KR20040110816A - Catalytic oxidation and adsorption agent for removing the odor and VOCs and its use - Google Patents

Catalytic oxidation and adsorption agent for removing the odor and VOCs and its use Download PDF

Info

Publication number
KR20040110816A
KR20040110816A KR1020030040278A KR20030040278A KR20040110816A KR 20040110816 A KR20040110816 A KR 20040110816A KR 1020030040278 A KR1020030040278 A KR 1020030040278A KR 20030040278 A KR20030040278 A KR 20030040278A KR 20040110816 A KR20040110816 A KR 20040110816A
Authority
KR
South Korea
Prior art keywords
catalytic oxidation
vocs
adsorption agent
adsorbent
organic compounds
Prior art date
Application number
KR1020030040278A
Other languages
Korean (ko)
Inventor
김윤
Original Assignee
김윤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김윤 filed Critical 김윤
Priority to KR1020030040278A priority Critical patent/KR20040110816A/en
Publication of KR20040110816A publication Critical patent/KR20040110816A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J43/00Implements for preparing or holding food, not provided for in other groups of this subclass
    • A47J43/20Shapes for preparing foodstuffs, e.g. meat-patty moulding devices, pudding moulds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/196Products in which the original granular shape is maintained, e.g. parboiled rice
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P20/00Coating of foodstuffs; Coatings therefor; Making laminated, multi-layered, stuffed or hollow foodstuffs
    • A23P20/20Making of laminated, multi-layered, stuffed or hollow foodstuffs, e.g. by wrapping in preformed edible dough sheets or in edible food containers

Abstract

PURPOSE: To provide a catalytic oxidation and adsorption agent capable of obtaining clean air by implanting ions of manganese, calcium and sodium into a synthetic zeolite with superior adsorptive and catalytic power, thereby forming a complex and improving strong oxidizing power, thereby completely removing malodor and volatile organic compounds, and a method for using the catalytic oxidation and adsorption agent. CONSTITUTION: The catalytic oxidation and adsorption agent for removing malodor and volatile organic compounds is characterized in that the catalytic oxidation and adsorption agent is prepared by supporting an inorganic oxidizer comprising 10,000 to 80,000 mg of potassium permanganate, 100 to 5,000 mg of sodium carbonate and 1,000 to 50,000 mg of sodium hypochlorite per 1 liter of water onto a synthetic zeolite, and the catalytic oxidation and adsorption agent is consisted of 96 to 99 wt.% of synthetic zeolite, 0.3 to 2.0 wt.% of potassium permanganate, 0.1 to 1.0 wt.% of sodium carbonate and 0.3 to 2.0 wt.% of sodium hypochlorite. The method for using the catalytic oxidation and adsorption agent for removing malodor and volatile organic compounds is characterized in that 0.368 to 1.102 kg of target gas is treated in 1 kg of the catalytic oxidation and adsorption agent for removing malodor and volatile organic compounds.

Description

악취 및 휘발성 유기화합물질 제거용 촉매 산화 및 흡착제 및 이의 사용방법 {Catalytic oxidation and adsorption agent for removing the odor and VOCs and its use}Catalytic oxidation and adsorption agent for removing odors and volatile organic compounds and its use {Catalytic oxidation and adsorption agent for removing the odor and VOCs and its use}

본 발명은 악취 및 휘발성 유기화합물질(Volatile Organic Compounds, 이하 VOCs라 칭함)을 제거하기 위한 촉매 산화(catalytic oxidation) 및 흡착(adsorption)제 및 이의 사용방법에 관한 것으로, 좀 더 상세하게는 각종 석유제품과 휘발성 액상물질의 저장, 적하, 하역 및 합성 유기화합물질 제조시설의 공정 배출물질 등에서 발생되는 화학가스, 휘발성유기화합물질 및 악취를 흡착과 촉매 산화를 통하여 완전 산화 분해하는 안전성이 높고 사용이 간단하며, 2차 오염물질을 배출하지 않는 촉매 산화 및 흡착제 및 이의 사용방법에 관한 것이다.The present invention relates to a catalytic oxidation and adsorption agent and a method of using the same to remove odors and volatile organic compounds (VOCs). Highly safe and easy to use for oxidative decomposition and decomposition of chemical gases, volatile organic compounds and odors generated from the storage and loading of products and volatile liquid substances, and the process emissions from synthetic organic compound manufacturing facilities. It is simple and relates to a catalytic oxidation and adsorbent that does not emit secondary pollutants and methods of use thereof.

휘발성 유기화합물질, 즉 VOCs란 "탄화수소류중 레이드 증기압이 10.3킬로 파스칼(또는 1.5psia)이상인 석유화학제품을 일컫는 것으로, 유기용제 기타 물질로서 환경부장관이 관계 중앙행정기관의 장과 협의하여 고시하는 물질(대기환경보전법 시행령 제39조제1항)"로 정의되며, US EPA에서는 "VOCs는 대기중에서 태양광선에 의해 질소산화물(NOx)과 광화학적 산화반응을 일으켜 지표면의 오존농도를 증가시켜 스모그 현상을 일으키는 유기화합물질"로 정의하고 있다.Volatile organic compounds, ie VOCs, are petrochemical products with a vapor vapor pressure of more than 10.3 kilo Pascals (or 1.5 psia) in hydrocarbons. These are organic solvents and other substances that the Minister of Environment, in consultation with the head of the relevant central administrative agency. Substance (Article 39 (1) of the Enforcement Decree of the Atmospheric Environment Conservation Act) is defined as US EPA. "VOCs cause photochemical oxidation reactions with NOx by sunlight in the air, increasing the ozone concentration on the surface and causing smog. Organic compounds that cause this.

VOCs의 특성을 살펴보면 여러 가지가 있으나, 대표적인 예로 물질자체가 인체에 유해성(방향족 탄화수소: 벤젠, 톨루엔, 자일렌 등, 할로겐 탄화수소: Cl, F를 포함하는 탄화수소)을 가지며, 지표면 부근에서 오존의 생성에 관여하여 결과적으로 지구 온난화에 간접적으로 기여한다는 점이다.When looking at the characteristics of VOCs, there are a number of examples, but the representative substance itself is harmful to the human body (aromatic hydrocarbons: benzene, toluene, xylene, etc., halogen hydrocarbons: hydrocarbons containing Cl, F), and ozone generation near the surface Is contributing indirectly to global warming.

고농도 VOCs에 노출시에는 마취작용(중추신경계 억제), 현기증, 마비 및 사망 등 급성장애를 일으키며, 물질별 특이독성은 하기 표 1과 같고, 오존생성은 하기 표 2와 같다.Exposure to high concentrations of VOCs causes acute disorders such as anesthesia (inhibition of the central nervous system), dizziness, paralysis and death. Specific toxicity of each substance is shown in Table 1 below, and ozone production is shown in Table 2 below.

