KR200489621Y1 - 유기 발광 다이오드(oled)를 제조하기 위한 세라믹 마스크 - Google Patents

유기 발광 다이오드(oled)를 제조하기 위한 세라믹 마스크 Download PDF

Info

Publication number
KR200489621Y1
KR200489621Y1 KR2020140008544U KR20140008544U KR200489621Y1 KR 200489621 Y1 KR200489621 Y1 KR 200489621Y1 KR 2020140008544 U KR2020140008544 U KR 2020140008544U KR 20140008544 U KR20140008544 U KR 20140008544U KR 200489621 Y1 KR200489621 Y1 KR 200489621Y1
Authority
KR
South Korea
Prior art keywords
mask
frame
silicon oxide
ceramic
glass materials
Prior art date
Application number
KR2020140008544U
Other languages
English (en)
Other versions
KR20150002027U (ko
Inventor
디이터 하아스
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20150002027U publication Critical patent/KR20150002027U/ko
Application granted granted Critical
Publication of KR200489621Y1 publication Critical patent/KR200489621Y1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본원에서 설명되는 실시예들은 일반적으로, 특히 OLED 분야에서의, 증착 챔버에서 이용되는 세라믹 마스킹 어셈블리에 관한 것이다. 일 실시예에서, 실드 마스크 어셈블리는, 패턴을 갖는 마스크 ― 상기 패턴은 그 패턴을 둘러싸는 복수의 마스크 지지부에 의해 정의되고, 마스크는 세라믹 재료로 제조됨 ―, 및 마스크에 연결된 프레임을 포함한다.

