KR20040103546A - Manufacturing Method of Adsorbent to Remove Volatile Organic Compounds - Google Patents

Manufacturing Method of Adsorbent to Remove Volatile Organic Compounds Download PDF

Info

Publication number
KR20040103546A
KR20040103546A KR1020030034494A KR20030034494A KR20040103546A KR 20040103546 A KR20040103546 A KR 20040103546A KR 1020030034494 A KR1020030034494 A KR 1020030034494A KR 20030034494 A KR20030034494 A KR 20030034494A KR 20040103546 A KR20040103546 A KR 20040103546A
Authority
KR
South Korea
Prior art keywords
fly ash
adsorbent
molded article
potassium carbonate
coal tar
Prior art date
Application number
KR1020030034494A
Other languages
Korean (ko)
Inventor
이동석
이우근
심영숙
구명희
Original Assignee
대한민국(강원대학교 총장)
이동석
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(강원대학교 총장), 이동석 filed Critical 대한민국(강원대학교 총장)
Priority to KR1020030034494A priority Critical patent/KR20040103546A/en
Publication of KR20040103546A publication Critical patent/KR20040103546A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/34Feeding or guiding devices not specially adapted to a particular type of apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/24Transferring coils to or from winding apparatus or to or from operative position therein; Preventing uncoiling during transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/26Special arrangements with regard to simultaneous or subsequent treatment of the material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE: To provide a method for manufacturing an adsorbent for removing volatile organic compounds, wherein the adsorbent that is excellent in specific surface area and applicable to a continuous treatment facility is manufactured by adding coal tar pitch that is an organic carbon based raw material, potassium carbonate as an activator and water to MSWI fly ash so that the mixture is molded to obtain certain strength and size. CONSTITUTION: In a method for manufacturing an adsorbent for removing volatile organic compounds by using fly ash generated during incineration of materials to be incinerated, the method comprises a step(a) of hydrothermal synthesizing the fly ash; a step(b) of obtaining a mixture by mixing a binder for increasing moldability of the fly ash and a compound for activating formation of pores with the hydrothermal synthesized flay ash; a step(c) of obtaining a molded article by molding the mixture; a step(d) of forming a plurality of pores on the molded article by a gas generated by heat treating the molded article; and a step(e) of obtaining an adsorbent by drying the washed molded article after washing the activated molded article, wherein the binder and compound of the step(b) are coal tar pitch and potassium carbonate, wherein the fly ash, coal tar pitch and potassium carbonate are composed in a weight ratio of 1.0:1.0:0.5 to 1.0, and wherein activation treatment of the step(d) is performed by heat treating the molded article of the step(c) at a reduction atmosphere in a temperature range of 800 to 900 deg.C.

Description

휘발성 유기 화합물 제거용 흡착제의 제조 방법{Manufacturing Method of Adsorbent to Remove Volatile Organic Compounds}Manufacturing Method of Adsorbent to Remove Volatile Organic Compounds

본 발명은 휘발성 유기 화합물 제거용 흡착제의 제조 방법에 관한 것으로, 보다 상세하게는 수열 합성 방법을 이용하여 소각 비산재 중의 중금속을 안정화 한 후 탄소원과 활성화제를 첨가하여 제조하여 휘발성 유기 화합물을 흡착하기 위한 흡착제에 관한 것이다.The present invention relates to a method for preparing an adsorbent for removing volatile organic compounds, and more particularly, by stabilizing heavy metals in an incineration fly ash using a hydrothermal synthesis method and then adding a carbon source and an activator to adsorb volatile organic compounds. It relates to an adsorbent.

일반적으로 폐기물을 소각 처리한 후 발생되는 소각재는 바닥재와 비산재로 구분할 수 있는데, 이 중 비산재는 지정 폐기물로 분류되어 특별히 관리되는 매립장에서 처리되어야 하나 향후 지정폐기물을 최종 처분할 수 있는 매립장의 확보가 어려운 실정이다.Generally, incineration ash generated after incineration of waste can be classified into floor ash and fly ash. Among them, fly ash is classified as designated waste and should be treated at specially managed landfill, but it is necessary to secure landfill for final disposal of designated waste in the future. It is difficult.

