(1)의 자유 표면 상에서 완전한 격자의 에피택시(4) 성장을 진행하는 과정으로 이루어진다. 예를 들어, 인듐갈륨비소(InGaAs) 층의 에피택시는 변형된 InP의 박층 위에서 이루어질 수 있다.
도 3, 3b 및 4b는 본 발명에 따른 프로세스를 구현한 기판의 또 다른 실시예를 도시하고 있으며, 상기 프로세스는 박층을 갖는 나노 구조 지지대의 조립 단계를 없애는 것에 초점을 두었다. 도 3에서, 상기 지지대(2)는 결정 구조 부분의 나노메트릭 다공성화를 가능하게 하는 프로세스에 의해서 또는 나노 구조 층의 성장을 가능하게 하는 프로세스에 의해서 부분적으로 나노 구조화된다. 상기 지지대(2)는 비-나노 구조 층(21) 및 나노 구조 층(22)을 포함한다. 상기 층(21)은 상기 변형 작용 이전에 상기 층(22)에 대하여 스트레인될 수 있다. 상기 층들(21및 22)은 서로 다른 화학적 특성을 갖거나 혹은 그렇지 않을 수 있다. 예를 들어, 상기 지지대(2)는 단결정 실리콘 게르마늄(SiXGe1-X) 층(21) 및 나노 구조 실리콘 층(22)을 포함한다. 단결정(SiXGe1-X) 층(21)은 상기 박층(1)을 구성하기 위해 두께가 조절된다. 도 3b에서, 나노 구조 지지대는 단결정(SiXGe1-X) 박층(1)의 상응하는 변형을 보장하도록 처리된다. 앞서 설명된 바와 같이, 상기 변형 작용에서는 도 4b에 도시된 바와 같이 격자와 일치하는 갈륨비소(GaAs)와 같은 단결정질의 에피택시 작용(4)을 구현한 상기 인터페이스의 평면에서 단결정(SiXGe1-X)의 박층(1)의 격자 매개변수가 변화한다.
도 3a-5a는 도 3에 설명된 나노 구조 지지대(2)로부터 본 발명에 따른 프로세스를 실행하는 또 다른 실시예를 도시하고 있으며, 또한 상기 나노 구조 지지대(2)의 단결정 실리콘의 하나 이상의 중간 층(21) 위에 상기 박층(1)을 형성하는 것을 목적으로 한다. 상기 중간 층(21)의 두께를 선택하는 기준은 상기 박층(1)에 있어서와 동일하다. 박층(1)(가령, InP)은 단결정 실리콘의 상기 중간 층(21) 위에 형성된다. 도 4a에서, 상기 지지대(2)는 InP의 상기 박층(1)의 격자 매개변수의 변경을 가능하게 하는 변형을 위해 처리된다. 물론, 실리콘 단결정 층(21)의 격자 매개변수 또한 바뀌게 된다. 도 5a에서, 인듐갈륨비소(InGaAs)와 같은 결정 물질의 에피택시(4)는 InP의 박층(1) 상에 이루어질 수 있다. 이는 만일 상기 박층(1)이 다공성 나노구조 실리콘(22) 층에서보다 단결정 실리콘(21) 층에서 더욱 쉽게 형성될 경우에 이용될 수 있다. 일반적으로, 나노 구조 지지대(2)가 부분적으로 나노 구조화되는 경우, 상기 층(22)은 지지대의 나노 구조 부분을 나타내고, 상기 층(21)은 비-나노 구조 부분을 나타낸다.
앞서 설명한 바와 같이, 상기 박층(1)은, 상기 나노 구조 지지대(2)의 처리 후, 상기 박층(1) 위에서의 에피택셜 성장에 의해 형성될 결정 물질의 격자 매개변수에 상응하는 격자 매개 변수를 갖도록 선택된다. 상기 박층(1)은 이미 스트레인된 형태로 혹은 그렇지 않은 형태로 상기 나노 구조 지지대(2) 상에 형성되거나 만들어질 수 있다. 또한 상기 박층(1)은 이미 나노 구조화되었거나 혹은 아직 나노 구조화되지 않은 지지대(2) 위에 형성되거나 만들어진다.
상기 박층(1)은