Description

유기 발광 다이오드(OLED)를 제조하기 위한 세라믹 마스크{A CERAMIC MASK FOR MANUFACTURING ORGANIC LIGHT-EMITTING DIODE(OLED)}
본원에서 개시되는 실시예들은 일반적으로 마스크에 관한 것이다. 보다 구체적으로, 본원에서 개시되는 실시예들은 일반적으로, 광전 디바이스(opto-electronic device)들을 제조하는 데에 이용되는 세라믹 마스크에 관한 것이다.
유기 재료들을 이용하는 광전 디바이스들이 많은 이유들로 점점 더 바람직해지고 있다. 이러한 디바이스들을 제조하는 데에 이용되는 많은 재료들은 비교적 값이 비싸지 않으며, 그에 따라 유기 광전 디바이스들은 무기 디바이스들에 비해 비용 장점들이 있을 가능성(potential)을 갖는다. 또한, 유기 재료들의 고유의 특성들, 이를 테면 유기 재료들의 가요성(flexibility)은, 특정 응용들에 대해, 이를 테면 가요성 기판들 상에서의 증착 또는 형성에 대해 유익할 수 있다. 유기 광전 디바이스들의 예들은, 유기 발광 디바이스(OLED)들, 유기 광트랜지스터들, 유기 광전지들, 및 유기 광검출기들을 포함한다.
OLED들에 대해, 유기 재료들은 통상의 재료들에 비해 장점들을 수행하는 것으로 여겨진다. 예를 들어, 유기 발광 층(organic emissive layer)이 광을 방출하는 파장은 일반적으로, 적절한 도펀트(dopant)들에 의해 용이하게 튜닝될(tuned) 수 있다. OLED들은, 디바이스를 통해 전류가 흐를 때에 광을 방출하는 얇은 유기 필름들을 이용한다. OLED들은 점점 더, 이를 테면 스마트 폰들 및 평판 디스플레이들, 조명(illumination) 및 백라이팅(backlighting)과 같은 응용들에서 이용하기 위한 관심있는(interesting) 기술이 되고 있다.
OLED 재료들의 증발 증착(evaporative deposition) 이전에 그리고 이러한 증발 증착 동안에, 런 마다의(from run to run) 작은 차이들 및 증착 동안의 온도 변화들은, 마스크(예를 들어, 기판 표면 상에 피쳐(feature)들을 전사(transfer)시키는 데에 이용되는 마스크)를 변형시키거나 부러지게(fractured) 한다. 프로세싱 동안의 온도 변동들 및 변화들은, 증발 패터닝을 위한 마스크의 용도(use)를 비교적 작은 기판들로 제한시켜 왔다. 또한, 마스크와 기판 표면 간의 열 팽창 계수의 미스매치(mismatch)는 종종, 기판 표면과 마스크 사이에 과도하게 넓은 갭을 생성할 수 있으며, 그에 의해, 증착되는 필름의 불균일성 또는 프로파일 변형을 초래할 수 있다. 또한, 열 프로세스 동안의 마스크로부터의 열 팽창은 종종, 기판과 접촉하는 표면에 대한 불충분한 평탄도(flatness)를 초래하며, 그에 의해 기판 표면 상에 증착되는 구조의 변형된(deformed) 또는 플레어형(flared) 프로파일을 초래한다.
따라서, 광전 디바이스들의 제조 프로세스 동안 최소의 열 변형을 갖는 개선된 마스크들이 계속적으로 요구되고 있다.
본원에서 설명되는 실시예들은 일반적으로, 광전 디바이스들을 제조하는 데에 이용되는 세라믹 실드 마스크 어셈블리(ceramic shield mask assembly)에 관한 것이다. 일 실시예에서, 실드 마스크 어셈블리는, 패턴을 갖는 마스크 ― 상기 패턴은 그 패턴을 둘러싸는 복수의 마스크 지지부들에 의해 정의되고, 마스크는 세라믹 재료로 제조됨 ―, 및 마스크에 연결된 프레임을 포함한다.
다른 실시예에서, 실드 마스크 어셈블리는, 프레임, 세라믹 프레임에 연결된 세라믹 마스크 ― 상기 세라믹 마스크는 적어도 하나의 패턴-정의 피쳐들을 포함함 ― , 및 패턴-정의 피쳐들의 하나의 측부 근처에 형성되는 복수의 마스크 지지부들을 포함한다.
본 고안의 상기 열거된 특징들이 상세히 이해될 수 있는 방식으로 앞서 간략히 요약된 본 고안의 보다 구체적인 설명이 실시예들을 참조로 하여 이루어질 수 있는데, 이러한 실시예들의 일부는 첨부된 도면들에 예시되어 있다. 그러나, 첨부된 도면들은 본 고안의 단지 전형적인 실시예들을 도시하는 것이므로 본 고안의 범위를 제한하는 것으로 간주되지 않아야 한다는 것이 주목되어야 하는데, 이는 본 고안이 다른 균등하게 유효한 실시예들을 허용할 수 있기 때문이다.
도 1은 일 실시예에 따른, 세라믹 마스크가 내부에 배치된 프로세싱 챔버의 단면도를 도시한다.
도 2는 프로세싱 챔버에서 이용되는 실드 마스크 어셈블리의 일 실시예의 상부도를 도시한다.
도 3은 프로세싱 챔버에서 이용되는 실드 마스크 어셈블리의 다른 실시예의 상부도를 도시한다.
이해를 촉진시키기 위해, 도면들에 대해 공통적인 동일한 엘리먼트들을 가리키기 위해 가능한 경우 동일한 도면부호들이 사용되었다. 일 실시예의 엘리먼트들 및 피쳐들이, 추가의 언급없이 다른 실시예들에 유익하게 통합될 수 있음이 고려된다.
본원에서 개시되는 실시예들은 일반적으로, 증착 동안 프로세싱 챔버 내에서 이용되는 실드 마스크 어셈블리, 특히, 세라믹 재료로 제조되는 실드 마스크 어셈블리에 관한 것이다. 세라믹 실드 마스크 어셈블리는, 기판 상에 재료들을 증착하는 동안, 기판 표면 상에 피쳐들을 전사시키기 위해 이용된다. 세라믹 실드 마스크 어셈블리는, 실드 마스크 어셈블리가 변형되는 것을 막기 위해 증착 프로세스 동안 최소의 열 팽창을 제공할 수 있으며, 실드 마스크 어셈블리의 변형은 원치않는 필름 불균일성을 바람직하지 않게 초래할 수 있다. 세라믹 실드 마스크 어셈블리는, 유기 디바이스의 발광 층의 증착을 위해 이용되며 ― 디스플레이의 상이한 컬러(differing color)들 각각은 세라믹 실드 마스크 어셈블리를 통해 개별적으로 증착됨 ―, 그리고 디스플레이 내에 존재하는 활성(active) OLED들의 일부 상에서의 증착 만을 허용하도록 설계된다(예를 들어, 적색 발광 층 만이 통과하여 증착되는 세라믹 실드 마스크 어셈블리, 단지 녹색 또는 청색 발광 층 만이 통과하여 증착되는 다른 세라믹 실드 마스크 어셈블리 등).