물질matter 건강장해Health disorder 벤젠benzene 조혈기능장애(혈구감소증, 재생 불량성 빈혈), 부정맥, 발암성(백혈병)Hematopoietic dysfunction (cytopenia, aplastic anemia), arrhythmia, carcinogenicity (leukemia) 할로겐화 탄화수소Halogenated hydrocarbons 간독성, 신독성, 심장독성(부정맥, 돌연사), 동물에서 발암성Hepatotoxicity, renal toxicity, cardiotoxicity (arrhythmia, sudden death), carcinogenicity in animals 메탄올Methanol 시력상실, 대사성 산증Blindness, metabolic acidosis 포름알데히드Formaldehyde 알레르기성 피부염, 폐 기능 저하, 동물에서의 발암성Allergic dermatitis, reduced lung function, carcinogenicity in animals 노르말헥산Normal hexane 말초신경 장애Peripheral Nerve Disorder

VOCs의 대기중 화학반응Atmospheric Chemical Reactions of VOCs 비 고Remarks 대기중의 VOCs의 가장 중요한 역할은 NOx와 같이 존재하여 OH 라디칼(Radical)과 반응, 오존을 생성시켜서 광화학 옥시단트의 원인물질이 됨.VOC + 2NO + 2O2→ H2O + 2NO2+ R'C(O)R"NO2+ hv → NO + OO + O2+ M → O3+ M따라서, VOC + 3O2→ H2O + O3+ R'C(O)R"The most important role of VOCs in the atmosphere is the presence of NOx, which reacts with OH radicals and generates ozone, causing photochemical oxidants.VOC + 2NO + 2O 2 → H 2 O + 2NO 2 + R 'C (O) R "NO 2 + hv → NO + OO + O 2 + M → O 3 + M Thus, VOC + 3O 2 → H 2 O + O 3 + R'C (O) R" NOx와 같이 존재하는 VOC가 오존의 생성원인이 됨VOCs present with NOx cause ozone

우리나라 현대사회는 1980년 이후 급속한 산업의 발전으로 국민복지의 향상과 소득증대를 도모하여 왔으나 산업경제의 부산물인 각종 원료와 폐기물로부터 악취와 VOCs 등의 오염물질을 배출하여 왔다. 1996년 여천석유화학단지에서 석유정제및 석유화학제품 제조과정에서 공정 중에 VOCs가 배출되어 주민들의 악취 오염 호소 등 큰 민원을 발생시킨 바 있으며, 1997년 시화지역 악취 민원의 원인 중 상당부분이 VOCs의 배출로 인한 것으로 추정되고 있다.The modern society of Korea has been trying to improve national welfare and increase income since the rapid development of industry since 1980, but has emitted pollutants such as odors and VOCs from various raw materials and waste which are by-products of the industrial economy. In 1996, VOCs were released during the process of petroleum refining and petrochemical production at Yeocheon Petrochemical Complex, causing large complaints such as complaints of odor pollution from residents.In 1997, a large part of the causes of odor complaints in Sihwa area It is estimated to be due to emissions.

이러한 VOCs의 처리방법은 크게 나누어 VOC 물질을 회수/재사용하는 방법과 분해하는 방법이 있다. 배출되는 VOC가 단일 배출구에서 비교적 높은 농도로 배출되고 경제성이 있는 경우(즉, 회수비용이 구입비용보다 적은 경우)에는 회수시설을 설치하는 것이 바람직하다. 활성탄 흡착(Carbon adsorption), 세정(Scrubbing), 저온응축(Cryogenic Condensation)은 회수가 가능한 기술이다. VOCs의 회수가치가 충분히 있을 경우 회수시설의 설치 및 운영이 효율적이나, VOCs가 단일물질이 아닌 혼합물질로 되어 있거나 유해물질인 경우 또는 회수가치가 없을 경우 회수시설 보다는 분해시설을 설치하는 것이 바람직하며, 열소각(Thermal Oxidation), 촉매소각(Catalytic Oxidation), 생물여과(Bio-Filtration)등은 VOCs의 분해시 이용가능한 기술이며 그 특성은 하기 표 3과 같이 요약할 수 있다.The treatment methods of these VOCs can be divided into the methods of recovering / reusing VOC materials and decomposing them. If the released VOCs are discharged at a relatively high concentration from a single outlet and are economical (ie, the cost of recovery is less than the cost of purchase), it is advisable to set up a recovery facility. Carbon adsorption, scrubbing and cryogenic condensation are recoverable technologies. If the recovery value of the VOCs is sufficient, the installation and operation of the recovery facility is efficient. However, if the VOCs are mixtures or hazardous substances rather than a single substance, or if there is no recovery value, it is preferable to install a decomposition facility rather than a recovery facility. , Thermal Oxidation, Catalytic Oxidation, Bio-Filtration, etc. are available techniques for the decomposition of VOCs and their characteristics can be summarized as shown in Table 3 below.

제어기술Control technology 자본비Capital cost 운영비Operating costs 실제현장에서의사용여부Use in the actual field 공정의융통성Process flexibility 대용량처리능력Mass processing capacity 저 농도 오염물질에 대한 적용가능성Applicability to Low Contaminants 열소각흡 착흡 수응 축생물여과촉매산화광촉매산화Heat Incineration Absorption Absorption Livestock Filtration Catalyst Oxidation Photocatalytic Oxidation 고고저고중중중High and low 고중중중저중저High, medium, low, low 0000×(0)××0000 × (0) ×× 00××00000 ×× 000 000××××000 ×××× 00000××00000 ××

아울러, 탈취제에 관련된 국내 선행특허들을 살펴보면, 한국 등록특허 제32511호에서는 효모에 대하여 미강을 배합하고, 제올라이트를 가하여 반죽, 발효시킨 다음, 황산철을 혼합 및 건조시킨 악취처리제를 개시하고 있고, 한국 등록특허 제139559호에서는 활성탄화된 섬유와 부직포 및 그 제조방법을 개시하고 있다. 또한, 한국 특허출원번호 제88-017920호에서는 모더나이트계 천연 제올라이트를 200∼350℃로 열처리한 후 0.8N 이하의 염산 수용액으로 산처리하고, 이어서 0.7N 이하의 염화칼슘 수용액으로 칼슘이온 교환시키는 것을 특징으로 하는 천연 제올라이트를 이용한 이산화탄소 흡착제의 제조방법을 개시하고 있다.In addition, looking at the domestic prior patents related to the deodorant, Korean Registered Patent No. 332511 discloses a malodor treatment agent by mixing rice bran with yeast, adding zeolite, kneading and fermenting, and then mixing and drying iron sulfate. Patent No. 139559 discloses activated carbon fibers and nonwoven fabrics and a method of manufacturing the same. In addition, in Korean Patent Application No. 88-017920, the mordenite-based natural zeolite is heat treated at 200 to 350 ° C., followed by acid treatment with an aqueous hydrochloric acid solution of 0.8 N or less, followed by calcium ion exchange with an aqueous calcium chloride solution of 0.7 N or less. Disclosed is a method for producing a carbon dioxide adsorbent using a natural zeolite.