그리고, 상기 소각재의 대부분(80∼85%)은 바닥재인데, 상기 바닥재에는 철, 못 등의 불연분을 다량으로 함유하고 있으며 전체적인 입경 분포가 48메쉬(mesh;300㎛) 이상으로 이루어져 있어서 흡착제로 제조하기에는 입경이 크다.In addition, most of the incineration ash (80 to 85%) is a flooring material, the flooring material contains a large amount of incombustibles such as iron, nail, etc., and the overall particle size distribution is made up of 48 mesh (mesh; 300㎛) or more as an adsorbent The particle diameter is large to manufacture.

반면에 비산재는 주로 10∼20중량%의 산화규소(SiO2)와, 20∼40중량%의 산화칼슘(CaO)과, 3∼10중량%의 산화알루미늄(Al2O3), 1∼5중량%의 철(Fe)과, 4∼12중량%의 산화나트륨(Na2O)과, 10∼30중량%의 미연소분 등으로 이루어져 있고 입경 크기도 주로 100메쉬(150㎛) 이하로 이루어져 있다.On the other hand, fly ash is mainly composed of 10 to 20% by weight of silicon oxide (SiO 2 ), 20 to 40% by weight of calcium oxide (CaO), 3 to 10% by weight of aluminum oxide (Al 2 O 3 ), 1 to 5 It is composed of iron (Fe) by weight, 4-12% by weight sodium oxide (Na 2 O), 10-30% by weight unburned powder, etc., and the particle size is mainly composed of 100 mesh (150㎛) or less. .

상기 비산재는 입경 크기가 작아 바닥재보다는 흡착제로 제조하기에 용이하며, 비산재 중에 주로 함유된 규소와 칼슘, 나트륨의 성분을 이용하여 흡착제로 유용하게 제조할 수 있다.The fly ash is smaller in particle size and easier to prepare as an adsorbent than a floor ash, and can be usefully prepared as an adsorbent using components of silicon, calcium and sodium mainly contained in the fly ash.

그러나 비산재는 바닥재보다 염기성 성분을 보다 많이 포함하고 있고, 크롬(Cr), 구리(Cu), 납(Pb) 등의 중금속을 함유하고 있다. 따라서, 소각 비산재를 흡착제로 제조하기 위해서는 비산재가 함유하고 있는 중금속을 안정화시키고 흡착 능력을 증진시켜야 한다.However, fly ash contains more basic components than floor ash and contains heavy metals such as chromium (Cr), copper (Cu), and lead (Pb). Therefore, in order to prepare the incineration fly ash as an adsorbent, it is necessary to stabilize the heavy metals contained in the fly ash and enhance the adsorption capacity.

휘발성 유기 화합물(揮發性有機化合物, Volatile Organic Compounds; 이하, VOCs로 표기함)은 화학, 제약, 전자 공업뿐만 아니라 용매 및 세정제를 사용하는 일반 산업체에서 모두 배출되고 있으며, 그 자체의 성질도 유해할 뿐만 아니라 대기 중에서 질소 산화물과 함께 광화학 반응을 일으켜 광화학 스모그를 유발하는 등 대표적인 도시 대기오염을 유발하는 것으로 알려져 있으며, 종류 및 형태에 따라 대류권 오존 오염 및 지구온난화 등으로 환경 및 건강에 큰 영향을 미치고 있다.Volatile Organic Compounds (hereinafter referred to as VOCs) are emitted not only from the chemical, pharmaceutical and electronic industries but also from general industries that use solvents and cleaning agents, and their properties may be harmful. In addition, it is known to cause representative urban air pollution, such as photochemical reaction with nitrogen oxide in the atmosphere, and has a great impact on the environment and health through tropospheric ozone pollution and global warming, depending on the type and form. have.

지금까지 VOCs를 처리하는 기술로 사용되고 있거나 개발 중인 방법은 크게두 가지로 나눌 수 있다.So far, there are two main methods to be used or under development for processing VOCs.

그 중 첫째는 소각 및 분해에 의해 VOCs를 원천적으로 다른 화합물로 분해시키는 방법이며, 둘째는 VOCs를 회수하여 재사용하는 방법이다.The first is to incinerate and decompose VOCs into other compounds by source, and the second is to recover and reuse VOCs.