도 1은 일 실시예에 따른, 실드 마스크 어셈블리(107)를 갖는 프로세싱 챔버(100)의 일부를 도시한다. 프로세싱 챔버(100)는, 설명되는 실시예들과 함께 이용하기에 적합한 표준 프로세싱 챔버일 수 있다. 일 실시예에서, 프로세싱 챔버(100)는, 캘리포니아 산타클라라에 소재하는, Applied Materials Inc.의 자회사인 AKT America, Inc.로부터 입수가능한 챔버일 수 있다. 본원에서 논의되는 실시예들은, 다른 제조업자들에 의해 판매되는 그러한 챔버들을 포함하는 다른 챔버들 상에서 실행될 수 있다는 것을 이해해야 한다.
기판(102)이 정전 척(미도시)과 관련하여 프로세싱 챔버(100) 내에 위치될 수 있다. 기판(102)은 OLED의 증착에 적합한 기판일 수 있다. 일 실시예에서, 기판(102)은 실질적으로 유리로 구성된다. 기판(102)은 광범위한 치수들(예를 들어, 길이, 폭, 형상, 두께 등)로 이루어질 수 있다. 일 실시예에서, 기판(102)은 대략 1 미터의 길이(1 meter long) 및 1 미터의 폭(1 meter wide)을 갖는다. 이러한 실시예에서, 기판(102)은, 하부 표면(103) 위에 형성된 캐소드 층(104)을 갖는 것으로 도시되어 있다. 캐소드 층(104)은 인듐 주석 산화물(ITO)을 포함할 수 있다. 다른 실시예들에서, 캐소드 층(104)은 연속적이지 않으며, 그리고 OLED 층들(미도시)의 형성과 함께 기판(102) 상에 형성된다.
소스(108)는 기판(102) 및 캐소드 층(104) 아래에 위치된다. 일반적으로, 소스(108)는, 증착 가스(110)를 생성할 수 있는, 소스 보트(source boat) 또는 다른 컨테이너(container) 또는 저장소(receptacle)일 수 있다. 증착 가스(110)는, 캐소드 층(104) 위에 추가의 층들, 이를 테면, OLED 구조를 형성하기 위해 필요한 또는 요구되는, 발광 층, 정공 전달 층, 컬러 변경 층(color change layer) 또는 추가의 층들(미도시)을 증착하도록 구성될 수 있다. 일 실시예에서, 소스(108)는, 캐소드 층(104) 위에 발광 층(미도시)을 형성하고 그리고 이러한 발광 층 위에 컬러 변경 층을 형성하기 위한 증착 가스(110)를 생성한다. 다른 실시예에서, 소스(108)는 캐소드 층(104) 위에 컬러 발광 층(color emission layer)(미도시)을 형성하기 위한 증착 가스(110)를 생성한다. 전자 전달 층(미도시)과 같은 하나 또는 그 초과의 부가적인 층들이 캐소드 층(104) 위에 형성될 수 있다.
기판(102)과 소스(108) 사이에 실드 마스크 어셈블리(107)가 위치된다. 실드 마스크 어셈블리(107)는 실척대로 그려진 것이 아니며, 그리고 관련된 구조들과 비교하여, 길이, 폭 또는 높이에 있어서, 도시된 것 보다 더 작거나 더 클 수 있음이 이해된다. 일 실시예에서, 실드 마스크 어셈블리(107) 또는 그 구성요소들을 위한 적합한 재료들은, 우수한 열 전달 특성들 뿐 아니라 우수한 세기 및 내구성(durability)을 제공하는, 세라믹 재료, 이를 테면 도핑된 또는 도핑되지 않은 석영 재료, 유리 재료, 실리콘 함유 재료, 유전체 재료, 세라믹과 금속 재료의 합성물(composite), 또는 증착 프로세스 동안 최소의 열 팽창(예를 들어, 최소의 열 팽창 계수)을 제공하는 임의의 다른 적합한 재료들을 포함한다.
실드 마스크 어셈블리(107)는, 기판(102)의 적어도 일부의 커버리지(coverage)를 허용하는, 크기 및 형상으로 이루어질 수 있다. 일 실시예에서, 실드 마스크 어셈블리(107)는 2 미터 내지 3 미터의 길이 및 1.5 미터 내지 2 미터의 높이를 갖는다. 실드 마스크 어셈블리(107)는 200㎛ 미만, 이를 테면 100㎛의 두께를 가질 수 있다. 일 실시예에서, 실드 마스크 어셈블리(107)는 100㎛ 미만이다. 실드 마스크 어셈블리(107)는 프레임(112) 내에 위치되는 마스크(106)를 포함할 수 있다. 또한, 마스크(106)는 하나 또는 그 초과의 마이크로액츄에이터들(microactuators)(114)을 이용하여 프레임(112)에 연결될 수 있다. 프레임(112)은, 프레임(112)의 변형없이 또는 프레임(112)의 변형이 제한되는 상태로, 마이크로액츄에이터들(114)이 마스크(106) 상에서 작동할(act) 수 있게 하는 강성(rigidity)을 가질 수 있다. 일 실시예에서, 프레임(112)은 마스크(106)의 재료와 유사한 재료로 구성될 수 있다. 일 실시예에서, 마스크(106)와 함께 프레임(112)은, 우수한 열 전달 특성들 뿐 아니라 우수한 세기 및 내구성을 제공하는, 세라믹 재료, 이를 테면 도핑된 또는 도핑되지 않은 석영 재료, 유리 재료, 실리콘 함유 재료, 유전체 재료, 세라믹과 금속 재료의 합성물, 또는 증착 프로세스 동안 최소의 열 팽창(예를 들어, 최소의 열 팽창 계수)을 제공하는 임의의 다른 적합한 재료들로 제조될 수 있다. 비록 이러한 도면으로부터는 단지 2개의 마이크로액츄에이터들(114) 만을 볼 수 있지만, 프레임(112) 내에 마스크(106)를 위치시키기 위해 하나 또는 그 초과의 마이크로액츄에이터들(114)이 이용될 수 있다.