그러나 이러한 종래의 악취 및 VOCs 처리방법의 단점을 살펴보면 악취제거효율이 현격히 낮거나, 초기 건설비용이 많이 들며, 2차 폐기물이 발생되며, 가동비용도 비경제적이기 때문에, 현장에 적용시 실질적으로 그 이용가치가 현격히 적었다는 것이다. 특히, 열소각 장치의 경우 보조연료의 비용 때문에 비교적 운영비가 많이 들고 가스유량이 늘어나 체류시간이 짧아지고 연소가스의 혼합이 잘 이루어지지 않을 경우 불완전 연소가 되므로 유량변동이 심한 경우에는 부적합하다. 또한 가스 유량이 증가하면 연소실 온도가 떨어져 처리효율이 낮아지며, 일반적으로 저 농도 VOCs 처리에는 비용이 효과적이지 못하다.However, when looking at the disadvantages of the conventional odor and VOCs treatment method, since the odor removal efficiency is significantly lower, the initial construction cost is high, the secondary waste is generated, and the operating cost is also uneconomical, it is practically used in the field The value was significantly lower. In particular, in the case of a thermal incinerator, the operating cost is high due to the cost of auxiliary fuel, the gas flow rate is increased, so the residence time is shortened and incomplete combustion is not performed when the combustion gas is not well mixed, which is not suitable in the case of severe fluctuations in the flow rate. In addition, the increased gas flow rate lowers the combustion chamber temperature, lowering the treatment efficiency and is generally not cost effective for treating low concentration VOCs.

역시 촉매 소각장치의 경우, 연료소요량이 적으며 낮은 온도에서 조작이 가능하나, 초기비용이 많이 들며 촉매독이 있고 때로는 먼지를 먼저 제거해야 하고 재생할 수 없는 폐촉매는 지정 폐기물로 처리해야 해야 하는 단점이 있다.Catalytic incinerators also require less fuel and can be operated at lower temperatures. However, waste catalysts that require high initial costs, catalyst poisons and sometimes dust removal and non-recyclable waste must be treated as designated wastes. have.

이렇게 불완전하게 설치운영되거나 미처리된 악취 및 유해가스가 주변으로 확산되면, 자연환경을 파괴할 뿐만 아니라 인류를 위협하는 환경재앙으로 우리에게 돌아올 것이다.If these incompletely installed or unprocessed odors and harmful gases spread around, they will return to us as environmental disasters that not only destroy the natural environment but also threaten humanity.

일반적으로 악취나 VOCs 등을 흡착법으로 처리하는 경우, 흡착제로서 활성탄이나 제올라이트 등의 담체(Media)를 사용하고 있으나, 처리효율이 매우 낮고 2차 오염으로 폐기물이 발생하는 등의 부작용이 나타나고 있다. 기존의 활성탄은 야자각 숯, 종려각 숯, 갈탄 숯, 목탄 및 소회, 무연탄 숯 및 석유 코크(Coke) 등 우리나라에서는 거의 자원이 없는 것으로, 100%의 원자재를 수입하여 임가공하거나 완제품을 수입하여 활성탄을 제조하고 생산하였던 것이다(Smisek and cerny, 1970). 이러한 원자재의 수입은 외화를 낭비하며, 국가 경쟁력 제고에도 바람직하지 못하다고 판단될 뿐 아니라, 제조공정 중 800-1000℃의 온도 범위에서 일어나는 탄소의 산화반응으로 발생되는 가스(수증기, 이산화탄소 등)와 산세 과정의 약품(염화아연, 인산, 황산 등의 무기약품)은 장치부식과 2차 환경오염을 발생시키고, 제조공정의 복잡성 등 단점을 지니고 있는 것이다. 또한, 활성탄의 VOCs 제거능력을 살펴보면 정유 리포머와 휘발류 부분에서 더욱 규제치가 강화되고 페인트와 카페트 제조업 분야에서도 포름알데히드와 유기용제에 대해서 규제치가 강화되었기 때문에, 고기능의 불연성 흡수제에 대한 수요가 급속히 늘고는 있으나, 가스의 성상에 따라서 다소 차이는 있지만, 10∼36%의 낮은 흡착율 뿐 아니라 수명(사용기간)이 매우 짧아 경제성이 없는 것으로 나타났다.In general, when odor or VOCs are treated by adsorption, a carrier such as activated carbon or zeolite is used as an adsorbent. However, side effects such as waste generation due to secondary pollution are very low. Existing activated carbon has almost no resources in Korea, such as coconut shell charcoal, palm shell charcoal, lignite charcoal, charcoal and ash, anthracite charcoal and petroleum coke, and imports 100% raw materials to process or import finished products to activate activated carbon. Was prepared and produced (Smisek and cerny, 1970). Imports of such raw materials waste foreign currency and are not considered to be desirable to enhance national competitiveness. In addition, gas (water vapor, carbon dioxide, etc.) and pickling generated by oxidation of carbon in the temperature range of 800-1000 ° C during the manufacturing process Chemicals in the process (inorganic chemicals such as zinc chloride, phosphoric acid and sulfuric acid) cause device corrosion and secondary environmental pollution, and have disadvantages such as complexity of the manufacturing process. In addition, the ability to remove VOCs from activated carbon shows that the demand for high-performance non-flammable absorbents is rapidly increasing due to the tightening of regulations on refinery oil reformers and gasoline, and the regulation of formaldehyde and organic solvents in the paint and carpet manufacturing sectors. However, although there are some differences depending on the properties of the gas, as well as a low adsorption rate of 10 to 36%, the service life (use time) is very short, it was found to be economical.

이에 합성제올라이트가 매우 크게 주목을 받고 있다. 이 분야에 일본의 엔지니어링 업체들은 실리카가 성분이 많이 들어있는 친수성 합성제올라이트를 이용하여 VOCs 포집장치를 개발하고 있다.Synthetic zeolites are receiving great attention. Japanese engineering firms in this area are developing VOCs capture devices using hydrophilic synthetic zeolites that are high in silica.

벨기에 화학자들이 제올라이트를 이용하여 과량의 공기를 주입하여 연료 소모량을 감소시키고 이산화탄소 발생량을 감소시키는 내부연소 엔진의 흡관(tailpipe)배출물로부터 산화질소(NOx) 성분을 제거하는 방법을 개발하였다[Angew. Chem. Int. Ed.,39,2934(2000)].Belgian chemists have developed a method for removing nitrogen oxide (NOx) from tailpipe emissions of internal combustion engines that inject excess air using zeolite to reduce fuel consumption and reduce carbon dioxide emissions [Angew. Chem. Int. Ed., 39, 2934 (2000).