- 상기 박층(1)은 변형 후, 기판(나노 구조화된 지지대 및 박층)의 과도한 굽어짐을 방지하기 위한 나노 구조 지지대(2)보다 충분히 가는 두께가 되어야 하고,
- 상기 박층(1)은 구조적 결함에 의해 변형이 생성됨으로써 탄성을 유지할 수 있도록 충분히 가는 두께가 되어야 하는
두 가지 기준의 함수로 결정된 두께를 갖는다.
일반적으로, 상기 박층의 특성은 변형 후 예상되는 변경된 물리적 특성에 대하여 선택될 것이다. 헤테로에피탁시의 특별한 경우, 상기 박층(1)을 구성하는 물질은 그 격자 매개변수들이 서로 가장 가까워질 수 있도록 에피탁시 처리되어야 하는 물질의 함수로서 선택될 것이다. 예를 들어, 상기 박층(1)은 박층(1) 위에 폴리머 또는 아래의 물질들로부터 선택된 결정 물질의 에피택셜 성장을 증착할 수 있다.
● 아래와 같은 반도체
- 4-4족 : Si, Ge, SixGe1-x, SiC, SixGeyC1-x-y
- 3-5족 : GaxAl1-xAs, GaxIn1-xAs, AlxIn1-xAs,
GaxIn1-xAsyP1-y, GaxAl1-xP, GaxAl1-xN, GaxIn1-xN, GaxIn1-xSb,
GaxAl1-xSb, (GaxIn1-x)1-yTlyAs, (GaxIn1-x)1-yTlyP,
- 2-4족 : ZnxCd1-xTeySe1-y, CdxHg1-xTe
● YbaCuO와 같은 초전도체
● 아래와 같은 자기 재료
- 철, 코발트, 니켈, 및 이들의 합금 및 일부 희귀한 토양과 같은 강자성체
- 상자성체 재료
앞서 설명한 바와 같이, 본 발명의 목적은 나노 구조 지지대(2) 위에 이미 형성되어 있는 박층(1)의 특성들이 변화될 수 있도록 하는 프로세스에 관한 것이다.
상기 프로세스는 후속 처리 과정에 의해 변형되고 상기 지지대 표면에는 지지대에 따라 변형된 하나 이상의 박층(1)이 형성되어지는 나노 구조 지지대(2)를 포함하는 기판을 생성한다. 상기 기판은 상기 박층(1)을 형성하는 어떤 물질의 박층을 포함하게 된다. 상기 기판의 적용예는 상기 박층(1)의 변형에 의하여 변화된 특성들을 나타내도록 전자 소자들을 구현한다. 이러한 기판의 또 다른 적용예는 구조의 변형에 따라 박층의 광학적 특성들이 변화될 가능성을 이용하여 광전자 소자를 만드는 것이다.
도 6a-6c는 박층의 압전 특성이 사용될 수 있도록 본 발명에 따른 프로세스를 응용한 또 다른 실시예를 도시하고 있다.
상기 응용예에 따라, 상기 프로세스는 압전 특성을 갖는 물질로 이루어진 하나 이상의 박층(1)을 나노 구조 지지대(2) 상에 형성하는 것으로 구성된다. 이후 도 6b에서와 같이, 압전 부분(z)이 남도록 상기 박층(1) 위에 리소그래픽 작용이이루어진다. 서로 다른 형태의 리소그래픽 작용 가령, 광학, 전자, 혹은 X 레이 등이 이용될 것이다.
앞서 설명된 바와 같은 변형을 보장하기 위하여 상기 나노 구조 지지대(2)를 처리함으로써 그에 상응하는 박층(1)의 변형이 이루어지며, 도 6c에서와 같이 상기 박층의 레벨에서, 특히 압전 부분(3)의 레벨에서 전하가 발생한다. 나노 구조의 다공성 지지대(2)의 처리 작용이 변형을 야기한 후, 상기 리소그래픽 작용은 실행될 것이다.
본 발명에 따른 프로세스는 도한 마이크로테크놀로지 또는 나노테크놀로지용기판을 생성한다. 이러한 방식으로, 상기 나노 구조 지지대 상에 형성된 상기 박층(1)이 압전 물질로 이루어진 경우, 제어된 형태의 소자들은 압전 특성들을 이용하여 획득될 수 있다.