마스크(106)는 프레임(112) 내에 배치된다. 마스크(106)는, 요구되는 바에 따라, 프레임(112) 내로 교체가능하고(interchangeable) 그리고 프레임(112)으로부터 제거가능할 수 있다. 마스크(106)의 교체가 요구되는 특정 실시예들에서, 마스크(106)는, 프레임(112) 내에 배치된 현재의 마스크를 제거하고 새로운 마스크를 프레임(112) 내로 교체함으로써, 프로세싱 챔버(100)의 내부 또는 외부에서 교체될 수 있다. 요구되는 바에 따라, 프레임(112)은 변경되지 않는 상태로 유지될 수 있다. 프레임(112)은, 마스크(106)에 대한 저항(resistance)을 제공하기 위해 마스크(106) 보다 충분히 더 딱딱하다(stiffer). 프로세싱 동안 프레임(112) 보다 마스크(106)가 플라즈마와 주로 대면하기(faced) 때문에, 마스크(106)는 프레임(112) 보다 더 빠른 속도로 닳거나(worn out) 손상되는 경향이 있다. 따라서, 마스크(106)는, 프레임(112)을 교체하지 않으면서, 실드 마스크 어셈블리(107)로부터 독립적으로 교체가능하고 제거가능하도록 구성된다. 마이크로액츄에이터들(114)은, 마스크(106)를 정렬시키거나 스트레칭(stretch)하는 데에 이용될 수 있는 힘의 양(amount of force)을 가하기 위한 임의의 디바이스일 수 있다. 또한, 마이크로액츄에이터들(114)의 개수는 제한되는 것으로 의도되지 않는데, 왜냐하면 사용자의 요구(needs)에 기초하여 더 많거나 더 적은 마이크로액츄에이터들(114)이 존재할 수 있기 때문이다.
마스크(106)는 또한, 하나 또는 그 초과의 포인트들에서 마이크로액츄에이터(114)를 사용하지 않으면서 프레임(112)에 직접적으로 부착될 수 있다. 상기 설명된 실시예들에서, 마이크로액츄에이터들(114)은 2개의 마이크로액츄에이터들(114)이 서로의 맞은편 양측에(bilaterally) 형성되도록 마스크(106) 및 프레임(112)과 관련하여 도시된다. 이러한 실시예에서, 마이크로액츄에이터들(114)은 불균일한 방식(non-uniform fashion), 양측 방식(bilateral fashion)으로 위치될 수 있다. 대응하는(equivalent) 프레임(112)과 연결되는 직사각형 마스크(106)에서, 마스크(106)의 하나의 측부(side)는 용접(welding) 또는 다른 반영구적(semi-permanent) 부착 프로세스에 의해 프레임(112)에 부착될 수 있으며, 나머지 3개의 측부들은 복수의 마이크로액츄에이터들(114)을 이용하여 부착될 수 있다. 각각의 측부에서 이용되는 마이크로액츄에이터들(114)의 개수 및 배치(positioning)는, 배치, 양(quantity) 또는 그 조합들과 관련하여 비대칭적일 수 있다. 비록 본 예가 마스크(106)의 단지 하나의 측부 만이 반영구적으로 부착되는 것으로서 설명하고 있지만, 마이크로액츄에이터들이 마스크(106)와 프레임(112) 간의 연결부(connection)의 적어도 하나의 부분 내에 포함되는 한, 하나 또는 그 초과의 측부들 또는 측부들의 일부분들이 유사하게 부착될 수 있다.
도 2는 프로세싱 챔버(100) 내에 배치될 수 있는 실드 마스크 어셈블리(107)의 상부도를 도시한다. 상기 논의된 바와 같이, 실드 마스크 어셈블리(107)는, 복수의 마이크로액츄에이터들(114)에 의해 연결되는, 마스크(106) 및 프레임(112)을 포함한다. 대안적으로, 마스크(106) 및 프레임(112)은, 마스크(106)를 프레임(112)에 연결하기 위한, 후크 또는 볼트 부착(hook or bolt attaching) 또는 다른 적합한 용접 기술들을 이용함으로써, 연결될 수 있다. 마스크(106)는, 내측 프레임(inner frame)(103) 내에 위치되는 시트(sheet)(120)를 더 포함할 수 있다. 시트(120)는, 증착 프로세스 동안 기판(102) 상에 피쳐들을 전사시키기 위해, 기판(102)에 대한, 대략적으로 요구되는 크기 및 위치를 갖는 피쳐들을 제공하기 위한 패턴-정의 피쳐들(121)을 포함할 수 있다.
동작에 있어서, 복수의 마이크로액츄에이터들(114)을 이용하여 프레임(112)과 마스크(106) 사이를 연결하는 실시예에서, 마이크로액츄에이터들(114)은, 마스크(106) 및 패턴-정의 피쳐들(121)을 기판(102)에 대한 최종의 요구되는 크기 및 위치로 텐셔닝(tensioning)하는 것을 제공할 수 있다. 그런 다음, 마스크(106) 및 프레임(112)을 포함하는 실드 마스크 어셈블리(107)가 프로세싱 챔버(100) 내로 로딩될 것이다. 일단 적절하게 위치되면, 프로세스 챔버(100)는 이후 펌핑 다운되어, 온도가 안정화되고, 기판(102)을 수용할 준비가 된다. 그런 다음, 프로세스 챔버(100) 내로 기판(102)을 가져올 수 있으며, 이후 마스크(106)는 기판(102) 상의 대응하는 피쳐들과 정렬될 수 있다. 그 후에, 증착이 시작되고 진행됨에 따라, 프레임(112)과 함께 마스크(106)는 그런 다음 열 프로세스(thermal process)를 받을 수 있는데, 이는 열 프로세스 동안 프레임(112)과 함께 마스크(106)가 팽창되게 야기할 수 있다. 또한, 기판(102) 및 프레임(112)과 함께 마스크(106)는 종종 상이한 재료들로 제조될 수 있기 때문에, 이러한 구성요소들 간의 미스매치되는 열 팽창 계수는 열 프로세스 동안 상이한 정도의 열 팽창을 또한 초래할 수 있으며, 그에 의해 높은(high) 열 부하들 하에서 부품 응력 고장(parts stress failure) 또는 변형을 야기한다. 또한, 프레임(112)과 함께 마스크(106)와 기판(102) 간의 열 팽창 계수의 미스매치는 또한, 마스크(106)의 표면이 기판 표면과 평평하게 접촉할 수 없게 함으로써, 기판(102)과 마스크(106) 사이에 과도하게 넓은 갭을 초래할 수 있으며, 그에 의해 이를 테면 포커싱되지 않은(unfocused) 증착, 플레어형(flared) 증착, 또는 증착 프로파일 변형과 같은 증착 문제들을 불리하게 생성할 수 있다. 