오사카 대학공학부의 安保正日 교수는 다수의 세공(Micropore)을 갖는 제올라이트에 분자수준으로 구조를 제어한 산화티탄 광촉매를 고분산하여, 질소산화물(NOx)을 선택성이 좋게 무해한 질소와 산소로 분해하는 것에 성공했다. 또한, 산화티탄의 광촉매 반응은 자외선광에서만 진행하였으나, 이 교수는 산화티탄에 크롬과 바나듐 등을 이온주입함으로써 가시광에서 효율적으로 광촉매반응이 진행하는 제2세대 산화티탄 광촉매의 개발에도 성공하였다. 제올라이트를 촉매 담체로 한 신기능의 발현과 고 활성화를 도모하는 동시에 이온 주입에 의해 광의 이용범위를 가시광까지 확대하는 등 제올라이트를 광촉매의 본격적인 응용에 연계시키는 성과를 이룬 것이다(일본화학공업일보, 12.12. 1998).Prof. Ahn Seong-yu of the University of Osaka's Department of Engineering highly disperses the titanium oxide photocatalyst with molecular structure control in zeolites with many micropores to decompose nitrogen oxides (NOx) into harmless nitrogen and oxygen. Succeeded in doing. In addition, the photocatalytic reaction of titanium oxide proceeded only in ultraviolet light, but Professor Lee succeeded in developing the second generation titanium oxide photocatalyst in which photocatalytic reaction proceeds efficiently in visible light by ion implantation of chromium and vanadium into titanium oxide. It has achieved the result of linking zeolite to full-fledged application of photocatalysts, such as expression and high activation of new functions using zeolite as a catalyst carrier, and extending the range of use of light to visible light by ion implantation (Japan Chemical Industries, 12.12. 1998).

이에 본 발명에서는 8대 악취와 휘발성 유기화합물질(VOCs)을 동시에 제거시킬 수 있는 촉매 산화 및 흡착제로, 현재 사용되고 있는 담체(Media)에 의한 흡착방법과 강력한 산화력을 갖는 무기산화제로 이루어진 조성물의 기술을 접목시킨 신소재로써, 표면적이 넓어 흡착능력이 우수한 흡착제와 산화력이 우수한 무기산화제의 조성물을 가역적으로 흡착물질에 결합시켜 복합체를 형성하고, 산화력이 강하고 흡착력이 우수한 촉매 산화 및 흡착제를 연구한 결과, 악취와 VOCs의 제거능력이 탁월한 촉매 산화 및 흡착제를 개발할 수 있었고, 기존의 처리시스템에 직접적용이용이하며, 고효율 저비용으로 악취 및 VOCs을 무해한 물질로 산화분해시켜 주며, 담체(촉매 산화 및 흡착제)의 흡착탑 내에서의 자체 재생이 가능하여 2차 폐기물의 발생을 억제할 수 있는 우수한 촉매 산화 및 흡착제를 개발하였고, 본 발명은 이에 기초하여 완성되었다.Therefore, the present invention is a catalytic oxidation and adsorbent that can remove the eight odors and volatile organic compounds (VOCs) at the same time, the technology of the composition consisting of the adsorption method by the media (media) currently used and inorganic oxidizing agent having a strong oxidizing power As a new material incorporating, the composition of adsorbent with high surface area and inorganic oxidizer with good oxidizing ability is reversibly bonded to the adsorbent to form a composite, and research on catalytic oxidation and adsorbent with strong oxidizing power and excellent adsorption power, It was able to develop catalytic oxidation and adsorbent with excellent ability to remove odors and VOCs, and can be directly applied to existing treatment systems, oxidatively decomposes odors and VOCs to harmless substances at high efficiency and low cost, and supports carriers (catalytic oxidation and adsorbents). Self-regeneration in the adsorption tower of the Excellent catalytic oxidation and adsorbents have been developed and the present invention has been completed based on this.

따라서, 본 발명의 목적은 흡착능력과 촉매능력이 우수한 합성제올라이트에 망간, 칼슘 및 나트륨 등을 이온주입함으로써 가역적으로 결합시켜 복합체를 형성하고, 강력한 산화력을 향상시킴으로써, 악취는 물론 VOCs를 완전하게 처리함으로써 청정한 공기를 얻을 수 있는 악취 및 VOCs 제거용 촉매 산화 및 흡착제를 제공하는데 있다.Accordingly, an object of the present invention is to reversibly combine manganese, calcium, and sodium with synthetic zeolites having excellent adsorption and catalytic ability to form a complex, and to enhance strong oxidizing power, thereby completely treating odors and VOCs. The present invention provides a catalytic oxidation and adsorbent for removing odors and VOCs to obtain clean air.

본 발명의 다른 목적은 상기 촉매 산화 및 흡착제의 사용방법을 제공하는데 있다.Another object of the present invention is to provide a method of using the catalytic oxidation and the adsorbent.

상기 목적을 달성하기 위한 본 발명의 촉매 산화 및 흡착제는 물 1ℓ당 과망간산칼륨 10,000∼80,000mg, 탄산나트륨 100∼5,000mg 및 차아염소산나트륨 1,000∼50,000mg을 포함하는 무기산화제를 합성 제올라이트에 담지시켜 제조되며, 합성 제올라이트 96∼99중량%, 과망간산칼륨 0.3∼2.0중량%, 탄산나트륨 0.1∼1.0중량% 및 차아염소산나트륨 0.3∼2.0중량%로 이루어지는 것을 특징으로 한다.The catalytic oxidation and adsorbent of the present invention for achieving the above object is prepared by supporting an inorganic oxidizing agent containing 10,000 to 80,000 mg of potassium permanganate, 100 to 5,000 mg of sodium carbonate and 1,000 to 50,000 mg of sodium hypochlorite per liter of water on a synthetic zeolite. And 96 to 99% by weight of synthetic zeolite, 0.3 to 2.0% by weight of potassium permanganate, 0.1 to 1.0% by weight of sodium carbonate and 0.3 to 2.0% by weight of sodium hypochlorite.

또한, 상기 다른 목적을 달성하기 위한 본 발명에 따른 전술한 촉매 산화 및 흡착제의 사용방법은, 상기 흡착제 1kg에 대하여 대상 가스 0.368∼1.102kg을 처리하는 것을 특징으로 한다.In addition, the method of using the above-described catalytic oxidation and the adsorbent according to the present invention for achieving the above another object is characterized in that 0.368 to 1.102 kg of the target gas is treated with respect to 1 kg of the adsorbent.

이하 본 발명을 좀 더 구체적으로 살펴보면 다음과 같다.Looking at the present invention in more detail as follows.