Claims (16)

  1. 마이크로일렉트로닉스, 나노일렉트로닉스, 혹은 마이크로테크놀로지, 나노테크놀로지 분야에 사용되는 기판(3)을 형성하는 지지대(2)의 표면에 형성된 박층(1)의 특성을 변경하기 위한 프로세스에 있어서, 상기 프로세스는
    - 특정 상부 표면을 갖는 나노 구조 지지대(2) 위에 하나 이상의 박층(1)을 형성하고, 그리고
    - 상기 박층의 상응하는 변형에 따라 박층의 특성을 변경하기 위해, 상기 박층의 평면에서의 변형을 일으키는 상기 지지대에서의 내부 스트레인을 생성하도록 특정 상부 표면을 갖는 나노 구조 지지대(2)를 처리하는
    단계들을 포함하는 것을 특징으로 하는 박층의 특성 변경 프로세스.
  2. 제 1 항에 있어서, 나노 구조체의 팽창이나 수축에 상응하는 변형을 보장하도록 특정 상부 표면을 갖는 나노 구조 지지대(2)를 화학적으로 처리하는 단계를 포함하는 것을 특징으로 하는 박층의 특성 변경 프로세스.
  3. 제 1 항에 있어서, 금속, 반도체 또는 유전체 재료를 바탕으로 한 다양한 나노 구조체들 가운데에서 특정 상부 표면을 갖는 나노 구조 지지대(2)를 선택하는 단계를 포함하는 것을 특징으로 하는 박층의 특성 변경 프로세스.
  4. 제 1 항 또는 제 2 항에 있어서, 특정 상부 표면을 갖는 나노 구조 지지대(2)의 처리 후, 상기 박층 위의 결정질의 에피택셜 성장을 실행하는 단계를 포함하는 것을 특징으로 하는 박층의 특성 변경 프로세스.
  5. 제 4 항에 있어서, 특정 상부 표면을 갖는 나노 구조 지지대(2)의 처리 후, 상기 박층(1)에서의 에피택셜 성장에 의해 형성될 상기 결정질의 격자 매개변수에 상응하는 격자 매개변수를 가질 수 있는 박층을 선택하는 단계를 포함하는 것을 특징으로 하는 박층의 특성 변경 프로세스.
  6. 제 5 항에 있어서, 특정 상부 표면(2)을 갖는 나노 구조 지지대 위에 응력을 받거나 혹은 응력을 받지 않은 박층(1)을 형성하는 단계를 포함하는 것을 특징으로 하는 박층의 특성 변경 프로세스.
  7. 제 1 항에 있어서, 상기 박층(1)과 상기 특정 상부 표면을 갖는 나노 구조 지지대(2) 사이의 하나 이상의 중간 층을 특정 상부 표면을 갖는 상기 나노 구조 지지대(2) 위에 형성하는 단계를 포함하는 것을 특징으로 하는 박층의 특성 변경 프로세스.
  8. 제 4 항 또는 제 5 항 또는 제 7 항 중 어느 한 항에 있어서, 반도체 또는 초전도체 재료들로부터 선택된 결정질의 에피택셜 성장을 상기 박층 위에 형성하는단계를 포함하는 것을 특징으로 하는 박층의 특성 변경 프로세스.
  9. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, 압전 특성을 갖는 물질로 만들어진 박층을 특정 상부 표면을 갖는 상기 나노 구조 지지대(2) 위에 형성하는 단계를 포함하는 것을 특징으로 하는 박층의 특성 변경 프로세스.
  10. 제 9 항에 있어서, 압전 부분(z)을 드러내도록 상기 박층(1) 위에 리소그래픽 작용을 실행하는 단계를 포함하는 것을 특징으로 하는 박층의 특성 변경 프로세스.
  11. 제 9 항 또는 제 10 항에 있어서, 상기 박층 레벨에서 전하가 발생하도록 특정 상부 표면을 갖는 나노 구조 지지대(2)를 변형하는 단계를 포함하는 것을 특징으로 하는 박층의 특성 변경 프로세스.
  12. 마이크로일렉트로닉스, 나노일렉트로닉스, 혹은 마이크로테크놀로지, 나노테크놀로지용 기판에 있어서, 상기 기판은
    특정 상부 표면을 갖는 나노 구조 지지대(2)에 의해 형성되고 후속 처리에 의해 변형되며 그리고 기판의 표면에서는 상기 지지대에 따라 변형된 하나 이상의 박층이 형성되는 것을 특징으로 하는 기판.
  13. 제 12 항에 있어서, 상기 박층(1) 위에 형성되어지는 반도체 또는 초전도체 결정질의 에피택셜 층을 포함하는 것을 특징으로 하는 기판.
  14. 제 12 항에 있어서, 상기 박층(1)은 압전 물질로 만들어지는 것을 특징으로 하는 기판.
  15. 제 12 항에 따른 상기 기판을 이용하여 광전 소자를 제작하는 것을 특징으로 하는 기판 이용 방법.
  16. 제 12 항에 따른 상기 기판을 이용하여 전자 부품을 제작하는 것을 특징으로 하는 기판 이용 방법.
KR1020047017951A 2002-05-07 2003-05-07 박막의 특성을 변화시키는 방법 및 상기 방법을 구현한 기판 KR100855784B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0205731A FR2839505B1 (fr) 2002-05-07 2002-05-07 Procede pour modifier les proprietes d'une couche mince et substrat faisant application du procede
FR02/05731 2002-05-07
PCT/FR2003/001423 WO2003099707A2 (fr) 2002-05-07 2003-05-07 Procede pour modifier les proprietes d'une couche mince et substrat faisant application du procede