따라서, 프레임(112)과 함께 마스크(106)는, 열 프로세스 동안 최소의 열 팽창 계수를 갖는 재료들로 제조되도록 선택된다. 일 실시예에서, 마스크(106) 및 프레임(112)은 최소의 열 팽창 계수, 이를 테면 0.1 ㎛/(m*K) 미만, 예를 들어 약 0.01 ㎛/(m*K) 내지 약 0.1 ㎛/(m*K)를 갖는 세라믹 재료로 제조될 수 있다. 세라믹 재료들의 적합한 예들은, 우수한 열 전달 특성들 뿐 아니라 우수한 세기 및 내구성을 제공하는, 도핑된 또는 도핑되지 않은 석영 재료, 사파이어, 실리콘 카바이드, 유리 재료, 실리콘 함유 재료, 유전체 재료, 세라믹과 금속 재료의 합성물, 또는 증착 프로세스 동안 최소의 열 팽창(예를 들어, 최소의 열 팽창 계수)을 제공하는 임의의 다른 적합한 재료들을 포함한다.
일 실시예에서, 프레임(112) 및 마스크(106)는, 도핑된 또는 도핑되지 않은 유리 재료, 사파이어, 실리콘 카바이드 등으로 제조된다. 다른 실시예에서, 프레임(112) 및 마스크(106)는, 이를 테면 분산된(dispersed) 세라믹 입자들을 갖는 금속과 같은, 세라믹과 금속의 상이한 조성을 포함하는 합성 재료(composite material)로 제조될 수 있다. 예를 들어, 프레임(112) 및 마스크(106)는, 금속 도핑된 세라믹 재료들, 이를 테면 리튬 알루미늄 실리콘 산화물 유리 재료들, 알루미늄 실리콘 산화물 유리 재료들, 리튬 실리콘 산화물 유리 재료들, 알루미늄 질화물, 알루미늄 산화물, 이트륨 함유 재료들, 이트륨 산화물(Y2O3), 이트륨-알루미늄-가닛(yttrium-aluminum-garnet, YAG), 티타늄 산화물(TiO), 또는 티타늄 질화물(TiN)로 제조된다. 하나의 특정 실시예에서, 프레임(112) 및 마스크(106)는 리튬 알루미늄 실리콘 산화물 유리 재료들, 알루미늄 실리콘 산화물 유리 재료들, 리튬 실리콘 산화물 유리 재료들 등으로 제조된다.
상기 논의된 바와 같이, 프레임(112)과 비교하여, 마스크(106)가 플라즈마로부터의 부식성 종(corrosive species)에 대해 직접적으로 노출되기 때문에, 특정 실시예들에서, 마스크(106)는, 플라즈마 프로세스 동안 유지하도록, 더 플라즈마 내구성이 있거나(plasma durable) 열에 내성이 있는(heat resistant) 재료를 마스크(106)에 대해 제공하기 위해, 프레임(112)과 상이한 재료로 제조될 수 있다. 이러한 특정 실시예에서, 마스크(106)는 세라믹 재료로 제조되는 한편, 프레임(112)은, 요구되는 바에 따라, 세라믹 재료들, 유전체 재료들, 금속 재료들 또는 임의의 전도성 재료들을 포함하는 임의의 재료들에 의해 제조될 수 있다. 하나의 예에서, 마스크(106)는, 이를 테면 리튬 알루미늄 실리콘 산화물 유리 재료들, 알루미늄 실리콘 산화물 유리 재료들 또는 리튬 실리콘 산화물 유리 재료들과 같은 세라믹 재료들로 제조되며, 그리고 프레임(112)은, 이를 테면 알루미늄, 알루미늄 산화물, INVAR (64FeNi), ASTM Grade 5 티타늄 (Ti-6Al-4V), 티타늄, 알루미늄, 몰리브덴, 구리, 440 스테인리스 스틸, HASTELLOY
Figure 112014127714494-utm00001
합금 C-276, 니켈, 크롬-몰리브덴 스틸, 304 스테인리스 스틸, 다른 철 함유 혼합물(iron containing composition)들, 또는 이들의 조합들과 같은, 금속 재료들로 제조된다.
도 3은, 이를 테면 도 1에 도시된 프로세스 챔버(100)와 같은 프로세싱 챔버 내에서 이용될 수 있는 실드 마스크 어셈블리(300)의 다른 실시예의 상부도를 도시한다. 유사하게, 실드 마스크(300)는, 복수의 마이크로액츄에이터들(114)에 의해 연결되는, 마스크(320) 및 프레임(112)을 포함한다. 도 3에서 16개(16)의 마이크로액츄에이터들(114)로서 도시되어 있는 마이크로액츄에이터들(114) 각각은, 마스크 개구(316) 및 프레임 개구(318)에 연결되어, 실드 마스크 어셈블리(300)를 생성할 수 있다. 마스크 개구(316) 및 프레임 개구(318)는, 각각, 마스크(320) 및 프레임(112) 내의 홀(hole)들로서 도시되어 있다. 하지만, 프레임(112), 마스크(320), 또는 둘 모두에 마이크로액츄에이터(114)를 용접하거나 마이크로액츄에이터(114)를 후크 또는 볼트 부착하는 것과 같은 다른 연결부(connection)들이 이용될 수 있다. 또한, 마스크(320)는 내측 프레임(329) 내에 배치된 시트(327)를 포함한다. 시트(327)는, 내부에 형성된 복수의 패턴-정의 피쳐들(325)을 포함한다. 마이크로액츄에이터들(114)은, 비록 액츄에이터들로서 설명되기는 하지만, 마스크(320)를 정렬시키거나 스트레칭하는 데에 이용될 수 있는 힘의 양(amount of force)을 가하기 위한 임의의 디바이스일 수 있다. 또한, 마이크로액츄에이터들(114)의 개수는 제한되는 것으로 의도되지 않는데, 왜냐하면 사용자의 요구(needs)에 기초하여 더 많거나 더 적은 마이크로액츄에이터들(114)이 존재할 수 있기 때문이다.