제올라이트는 나트륨, 칼륨의 알칼리 금속과 칼슘 등의 알칼리 토금속을 함유하고 또한 결정수를 함유한 알루미늄의 규산염 광물이며, 그 종류는 매우 많으나 보편적으로 분포하는 것은 클로놉틸롤라이트와 모우더나이트의 2종류가 있다. 천연제올라이트의 생성조건과 환경을 해석하기 위해서 광물학자들에 의해서 시발되었던 제올라이트 합성의 연구는 1940년대에 들어서 산업응용의 목적에서 유니온 카바이드(Union Carbide) 사를 중심으로 한 일련의 합성 실험들이 성공적으로 수행되면서부터 본격화되었다. 제올라이트의 합성은 일반적으로 200℃이하의 온도 범위에서 수열 합성법으로 이루어진다.Zeolite is a silicate mineral of aluminum containing alkali metals such as sodium and potassium and alkaline earth metals such as calcium and containing crystal water. There are many kinds, but two types of clonotilolite and mordenite are widely distributed. There is. The study of zeolite synthesis, which was initiated by mineral scientists to interpret the conditions and environment of natural zeolites, was successfully conducted in the 1940s by a series of synthesis experiments focused on Union Carbide for industrial applications. It started in earnest from the beginning. The synthesis of zeolites is generally accomplished by hydrothermal synthesis in the temperature range below 200 ° C.

출발물질의 성격에 따라 제올라이트 합성법은 (1)알루미노실리케이트 겔(Aluminosilicate gel)을 원료로 사용하는 방법과, (2)천연의 규산염 광물을 이용하는 방법으로 구분할 수 있다. 일반적으로 제올라이트의 합성과정에서는 특별한 압력 조건을 필요로 하지 않고 낮은 온도에서 반응이 진행되므로 비교적 쉽게 제올라이트가 된다.Depending on the nature of the starting materials, the zeolite synthesis method can be divided into (1) aluminosilicate gel (Aluminosilicate gel) as a raw material, and (2) natural silicate minerals. In general, the synthesis of the zeolite does not require a special pressure condition, the reaction proceeds at a low temperature to become a zeolite relatively easily.

제올라이트의 결정수는 일반 구조수와는 달리 물분자로 존재하기 때문에 "불석수"라 하고 가열에 따라 탈수하여도 구조는 파괴되지 않고 물분자가 있던 곳은 그대로 해면구조 또는 기공(void)으로 남아 수분이나 가스를 흡착하여 원상으로 복귀하는 특성이 있어, 흡착, 흡습, 양이온 교환성 등을 이용하여 그 용도가 매우 넓어 졌다. 즉, 물리적 흡착성과 화학적인 양이온 치환작용의 특성이 자동차 등의 배기가스의 유해성분의 제거, 공장의 폐수정화, 폐광산의 중금속 이온제거, 도금, 폐액중의 중금속의 제거, 염색공장 폐수의 탈색제 등에 점차 사용되고 있다. 또 공기나 가스의 건조제, 액체프로판이나 천연가스의 탈황제, 향료의 흡착제, 탈취제, 경수 연화제 등에 사용되는 외에 클레이(Clay: 진흙)로 만들어 제지용 충전제로 사용되기도 한다.Since zeolite's crystal water exists as a water molecule unlike ordinary structure water, it is called "non-water" and dehydration by heating does not destroy the structure, and the water molecule remains as a spongy structure or void. Adsorption of moisture or gas has a characteristic of returning to the original form, and its use has been broadened by using adsorption, moisture absorption, and cation exchangeability. In other words, the physical adsorption properties and chemical cation substitution are used to remove harmful constituents from exhaust gases such as automobiles, to purify wastewater in factories, to remove heavy metal ions from waste mines, to plating, to remove heavy metals from wastewater, and to decolorize wastewater in dyeing factories. It is being used gradually. It is also used as a desiccant for air or gas, desulfurizer for liquid propane or natural gas, adsorbent for fragrances, deodorant, hard water softener, etc., and is also used as a filler for making paper.

본 발명의 필수구성성분인 제올라이트의 화학조성은 하기 표 4와 같고, 성상은 표 5와 같으며, 이와 같은 조건과 성상을 갖는 제품이면 어느 제품이거나 담체(Media)로 사용이 가능하며, 본 발명에서는 강서화학의 제올라이트를 사용하였다.The chemical composition of the zeolite, which is an essential component of the present invention, is shown in Table 4, and the properties are shown in Table 5, and any product having such conditions and properties may be used as a product or a carrier, and the present invention In the zeolite of Gangseo Chemical was used.

구 분division 조성물별 화학조성Chemical Composition by Composition SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO MgOMgO Na3ONa 3 O LG LossLG Loss 표면적(m2/g)Surface area (m 2 / g) compo(%)compo (%) 65-7065-70 10-1410-14 1.5-3.01.5-3.0 0.6-1.50.6-1.5 1.0-1.51.0-1.5 -- 5-85-8 220-300220-300

규 정Rule 환경부 고시 제 1998-124('99.11.12)수 처리제의 기준과 규격 및 표시기간Ministry of Environment Notice No. 1998-124 ('99 .11.12) Standard, specification and labeling period of water treatment agent 구 분division 기 준standard 결 과result pHpH 5.0-12.05.0-12.0 10.310.3 체 잔류물Sieve residue 90%이상over 90 적합fitness 경도Hardness 80%이상80% or more 적합fitness 염기 치환 용량Base displacement capacity 130ml/100g130ml / 100g 153153 비소arsenic 2ppm이하Less than 2ppm 00 lead 10ppm이하Less than 10ppm 00 카드늄Cadmium 1ppm이하Less than 1ppm 00 수은Mercury 0.2ppm이하0.2ppm or less 0.09040.0904

본 발명에 따른 촉매 산화 및 흡착제는 전술한 합성 제올라이트에 산화력이 매우 강하며, 탈취성분이 우수한 과망간산칼륨, 탄산나트륨 및 차아염소산나트륨을 포함하는 무기산화물을 담지시켜 악취와 VOCs의 제거를 상승시킬 수 있다.The catalytic oxidation and adsorbent according to the present invention is highly resistant to the above-described synthetic zeolite, and can support the removal of odors and VOCs by supporting inorganic oxides including potassium permanganate, sodium carbonate and sodium hypochlorite, which are excellent in deodorizing components. .

상기 무기산화물은 물 1ℓ당 과망간산칼륨 10,000∼80,000mg, 탄산나트륨 100∼5,000mg 및 차아염소산나트륨 1,000∼50,000mg을 포함한다.The inorganic oxide includes 10,000 to 80,000 mg of potassium permanganate, 100 to 5,000 mg of sodium carbonate and 1,000 to 50,000 mg of sodium hypochlorite per liter of water.

상기 무기산화물을 합성 제올라이트에 상온에서 담지시키고, 이를 탈수 및 건조시켜 얻어지는 본 발명에 따른 촉매 산화 및 흡착제는 합성 제올라이트 96∼99중량%, 과망간산칼륨 0.3∼2.0중량%, 탄산나트륨 0.1∼1.0중량% 및 차아염소산나트륨 0.3∼2.0중량%로 이루어진다.The catalytic oxidation and adsorbent according to the present invention obtained by supporting the inorganic oxide at room temperature in a synthetic zeolite, dehydrating and drying it, 96 to 99% by weight of synthetic zeolite, 0.3 to 2.0% by weight potassium permanganate, 0.1 to 1.0% by weight sodium carbonate and It consists of 0.3-2.0 weight% of sodium hypochlorite.