Publications (2)

Publication Number Publication Date
KR20050007530A true KR20050007530A (ko) 2005-01-19
KR100855784B1 KR100855784B1 (ko) 2008-09-01

Family

ID=29286361

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020047017951A KR100855784B1 (ko) 2002-05-07 2003-05-07 박막의 특성을 변화시키는 방법 및 상기 방법을 구현한 기판

Country Status (7)

Country Link
US (2) US7553369B2 (ko)
EP (1) EP1501757B1 (ko)
JP (2) JP4786178B2 (ko)
KR (1) KR100855784B1 (ko)
AU (1) AU2003263225A1 (ko)
FR (1) FR2839505B1 (ko)
WO (1) WO2003099707A2 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2839505B1 (fr) * 2002-05-07 2005-07-15 Univ Claude Bernard Lyon Procede pour modifier les proprietes d'une couche mince et substrat faisant application du procede
FR2857155B1 (fr) 2003-07-01 2005-10-21 St Microelectronics Sa Procede de fabrication de couches contraintes de silicium ou d'un alliage de silicium-germanium
RU2267832C1 (ru) * 2004-11-17 2006-01-10 Александр Викторович Принц Способ изготовления микро- и наноприборов на локальных подложках
US7687876B2 (en) * 2005-04-25 2010-03-30 Smoltek Ab Controlled growth of a nanostructure on a substrate
US7777291B2 (en) * 2005-08-26 2010-08-17 Smoltek Ab Integrated circuits having interconnects and heat dissipators based on nanostructures
FR2903810B1 (fr) * 2006-07-13 2008-10-10 Commissariat Energie Atomique Procede de nanostructuration de la surface d'un substrat
CN104600057B (zh) 2007-09-12 2018-11-02 斯莫特克有限公司 使用纳米结构连接和粘接相邻层
RU2010138584A (ru) 2008-02-25 2012-04-10 Смольтек Аб (Se) Осаждение и селективное удаление электропроводного вспомогательного слоя для обработки наноструктуры
DE102010046215B4 (de) 2010-09-21 2019-01-03 Infineon Technologies Austria Ag Halbleiterkörper mit verspanntem Bereich, Elektronisches Bauelement und ein Verfahren zum Erzeugen des Halbleiterkörpers.
US10032870B2 (en) * 2015-03-12 2018-07-24 Globalfoundries Inc. Low defect III-V semiconductor template on porous silicon