상기 논의된 바와 같이, 마스크(320)는 또한, 하나 또는 그 초과의 포인트들에서 마이크로액츄에이터(114)를 사용하지 않으면서 프레임(112)에 직접적으로 부착될 수 있다. 도 1-2에 도시된 실드 마스크 어셈블리(107)와 달리, 마스크(320)는 복수의 대응하는 마스크 지지부(327)에 의해 정의되고 분리되는 복수의 패턴-정의 피쳐들(325)을 더 포함할 수 있다. 동작에 있어서, 마이크로액츄에이터들(114)은, 마스크(320) 및 패턴-정의 피쳐들(325)을 기판(102)에 대한 최종의 요구되는 크기 및 위치로 가져가도록 텐셔닝(tensioning)하는 것을 제공할 수 있다. 그런 다음, 마스크(320) 및 프레임(112)을 포함하는 실드 마스크 어셈블리(300)가 프로세스 챔버(100) 내로 로딩될 것이다. 일단 적절하게 위치되면, 프로세스 챔버(100)는 이후 펌핑 다운되어, 온도가 안정화되고, 기판(102)을 수용할 준비가 된다. 그런 다음, 프로세스 챔버(100) 내로 기판(102)을 가져올 수 있으며, 그리고 마스크(320) 상의 정렬 마크들(322)이 기판(102) 상의 대응 피쳐들과 정렬될 수 있게 된다. 최종적으로, 증착이 시작되고 진행됨에 따라, 증착 동안의 마스크(320) 및/또는 기판(102)에 대한 온도 변화들은, 마이크로액츄에이터들(114)을 관리하고 있는 컴퓨터-제어 알고리즘(computer-controlled algorithm)을 통해 보상될 수 있다. 마이크로액츄에이터들(114)은, 연속적으로, 특정 빈도수(frequency)로, 또는 산발적으로, 정렬 마크들(322)로부터 도출되는 정렬 데이터와 관련하여 마스크(320)를 정렬시키도록 구성될 수 있다. 따라서, 마이크로액츄에이터들(114)은, 기판(102) 상의 피쳐들과 상관되는 마스크(320)의 적절한 요구되는 정렬 및 크기를 유지할 수 있다.
다른 실시예들에서, 마이크로액츄에이터들(114)은, 기판(102) 상의 현재의 증착 구역에 국한되는(localized) 장력을 제공할 수 있다. 멀티-포인트-소스 어레이(multi-point-source array) 또는 라인-소스 구성에서의 증발 헤드/노즐들(도 1에서의 소스(108))의 위치는 스캔(scan) 동안 알려지기 때문에, 마스크(320)의 마이크로액츄에이터들(114)은, 마스크(320)가 기판(102)의 적어도 영향을 받는 구역(affected area) 위에 적절하게 정렬되도록, 조정할 수 있다. 이러한 실시예에서는, 헤드의 위치에서 순간적으로 그리고 국부적으로 정렬을 유지할 필요 만이 있는 것으로 여겨진다. 마스크(320)의 정렬의 보다 국부화된 제어는, 기판 정렬에 대해 마스크를 유지하는 과제(challenge)를 줄일 수 있다.
일 실시예에서, 프레임(112) 및 마스크(320)는, 도핑된 또는 도핑되지 않은 유리 재료, 사파이어, 실리콘 카바이드 등으로 제조된다. 다른 실시예에서, 프레임(112) 및 마스크(320)는, 이를 테면 분산된(dispersed) 세라믹 입자들을 갖는 금속과 같은, 세라믹과 금속의 상이한 조성을 포함하는 합성 재료로 제조될 수 있다. 예를 들어, 프레임(112) 및 마스크(320)는, 금속 도핑된 세라믹 재료들, 이를 테면 리튬 알루미늄 실리콘 산화물 유리 재료들, 알루미늄 실리콘 산화물 유리 재료들, 리튬 실리콘 산화물 유리 재료들, 알루미늄 질화물, 알루미늄 산화물, 이트륨 함유 재료들, 이트륨 산화물(Y2O3), 이트륨-알루미늄-가닛(YAG), 티타늄 산화물(TiO), 또는 티타늄 질화물(TiN)로 제조된다. 하나의 특정 실시예에서, 프레임(112) 및 마스크(320)는 리튬 알루미늄 실리콘 산화물 유리 재료들, 알루미늄 실리콘 산화물 유리 재료들, 리튬 실리콘 산화물 유리 재료들 등으로 제조된다.
상기 논의된 바와 같이, 프레임(112)과 비교하여, 마스크(320)가 플라즈마로부터의 부식성 종(corrosive species)에 대해 직접적으로 노출되기 때문에, 특정 실시예들에서, 마스크(320)는, 플라즈마 프로세스 동안 유지하도록, 더 플라즈마 내구성이 있거나(plasma durable) 열에 내성이 있는(heat resistant) 재료를 마스크(320)에 대해 제공하기 위해, 프레임(112)과 상이한 재료로 제조될 수 있다. 이러한 특정 실시예에서, 마스크(320)는 도핑된 또는 도핑되지 않은 유리 재료로 제조되는 한편, 프레임(112)은, 요구되는 바에 따라, 세라믹 재료들, 유전체 재료들, 금속 재료들 또는 임의의 전도성 재료들을 포함하는 임의의 재료들에 의해 제조될 수 있다. 하나의 예에서, 마스크(320)는, 이를 테면 리튬 알루미늄 실리콘 산화물 유리 재료들, 알루미늄 실리콘 산화물 유리 재료들 또는 리튬 실리콘 산화물 유리 재료들과 같은 세라믹 재료들로 제조되며, 그리고 프레임(112)은, 이를 테면 알루미늄, 알루미늄 산화물, INVAR (64FeNi), ASTM Grade 5 티타늄 (Ti-6Al-4V), 티타늄, 알루미늄, 몰리브덴, 구리, 440 스테인리스 스틸, HASTELLOY
Figure 112014127714494-utm00002
합금 C-276, 니켈, 크롬-몰리브덴 스틸, 304 스테인리스 스틸, 다른 철 함유 혼합물(iron containing composition)들, 또는 이들의 조합들과 같은, 금속 재료들로 제조된다.
본원에서 개시되는 실시예들은, 실드 마스크 어셈블리를 제조하는 데에 이용될 수 있는 세라믹 재료에 관한 것이며, 실드 마스크 어셈블리는 이러한 실드 마스크 어셈블리 내에 배치되는 마스크 및 프레임을 포함한다. 마스크 및 프레임을 제조하기 위해 선택되는 재료들은 열 프로세스 동안 최소의 열 팽창 계수를 갖도록 선택되기 때문에, 증착 프로파일 변형이 효율적으로 제거될 수 있으며 그리고 증착 프로세스 제어의 품질이 바람직하게 달성될 수 있다. 세라믹 재료에 의해 제조되는 실드 마스크 어셈블리는 보다 정확한 증착 생성물을 생성할 수 있다.
상기 내용이 본 고안의 실시예들에 관한 것이지만, 본 고안의 다른 및 추가의 실시예들이 본 고안의 기본적인 범위를 벗어나지 않으면서 안출될 수 있다.