상기 합성 제올라이트에 담지된 무기산화제에서 강력한 산화력을 갖는 과망간산칼륨의 함량이 0.3중량% 미만으로 담지되면 산화력이 저하되며 2.0중량%를 초과하여 담지되면 그 이상의 산화력 향상을 볼 수 없으므로 비효율적이다. 또한, 탈취기능을 하는 탄산나트륨의 담지함량이 0.1중량% 미만이면 탈취능이 저하되고, 1.0중량%를 초과하면 제올라이트의 표면적을 저하시켜 각각의 무기산화제의 흡착력을 저하시키며, 탈색능을 갖는 차아염소산나트륨의 담지함량이 0.3중량% 미만이면 탈색능이 저하되고, 2.0중량%를 초과하면 제올라이트의 표면적을 저하시켜 각각의 무기산화제의 흡착력을 저하하며 흡착밸런스를 이루지 못하게 된다.When the content of potassium permanganate having strong oxidizing power is less than 0.3% by weight in the inorganic oxidant supported on the synthetic zeolite, the oxidizing power is lowered, and when it is supported in excess of 2.0% by weight, further improvement in oxidizing power is inefficient. In addition, if the supporting content of the deodorizing function of sodium carbonate is less than 0.1% by weight, the deodorizing ability is lowered. If the supporting content of the sodium carbonate is more than 1.0% by weight, the surface area of the zeolite is lowered to lower the adsorption power of each inorganic oxidant, and the sodium hypochlorite having the decolorizing ability When the supported content of is less than 0.3% by weight, the decolorization ability is lowered. When the supported content of is lower than 2.0% by weight, the surface area of the zeolite is lowered, thereby lowering the adsorption power of each inorganic oxidant and failing to achieve adsorption balance.

무기산화물을 상온에서 처리하는 것은, 고온에서 용해시켜 주입시키면 해면 또는 기공구조가 발생되어 2차 오염을 발생시킬 수 있을 뿐만 아니라, 냉각되어 상온으로 회귀할 때 입자가 형성되어 제올라이트의 표면적을 저하시키는 원인으로 작용할 수 있기 때문이다.Treatment of inorganic oxides at room temperature may induce disintegration at high temperatures, resulting in spongy or pore structures, as well as generation of particles when cooled and returning to room temperature, thereby reducing the surface area of the zeolite. Because it can act as a cause.

즉, 본 발명에 따른 악취 및 VOCs 제거용 촉매 산화 및 흡착제의 제조 공정도를 살펴보면, 1) 합성된 제올라이트의 입고(제품검사, 상기 표 5기준), 2) 무기산화제 조성물 제조, 3) 담지에 의한 이온교환주입, 4) 탈수 및 건조, 5) 품질검사, 6) 포장 및 출하이다.That is, looking at the manufacturing process of the catalyst oxidizing and adsorbent for removing odors and VOCs according to the present invention, 1) wearing of the synthesized zeolite (product inspection, based on Table 5), 2) preparation of inorganic oxidant composition, 3) by supporting Ion exchange injection, 4) dehydration and drying, 5) quality inspection, 6) packaging and shipping.

상기 탈수 및 건조단계의 회전속도, 온도 및 시간 등은 특별히 한정되지 않으며, 통상적인 조건하에서 수행가능하고, 탈수의 회전속도는 1000∼3000rpm, 건조온도는 110∼160℃, 건조시간은 4∼6시간 정도일 수 있다.Rotation speed, temperature and time of the dehydration and drying step is not particularly limited, and can be carried out under ordinary conditions, the rotation speed of dehydration is 1000 ~ 3000rpm, drying temperature is 110 ~ 160 ℃, drying time is 4 ~ 6 It may be about an hour.

한편, 본 발명에 따른 촉매 산화 및 흡착제의 대상 가스에 대한 처리량은, 상기 흡착제 1kg에 대하여 대상 가스 0.368∼1.102kg을 처리하며, 바람직하게는 흡착제 1kg당 0.486∼0.687kg의 오염물질을 처리한다. 그러나, 이에 한정된 것은 아니며, 뱃치(Batch) 반응계에 있어서는 촉매 산화 및 흡착제의 용량은 제올라이트에 주입된 이온의 량, 및 제올라이트의 량과 대상 가스와의 접촉시간 등에 좌우된다.On the other hand, the throughput of the catalytic oxidation and the adsorbent to the target gas according to the present invention treats 0.368 to 1.102 kg of the target gas with respect to 1 kg of the adsorbent, preferably 0.486 to 0.687 kg of contaminants per kg of the adsorbent. However, the present invention is not limited thereto, and in a batch reaction system, the catalytic oxidation and the capacity of the adsorbent depend on the amount of ions injected into the zeolite, the amount of zeolite and the contact time between the target gas, and the like.

아울러 본 발명의 악취 및 VOCs 제거를 위한 촉매 산화 및 흡착제는 석유제품과 휘발성 액상물질의 저장용기, 합성유기화학물질 제조시설의 공정배출물질 및 페인트 제조시설 등의 배출원에 흡착 방지시설의 촉매 산화 및 흡착제로 이용할 수 있다.In addition, the catalytic oxidation and adsorbent for the removal of odors and VOCs of the present invention, the catalytic oxidation of the adsorption prevention facility to the source of storage of petroleum products and volatile liquid substances, the process discharge material of the synthetic organic chemical manufacturing facilities and paint manufacturing facilities, It can be used as an adsorbent.

하기 실시예를 통하여 본 발명을 좀 더 구체적으로 살펴보지만, 이에 본 발명의 범주가 한정되는 것은 아니다.Although the present invention will be described in more detail with reference to the following examples, the scope of the present invention is not limited thereto.

실시예 1Example 1

물 1ℓ당 과망간산칼륨 70,000mg, 탄산나트륨 5,000mg 및 차아염소산나트륨 30,000mg을 첨가하여 용해시킨 무기산화물을 합성 제올라이트에 상온에서 담지시키고, 이를 2000rpm으로 탈수시키고 150℃에서 5시간 건조시켜 촉매 산화 및 흡착제를 얻었다. 얻어진 촉매 산화 및 흡착제를 분석한 결과, 합성 제올라이트 98중량%, 과망간산칼륨 1중량%, 탄산나트륨 0.3중량% 및 차아염소산나트륨 0.7중량%를 이루었고, 그밖의 성분 분석 결과를 하기 표 6에 나타내었다.The inorganic oxide dissolved by adding 70,000 mg of potassium permanganate, 5,000 mg of sodium carbonate and 30,000 mg of sodium hypochlorite per liter of water was supported on synthetic zeolite at room temperature, dehydrated at 2000 rpm and dried at 150 ° C. for 5 hours to obtain a catalytic oxidation and adsorbent. Got it. As a result of analyzing the obtained catalyst oxidation and adsorbent, 98% by weight of synthetic zeolite, 1% by weight of potassium permanganate, 0.3% by weight of sodium carbonate and 0.7% by weight of sodium hypochlorite were formed, and the results of the other components are shown in Table 6 below.