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607269A (en) * 1968-04-01 1971-09-21 Polaroid Corp Image-receiving elements and photographic processes employing same
DE2934426A1 (de) * 1979-08-25 1981-03-26 Rudi Ing.(grad.) 6700 Ludwigshafen Schmitt Messgeraet zur quantitativen bestimmung einer komponente einer gasmischung
US4758534A (en) * 1985-11-13 1988-07-19 Bell Communications Research, Inc. Process for producing porous refractory metal layers embedded in semiconductor devices
US4728591A (en) * 1986-03-07 1988-03-01 Trustees Of Boston University Self-assembled nanometer lithographic masks and templates and method for parallel fabrication of nanometer scale multi-device structures
US5238729A (en) * 1991-04-05 1993-08-24 Minnesota Mining And Manufacturing Company Sensors based on nanosstructured composite films
JPH04318922A (ja) * 1991-04-17 1992-11-10 Sumitomo Electric Ind Ltd 化合物半導体結晶の成長方法
JP3089732B2 (ja) * 1991-09-24 2000-09-18 住友電気工業株式会社 化合物半導体のエピタキシャル成長方法
FR2689912A1 (fr) * 1992-04-14 1993-10-15 Centre Nat Rech Scient Procédé de réalisation d'un réseau de discontinuités à une ou deux dimensions à la surface d'un substrat cristallin ou dans une structure complexe comportant un tel substrat.
US5374472A (en) * 1992-11-03 1994-12-20 The Regents, University Of California Ferromagnetic thin films
US5338430A (en) * 1992-12-23 1994-08-16 Minnesota Mining And Manufacturing Company Nanostructured electrode membranes
US5352651A (en) * 1992-12-23 1994-10-04 Minnesota Mining And Manufacturing Company Nanostructured imaging transfer element
US5459016A (en) * 1993-12-16 1995-10-17 Minnesota Mining And Manufacturing Company Nanostructured thermal transfer donor element
JP3250721B2 (ja) * 1995-12-12 2002-01-28 キヤノン株式会社 Soi基板の製造方法
JP3541690B2 (ja) * 1998-09-11 2004-07-14 松下電器産業株式会社 発光素子の製造方法
US6834149B1 (en) * 1999-02-09 2004-12-21 Xoetronics, Llc Optically confined birefringent chalcopyrite heterostructure devices and operating methods
US6372364B1 (en) * 1999-08-18 2002-04-16 Microcoating Technologies, Inc. Nanostructure coatings
JP2001223165A (ja) * 2000-02-10 2001-08-17 Hitachi Cable Ltd 窒化物半導体及びその製造方法
US20040195202A1 (en) * 2000-04-28 2004-10-07 Alexander Pechenik Method for making a nano-stamp and for forming, with the stamp, nano-size elements on a substrate
US6365059B1 (en) * 2000-04-28 2002-04-02 Alexander Pechenik Method for making a nano-stamp and for forming, with the stamp, nano-size elements on a substrate
US6787198B2 (en) * 2000-07-28 2004-09-07 Ekc Technology, Inc. Hydrothermal treatment of nanostructured films
US6541392B2 (en) * 2000-09-15 2003-04-01 Technology Ventures, L.L.C. Method for fabricating three dimensional anisotropic thin films
KR100934679B1 (ko) * 2000-10-17 2009-12-31 네오포토닉스 코포레이션 반응성 증착에 의한 코팅 형성
KR100831751B1 (ko) * 2000-11-30 2008-05-23 노쓰 캐롤라이나 스테이트 유니버시티 M'n 물의 제조 방법 및 장치
US6913697B2 (en) * 2001-02-14 2005-07-05 Science & Technology Corporation @ Unm Nanostructured separation and analysis devices for biological membranes
US20040033942A1 (en) * 2001-03-13 2004-02-19 Jackson Jennifer L Transriotion factors
US6992321B2 (en) * 2001-07-13 2006-01-31 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices utilizing piezoelectric materials
US7056751B2 (en) * 2002-11-20 2006-06-06 Reveo, Inc. Method and system for increasing yield of vertically integrated devices
DE10204895B4 (de) * 2002-02-06 2004-07-29 Diehl Munitionssysteme Gmbh & Co. Kg Verfahren zur Herstellung von Reaktivstoffen
JP2003282464A (ja) * 2002-03-27 2003-10-03 Seiko Epson Corp 半導体基板およびその製造方法
US6946410B2 (en) * 2002-04-05 2005-09-20 E. I. Du Pont De Nemours And Company Method for providing nano-structures of uniform length
US6853075B2 (en) * 2003-01-28 2005-02-08 Wayne State University Self-assembled nanobump array stuctures and a method to fabricate such structures
FR2839505B1 (fr) * 2002-05-07 2005-07-15 Univ Claude Bernard Lyon Procede pour modifier les proprietes d'une couche mince et substrat faisant application du procede
US6869671B1 (en) * 2002-06-03 2005-03-22 University Of Notre Dame Enabling nanostructured materials via multilayer thin film precursor and applications to biosensors
US6858521B2 (en) * 2002-12-31 2005-02-22 Samsung Electronics Co., Ltd. Method for fabricating spaced-apart nanostructures
US7067867B2 (en) * 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
US7135728B2 (en) * 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
US7132678B2 (en) * 2003-03-21 2006-11-07 International Business Machines Corporation Electronic device including a self-assembled monolayer, and a method of fabricating the same
US7115910B2 (en) * 2003-05-05 2006-10-03 Banpil Photonics, Inc. Multicolor photodiode array and method of manufacturing thereof
US7019391B2 (en) * 2004-04-06 2006-03-28 Bao Tran NANO IC packaging
DE102007038851A1 (de) * 2007-08-16 2009-02-19 Schott Ag Verfahren zur Herstellung von monokristallinen Metall- oder Halbmetallkörpern