Claims (17)

  1. 실드 마스크 어셈블리(shield mask assembly)로서,
    복수의 패턴-정의 피쳐(pattern-defining feature)들이 내부에 형성되는 마스크 ― 상기 마스크는 세라믹 재료로 제조됨 ― ; 및
    상기 마스크에 연결된 프레임을 포함하고,
    상기 마스크는 0.1 ㎛/(m*K) 미만의 열 팽창 계수를 갖는 재료를 포함하는,
    실드 마스크 어셈블리.
  2. 제 1 항에 있어서,
    상기 마스크는 도핑된 또는 도핑되지 않는 유리 재료를 포함하는,
    실드 마스크 어셈블리.
  3. 제 1 항에 있어서,
    상기 마스크는, 리튬 알루미늄 실리콘 산화물 유리 재료들, 알루미늄 실리콘 산화물 유리 재료들, 리튬 실리콘 산화물 유리 재료들로 이루어진 그룹으로부터 선택되는 재료를 포함하는,
    실드 마스크 어셈블리.
  4. 삭제
  5. 제 1 항에 있어서,
    상기 프레임은 도핑된 또는 도핑되지 않은 유리 재료를 포함하는,
    실드 마스크 어셈블리.
  6. 제 1 항에 있어서,
    상기 프레임은, 리튬 알루미늄 실리콘 산화물 유리 재료들, 알루미늄 실리콘 산화물 유리 재료들, 리튬 실리콘 산화물 유리 재료들로 이루어진 그룹으로부터 선택되는,
    실드 마스크 어셈블리.
  7. 제 1 항에 있어서,
    상기 마스크가, 리튬 알루미늄 실리콘 산화물 유리 재료들, 알루미늄 실리콘 산화물 유리 재료들, 리튬 실리콘 산화물 유리 재료들로 이루어진 그룹으로부터 선택되는 재료를 포함하면서, 상기 프레임은, 알루미늄, 알루미늄 산화물, INVAR (64FeNi), ASTM Grade 5 티타늄 (Ti-6Al-4V), 티타늄, 알루미늄, 몰리브덴, 구리, 440 스테인리스 스틸, 니켈, 크롬-몰리브덴 스틸, 304 스테인리스 스틸, 다른 철 함유 혼합물(iron containing composition)들, 또는 이들의 조합들에 의해 제조되는,
    실드 마스크 어셈블리.
  8. 제 1 항에 있어서,
    상기 프레임은 복수의 마이크로액츄에이터(microactuator)들에 의해 상기 마스크에 연결되는,
    실드 마스크 어셈블리.
  9. 제 1 항에 있어서,
    상기 마스크는 상기 프레임으로부터 제거가능한,
    실드 마스크 어셈블리.
  10. 실드 마스크 어셈블리로서,
    세라믹 프레임; 및
    상기 세라믹 프레임에 연결된 세라믹 마스크를 포함하며,
    상기 세라믹 마스크는,
    시트; 및
    상기 시트 내에 형성되는 적어도 하나의 패턴-정의 피쳐를 포함하고,
    상기 세라믹 마스크 및 상기 프레임은 0.1 ㎛/(m*K) 미만의 열 팽창 계수를 갖는 재료로 제조되는,
    실드 마스크 어셈블리.
  11. 제 10 항에 있어서,
    상기 시트는 세라믹 재료들을 포함하고, 상기 세라믹 마스크는 도핑된 또는 도핑되지 않은 유리 재료를 포함하며, 그리고 상기 프레임은 도핑된 또는 도핑되지 않은 유리 재료를 포함하는,
    실드 마스크 어셈블리.
  12. 제 10 항에 있어서,
    상기 세라믹 마스크는, 리튬 알루미늄 실리콘 산화물 유리 재료들, 알루미늄 실리콘 산화물 유리 재료들, 리튬 실리콘 산화물 유리 재료들로 이루어진 그룹으로부터 선택되는,
    실드 마스크 어셈블리.
  13. 제 10 항에 있어서,
    상기 마스크는 상기 프레임으로부터 제거가능한,
    실드 마스크 어셈블리.
  14. 제 10 항에 있어서,
    상기 프레임은, 리튬 알루미늄 실리콘 산화물 유리 재료들, 알루미늄 실리콘 산화물 유리 재료들, 리튬 실리콘 산화물 유리 재료들로 이루어진 그룹으로부터 선택되며, 그리고
    상기 세라믹 마스크가, 리튬 알루미늄 실리콘 산화물 유리 재료들, 알루미늄 실리콘 산화물 유리 재료들, 리튬 실리콘 산화물 유리 재료들로 이루어진 그룹으로부터 선택되는 한편, 상기 프레임은, 알루미늄, 알루미늄 산화물, INVAR (64FeNi), ASTM Grade 5 티타늄 (Ti-6Al-4V), 티타늄, 알루미늄, 몰리브덴, 구리, 440 스테인리스 스틸, 니켈, 크롬-몰리브덴 스틸, 304 스테인리스 스틸, 다른 철 함유 혼합물(iron containing composition)들, 또는 이들의 조합들에 의해 제조되는,
    실드 마스크 어셈블리.
  15. 제 10 항에 있어서,
    상기 세라믹 마스크는,
    상기 세라믹 마스크를 관통하는 하나 또는 그 초과의 마스크 개구들; 및
    상기 하나 또는 그 초과의 마스크 개구들을 통해 상기 프레임을 상기 세라믹 마스크에 결합하는 복수의 마이크로액츄에이터들을 더 포함하는,
    실드 마스크 어셈블리.
  16. 제 15 항에 있어서,
    상기 마이크로액츄에이터들은, 상기 세라믹 마스크 및 상기 프레임과 동일 평면 상에 있는(coplanar),
    실드 마스크 어셈블리.
  17. 삭제
KR2020140008544U 2013-11-20 2014-11-20 유기 발광 다이오드(oled)를 제조하기 위한 세라믹 마스크 KR200489621Y1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361906772P 2013-11-20 2013-11-20
US61/906,772 2013-11-20