구 분division 분 석 결 과Analysis 비 고Remarks 외 관Exterior 보라색의 입자상Purple particulate 환경부고시 제99-173호Ministry of Environment Notice 99-173 pHpH 10.510.5 "" 부피비중(g/cc)Volume specific gravity (g / cc) 0.470.47 "" 평균입경Average particle diameter 4*84 * 8 "" 염기치환용량(130ml/100g)Base substitution capacity (130ml / 100g) 153153 "" 비표면적(m2/g)Specific surface area (m 2 / g) 320320 세공분석기(Gemini 2375 v5.00)Pore Analyzer (Gemini 2375 v5.00) 비소(ppm)Arsenic (ppm) 00 환경부고시 제99-173호Ministry of Environment Notice 99-173 납(ppm)Lead (ppm) 0.010.01 "" 카드늄(ppm)Cadmium (ppm) 00 "" 수은(ppm)Mercury (ppm) 0.0090.009 ""

실시예 2Example 2

상기 실시예 1에서 제조된 촉매 산화 및 흡착제 1kg에 대하여 0.046kg의 VOCs를 처리하여 VOCs별 오염농도 제거효율을 시간대별로 얻은 결과를 하기 표 7에 나타내었다.Table 7 shows the results obtained by treating the VOCs of 0.046 kg with respect to 1 kg of the catalytic oxidation and adsorbent prepared in Example 1 to obtain the pollutant concentration removal efficiency for each VOC.

구 분division 측 정 항 목Measurement item 시험항목Test Items 단위unit 벤 젠Ben Jen 톨루엔toluene 아세톤Acetone 암모니아ammonia 메르캅탄Mercaptan 탈취시험Deodorization test 초기농도Initial concentration ppmppm 100100 100100 100100 100100 100100 1 분1 minute ppmppm 00 00 00 00 00 5 분5 minutes ppmppm 00 00 00 00 00 24 시간24 hours ppmppm 00 00 00 00 00 제 거 율(%)Removal rate (%) 100100 100100 100100 100100 100100

실시예 3 및 비교예 1Example 3 and Comparative Example 1

하기 표 8과 같이, 상기 실시예 1에서 제조된 촉매 산화 및 흡착제 1kg에 대하여 0.046kg의 VOCs를 처리하고, 기존 활성탄(비교예 1)으로 오염물질을 처리하여VOCs별 오염농도 제거효율을 얻은 결과를 비교하여 하기 표 9에 나타내었다.As shown in Table 8 below, 0.046kg of VOCs was treated with respect to 1kg of the catalytic oxidation and adsorbent prepared in Example 1, and the pollutants were treated with existing activated carbon (Comparative Example 1) to obtain the pollutant concentration removal efficiency for each VOCs. The results are shown in Table 9 below.

오 염 물 질 종류Contaminant Types 초기 농도 (ppm)Initial concentration (ppm) 통 과 속 도Pain and speed 비 고Remarks Benzene (벤젠)Benzene (benzene) 200 ppm200 ppm 1 L/min1 L / min -검사방법: 검지관(GASTEC)-통과 후 가스를 검지관으로 분석Inspection method: detector tube (GASTEC)-gas after passage is analyzed by detector tube Toluene (톨루엔)Toluene (toluene) 300 ppm300 ppm "" Acetone 아세톤)Acetone) 450 ppm450 ppm "" NH3(암모니아)NH 3 (ammonia) 500 ppm500 ppm "" CH3SH (메르캅탄)CH 3 SH (mercaptan) 60 ppm60 ppm ""

구 분division 비교예 1Comparative Example 1 실시예 3Example 3 비 고Remarks 처리 후 농도Concentration after treatment 처리 효율Processing efficiency 처리 후 농도Concentration after treatment 처리 효율Processing efficiency BenzeneBenzene 140 ppm140 ppm 30 %30% 0 ppm0 ppm 100 %100% - 가스통과 후 30초 후부터 측정한 결과- 활성탄 처리효율: 10-36%- 촉매 산화 및 흡착제 처리효율: 100 %- 측정 중 5분경과 후 활성탄의 성능은 급격히 저하하였으나, 촉매산화흡착제는 변동이 없었음.-After 30 seconds, the activated carbon treatment efficiency: 10-36%-Catalytic oxidation and adsorbent treatment efficiency: 100%-After 5 minutes of measurement, the performance of activated carbon deteriorated drastically, but the catalytic oxidation adsorbent did not change. None. TolueneToluene 210 ppm210 ppm 30 %30% 0 ppm0 ppm 100 %100% AcetoneAcetone 290 ppm290 ppm 36 %36% 0 ppm0 ppm 100 %100% NH3 NH 3 450 ppm450 ppm 10 %10% 0 ppm0 ppm 100 %100% CH3SHCH 3 SH 50 ppm50 ppm 17 %17% 0 ppm0 ppm 100 %100%

실시예 4Example 4

상기 표 8과 같이, 상기 실시예 1에서 제조된 촉매 산화 및 흡착제 1kg에 대하여 0.046kg의 VOCs를 처리하고, 기존 합성 제올라이트(비교예 2)로 오염물질을 처리하여 VOCs별 오염농도 제거효율을 얻은 결과를 비교하여 하기 표 10에 나타내었다.As shown in Table 8, 0.046kg of VOCs were treated with respect to 1kg of the catalytic oxidation and adsorbent prepared in Example 1, and the pollutants were treated with the existing synthetic zeolite (Comparative Example 2) to obtain the pollutant concentration removal efficiency for each VOCs. The results are compared and shown in Table 10 below.

구 분division 비교예 2Comparative Example 2 실시예 4Example 4 비 고Remarks 처리 후 농도Concentration after treatment 처리 효율Processing efficiency 처리 후 농도Concentration after treatment 처리 효율Processing efficiency BenzeneBenzene 165 ppm165 ppm 18 %18% 0 ppm0 ppm 100 %100% - 가스통과 후 30초 후부터 측정한 결과- 활성탄 처리효율: 9-20%- 촉매 산화 및 흡착제 처리효율: 100 %- 측정 중 5분경과 후 제올라이트의 성능은 급격히 저하하였으나, 본 발명의 촉매 산화 흡착제는 변동이 없었음.-After 30 seconds after the passage of gas-Activated carbon treatment efficiency: 9-20%-Catalytic oxidation and adsorbent Treatment efficiency: 100%-After 5 minutes of measurement The performance of the zeolite dropped sharply, but the catalytic oxidation adsorbent of the present invention Was unchanged. TolueneToluene 250 ppm250 ppm 17 %17% 0 ppm0 ppm 100 %100% AcetoneAcetone 420 ppm420 ppm 9 %9% 0 ppm0 ppm 100 %100% NH3 NH 3 420 ppm420 ppm 16 %16% 0 ppm0 ppm 100 %100% CH3SHCH 3 SH 48 ppm48 ppm 20 %20% 0 ppm0 ppm 100 %100%

실시예 5Example 5

상기 실시예 1에서 제조된 촉매 산화 및 흡착제를 기존의 활성탄 흡착탑에 장착하여 울산광역시 석유화학단지내에 위치한 S산업(주)의 배출가스를 대상으로 현장에서 시간대별로 제거효율을 측정하여 하기 표 11에 나타내었다.The catalytic oxidation and adsorbent prepared in Example 1 was mounted on an existing activated carbon adsorption tower to measure the removal efficiency of each S-hour in the field of the petrochemical complex located in Ulsan Metropolitan City by time zone at the site. Indicated.