Also Published As

Publication number Publication date
EP1501757B1 (fr) 2017-08-16
US20090226680A1 (en) 2009-09-10
US9102518B2 (en) 2015-08-11
FR2839505A1 (fr) 2003-11-14
EP1501757A2 (fr) 2005-02-02
AU2003263225A1 (en) 2003-12-12
JP2010212705A (ja) 2010-09-24
AU2003263225A8 (en) 2003-12-12
KR100855784B1 (ko) 2008-09-01
WO2003099707A3 (fr) 2004-04-08
US20050229837A1 (en) 2005-10-20
JP4786178B2 (ja) 2011-10-05
JP2005528987A (ja) 2005-09-29
FR2839505B1 (fr) 2005-07-15
WO2003099707A2 (fr) 2003-12-04
US7553369B2 (en) 2009-06-30

Similar Documents

Publication Publication Date Title
US9102518B2 (en) Process for modifying the properties of a thin layer and substrate applying said process
US5685946A (en) Method of producing buried porous silicon-geramanium layers in monocrystalline silicon lattices
Bimberg et al. Quantum dot heterostructures
KR101209151B1 (ko) 양자점 제조방법 및 양자점을 포함하는 반도체 구조물
Pchelyakov et al. Ge/Si heterostructures with coherent Ge quantum dots in silicon for applications in nanoelectronics
Hull et al. Interactions of moving dislocations in semiconductors with point, line and planar defects
JP2017028318A (ja) エピタキシャル固体半導体ヘテロ構造及びその製造方法
JP2005528987A5 (ko)
Barbagini et al. Critical aspects of substrate nanopatterning for the ordered growth of GaN nanocolumns
Chao et al. Substrate effects on the formation of flat Ag films on (110) surfaces of III-V compound semiconductors
JP4953045B2 (ja) 金属ナノ粒子埋込み材料の作製法
JP3527941B2 (ja) 半導体スーパーアトムとその結合体の作製方法
Fathauer et al. New class of Si‐based superlattices: Alternating layers of crystalline Si and porous amorphous Si1− x Ge x alloys
EP0263866B1 (en) Semiconductor device including an epitaxial layer on a lattice-mismatched single crystal substrate
US5951754A (en) Method of fabricating semiconductor quantum box
JP4854180B2 (ja) InSbナノ細線構造の作製方法
JP3529475B2 (ja) 半導体微小ドットの製造方法
JP2003142695A (ja) 微細構造素子の作製方法
Gray et al. Strain-induced formation of self-assembled nanostructures grown under kinetically limited conditions in the SiGe/Si epitaxial system
Wang et al. Fabrication of resonant-tunneling diodes by Sb surfactant modified growth of Si films on CaF/sub 2//Si
Rousseau et al. Stability of twist interfacial dislocations in (001) silicon bonded films
US20190115488A1 (en) Multilayer photoreceptor device, layers of which have different lattice parameters
JP2000183327A (ja) 量子ドットの作製方法並びに該方法により作製された量子ドット構造及び半導体量子ドットレーザ
WO2023192435A1 (en) Heterostructures with nanostructures of layered material
Subekti et al. The influence of substrate on the self-organised island nucleation and morphology of metalorganic chemical vapour deposited GaSb

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120816

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130805

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160801

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170811

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180801

Year of fee payment: 11