Publications (2)

Publication Number Publication Date
KR20150002027U KR20150002027U (ko) 2015-05-28
KR200489621Y1 true KR200489621Y1 (ko) 2019-07-12

Family

ID=53277691

Family Applications (1)

Application Number Title Priority Date Filing Date
KR2020140008544U KR200489621Y1 (ko) 2013-11-20 2014-11-20 유기 발광 다이오드(oled)를 제조하기 위한 세라믹 마스크

Country Status (4)

Country Link
JP (1) JP3197439U (ko)
KR (1) KR200489621Y1 (ko)
CN (1) CN204424321U (ko)
TW (1) TWM508803U (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102216679B1 (ko) * 2014-09-16 2021-02-18 삼성디스플레이 주식회사 마스크 프레임 조립체 및 그 제조방법
WO2017045122A1 (en) * 2015-09-15 2017-03-23 Applied Materials, Inc. A shadow mask for organic light emitting diode manufacture
CN105449126B (zh) * 2015-12-22 2018-03-16 上海天马有机发光显示技术有限公司 一种蒸镀掩模板及其制作方法
US20190036026A1 (en) * 2016-02-03 2019-01-31 Applied Materials, Inc. A shadow mask with tapered openings formed by double electroforming using positive/negative photoresists
KR20180130989A (ko) * 2017-05-31 2018-12-10 주식회사 티지오테크 프레임 일체형 마스크
TW202140820A (zh) * 2020-03-31 2021-11-01 日商凸版印刷股份有限公司 蒸鍍遮罩、蒸鍍遮罩的製造方法及顯示裝置的製造方法
JP2021165424A (ja) * 2020-04-08 2021-10-14 株式会社ブイ・テクノロジー 蒸着マスク用フレーム、フレーム付き蒸着マスク、及び蒸着方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206613A (ja) * 2012-03-27 2013-10-07 Toppan Printing Co Ltd 有機el装置およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101135544B1 (ko) * 2009-09-22 2012-04-17 삼성모바일디스플레이주식회사 마스크 조립체, 이의 제조 방법 및 이를 이용한 평판표시장치용 증착 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206613A (ja) * 2012-03-27 2013-10-07 Toppan Printing Co Ltd 有機el装置およびその製造方法

Also Published As

Publication number Publication date
CN204424321U (zh) 2015-06-24
TWM508803U (zh) 2015-09-11
JP3197439U (ja) 2015-05-21
KR20150002027U (ko) 2015-05-28

Similar Documents

Publication Publication Date Title
KR200489621Y1 (ko) 유기 발광 다이오드(oled)를 제조하기 위한 세라믹 마스크
US8915213B2 (en) Division mask and method of assembling mask frame assembly by using the same
TWI463022B (zh) 遮罩組件及其製造方法
JP4909152B2 (ja) 蒸着装置及び蒸着方法
JP4971723B2 (ja) 有機発光表示装置の製造方法
TWI680345B (zh) 主動對準的精細金屬罩幕
JP5612156B2 (ja) 蒸着方法、蒸着装置、及び有機el表示装置
US8962383B2 (en) Multi-nozzle organic vapor jet printing
US9039478B2 (en) Apparatus for manufacturing deposition mask assembly for flat panel display
TWI433942B (zh) 光罩總成
TWI244354B (en) Deposition mask, manufacturing method thereof, display unit, manufacturing method thereof, and electronic apparatus including display unit
US10644239B2 (en) High precision, high resolution collimating shadow mask and method for fabricating a micro-display
US8616930B1 (en) Depositing apparatus and method for manufacturing organic light emitting diode display using the same
KR20160150034A (ko) 진공 증착 장치, 증착막의 제조 방법 및 유기 전자 디바이스의 제조 방법
JPH10298738A (ja) シャドウマスク及び蒸着方法
CN105789479A (zh) Oled及其制备方法、以及oled显示装置
JP5557653B2 (ja) 薄膜蒸着装置及びこれを利用した有機発光ディスプレイ装置の製造方法
CN109837519B (zh) 成膜装置、成膜方法及有机el显示装置的制造方法
US10476019B2 (en) Organic optoelectronic device and method for manufacturing the same
JP2008305560A (ja) 有機el表示装置の製造方法
TWI720178B (zh) 用於生產有機發光二極體的精細金屬光罩
JP2008223067A (ja) 成膜用マスク部材、成膜用マスク部材の製造方法、マスク成膜方法、および成膜装置
CN112824558B (zh) 成膜装置、使用成膜装置的成膜方法及电子器件的制造方法
KR100378922B1 (ko) 플라스틱 박막형 전계 발광 표시소자의 제조방법
JP2009064740A (ja) 蒸着方法及び蒸着装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
REGI Registration of establishment