구분division 측정시간Measuring time 흡착탑 통과전Before passing adsorption tower 흡착탑 통과후After passing through adsorption tower 효율(%)efficiency(%) 톨루엔toluene 교체직후2시간 후4시간 후2 hours after replacement 4 hours after 700ppm300ppm60ppm700ppm300ppm60ppm 0.6ppm000.6ppm00 99.910010099.9100100 아세톤Acetone 교체직후2시간 후4시간 후2 hours after replacement 4 hours after 190ppm250ppm420ppm190ppm250ppm420ppm 000000 100100100100100100

상기 실시예 및 비교예를 통해 알 수 있는 바와 같이, 본 발명에 따른 촉매 산화 및 흡착제는 강력한 산화력 및 흡착력을 가져 악취는 물론 VOCs를 거의 완전하게 처리함으로써 청정한 공기를 얻을 수 있다.As can be seen through the above examples and comparative examples, the catalytic oxidation and adsorbent according to the present invention has a strong oxidizing power and adsorptive power to obtain clean air by almost completely treating odors as well as VOCs.

Claims (2)

물 1ℓ당 과망간산칼륨 10,000∼80,000mg, 탄산나트륨 100∼5,000mg 및 차아염소산나트륨 1,000∼50,000mg을 포함하는 무기산화제를 합성 제올라이트에 담지시켜 제조되며, 합성 제올라이트 96∼99중량%, 과망간산칼륨 0.3∼2.0중량%, 탄산나트륨 0.1∼1.0중량% 및 차아염소산나트륨 0.3∼2.0중량%로 이루어지는 것을 특징으로 하는 악취 및 휘발성 유기화합물질 제거용 촉매 산화 및 흡착제.Prepared by supporting an inorganic oxidizing agent containing 10,000 to 80,000 mg of potassium permanganate, 100 to 5,000 mg of sodium carbonate and 1,000 to 50,000 mg of sodium hypochlorite per liter of water in a synthetic zeolite, 96 to 99% by weight of synthetic zeolite and 0.3 to 2.0 of potassium permanganate A catalytic oxidation and adsorbent for removing odors and volatile organic compounds, characterized by consisting of weight percent, sodium carbonate 0.1 to 1.0 weight percent and sodium hypochlorite 0.3 to 2.0 weight percent. 제1항에 따른 악취 및 휘발성 유기화합물질 제거용 촉매 산화 및 흡착제 1kg에 대하여 대상 가스 0.368∼1.102kg을 처리하는 것을 특징으로 하는 악취 및 휘발성 유기화합물질 제거용 촉매 산화 및 흡착제의 사용방법.A method of using a catalytic oxidation and adsorbent for removing odors and volatile organic compounds by treating 0.368 to 1.102 kg of the target gas with respect to 1 kg of the catalytic oxidation and adsorbent for removing malodors and volatile organic compounds according to claim 1.
KR1020030040278A 2003-06-20 2003-06-20 Catalytic oxidation and adsorption agent for removing the odor and VOCs and its use KR20040110816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030040278A KR20040110816A (en) 2003-06-20 2003-06-20 Catalytic oxidation and adsorption agent for removing the odor and VOCs and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030040278A KR20040110816A (en) 2003-06-20 2003-06-20 Catalytic oxidation and adsorption agent for removing the odor and VOCs and its use

Publications (1)

Publication Number Publication Date
KR20040110816A true KR20040110816A (en) 2004-12-31

Family

ID=37383158

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030040278A KR20040110816A (en) 2003-06-20 2003-06-20 Catalytic oxidation and adsorption agent for removing the odor and VOCs and its use

Country Status (1)

Country Link
KR (1) KR20040110816A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100985846B1 (en) * 2008-07-16 2010-10-08 주식회사 에코프로 Deodorizing filter for removing stench of food waste disposer system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100985846B1 (en) * 2008-07-16 2010-10-08 주식회사 에코프로 Deodorizing filter for removing stench of food waste disposer system

Similar Documents

Publication Publication Date Title
Wysocka et al. Technologies for deodorization of malodorous gases
KR20070101182A (en) The method for nitrogen oxides and dioxins removal from exhaust gas using powder type impregnated activated carbon
US7524472B1 (en) Mercury removal from coal emissions using montmorillonite clay
US6596664B2 (en) Method, catalyst, and photocatalyst for the destruction of phosgene
US6464951B1 (en) Method, catalyst, and photocatalyst for the destruction of phosgene
CN110772912A (en) Purification equipment for comprehensive waste gas of biological pharmaceutical factory
JP2001219056A (en) Adsorbent for dioxins
JPH06277452A (en) Method for decomposing highly toxic halogenated organic compound in sulfur dioxide free gas
KR100428965B1 (en) Air purification method
CN112426862A (en) Process technology for waste gas treatment and process system thereof
JP2019516554A (en) Catalyst mixture for exhaust gas treatment
KR100331210B1 (en) Method And Apparatus For Processing Polluted Gas Containing Harmful Substances
KR20040110816A (en) Catalytic oxidation and adsorption agent for removing the odor and VOCs and its use
RU2099131C1 (en) Method of treating gases evolved upon combustion of halogenated organic compounds
JP3382857B2 (en) Method and apparatus for treating harmful substance-containing gas
JP5567288B2 (en) Method for producing deodorant
KR100475276B1 (en) Air purification method
AU2017247530B2 (en) Process for the removal of heavy metals from fluids
KR100780077B1 (en) The harmful gas removal system using metal foam catalyst
KR100435508B1 (en) H2S removal process from paper mill sludge
KR200359604Y1 (en) Catalytic oxidation adsorption tower
KR20040103546A (en) Manufacturing Method of Adsorbent to Remove Volatile Organic Compounds
KR101386113B1 (en) Catalyst having photo-degradable activity and manufacturing method thereof
KR102557943B1 (en) Physical and Chemical Deodorization System and Method using Gaseous Chlorine Dioxide Adsorption on Silica Gel and UV Irradiation as well as Adsorption-Desorption on-Shifts Process
KR100445220B1 (en) Apparatus and method for removing voc by electromagnetic beam and adsorbent of the same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application