소각 및 분해 기술로는 연료를 공급하면서 고온에서 산화를 시키는 고온 산화 방법과 연료비의 경감을 목적으로 촉매를 사용하여 저온에서 산화시키는 촉매 산화, 자외선을 이용하여 분해하는 방법, 미생물 분해법, 아직 상업화되지는 않고 있으나 반응기에서 강한 전자를 만들어 VOCs 증기와 충돌시켜 분해하는 코로나 파괴법, 현재 미국과 유럽에서 개발이 진행중인 플라즈마 방법 등이 있다.Incineration and decomposition techniques include high temperature oxidation methods for oxidizing at high temperatures while supplying fuel, catalytic oxidation for oxidation at low temperatures using catalysts for the purpose of reducing fuel costs, decomposition using ultraviolet light, microbial decomposition, and not yet commercialized. However, there are corona destruction methods that generate strong electrons in the reactor and collide with VOCs vapor to decompose them, and plasma methods currently under development in the US and Europe.

회수기술로는 비점을 이용한 응축과 흡착제를 이용한 흡착, 용제를 이용한 흡수, 막분리를 이용한 분리 등 다양한 방법이 있으며 일반적으로 흡착법을 사용하기 위한 흡착제의 원료는 현재 대부분 수입에 의존하고 있는 실정이다.Recovery techniques include condensation using boiling points, adsorption using adsorbents, absorption using solvents, and separation using membrane separation. In general, the raw materials of the adsorbents for using the adsorption method are currently dependent on imports.

한편, 대한민국 특허 출원번호 제10-2001-0043358호는 도시폐기물을 소각 처리할 때 집진 장치에서 배출되는 비산재를 수열합성방법을 이용하여 소각비산재 중의 중금속을 안정화 한 후 폐수처리용 흡착제로 제조하여 이용하는 방법에 관한 것으로서, 비산재와 수산화나트륨 용액을 혼합한 후 80∼120℃에서 8∼16시간 수열 합성한 후에, 수열 합성된 비산재를 증류수로 세척한 후 90℃에서 건조시켜서 흡착제를 제조하는 방법이 개시되어 있다.Meanwhile, Korean Patent Application No. 10-2001-0043358 discloses that fly ash discharged from a dust collector when incineration of municipal waste is stabilized by heavy hydrosynthetic method to produce heavy metals in incineration fly ash and then used as an adsorbent for wastewater treatment. A method for preparing an adsorbent by mixing a fly ash and a sodium hydroxide solution, followed by hydrothermal synthesis at 80 to 120 ° C. for 8 to 16 hours, followed by washing the hydrothermally synthesized fly ash with distilled water and drying at 90 ° C. It is.

또한, 대한민국 특허 출원번호 제10-2000-0024715호는 비산재를 폐수처리용 흡착제로 재활용하기 위한 흡착제 제조방법에 관한 것으로서, pH 8 이상인 비산재는 소석회를 첨가하지 않고, pH 8 미만인 비산재는 무게 기준으로 소석회를 3% 첨가하고, 비산재 또는 소석회를 첨가한 비산재를 500∼600℃의 환원 조건에서 1∼2시간동안 열처리하여 흡착제를 제조하는 방법이 개시되어 있다.In addition, Korean Patent Application No. 10-2000-0024715 relates to an adsorbent manufacturing method for recycling fly ash as an adsorbent for wastewater treatment, wherein fly ash having a pH of 8 or more does not add slaked lime, and fly ash having a pH of less than 8 is based on weight. A method for producing an adsorbent is disclosed by adding 3% of hydrated lime and heating the fly ash or the fly ash added with hydrated lime at a reducing condition of 500 to 600 ° C for 1 to 2 hours.

상기 종래 기술들에 의하여 제조되는 흡착제들은 분말 흡착제로써, 배출원에서 연속적으로 배출되는 오염물질을 처리하고자 할 때 일정한 유량과 유속을 보장하지 못해 압력 강하 문제가 야기되는 등 연속처리에는 한계가 있으며, 안정화 및 흡착능이 떨어지는 문제점이 있다.Adsorbents prepared by the prior arts are powder adsorbents, which do not guarantee a constant flow rate and flow rate when treating contaminants continuously discharged from the source, resulting in a pressure drop problem. And there is a problem that the adsorption capacity is poor.

따라서, 본 발명은 이러한 종래 기술의 문제점을 감안하여 안출된 것으로, 그 목적은 환경 오염을 방지하기 위해 매립 처분해야 하는 소각 비산재를 전처리하여 유해 물질을 안정화시키면 자원으로 재활용할 수 있다는 점에 착안하여, 여기에 유기 탄소계 원료인 콜타르 피치를 첨가하고 활성화제로 탄산칼륨과 물을 첨가하여 활성화함으로써 일정한 강도와 크기를 갖도록 성형하여 비표면적이 우수하고 연속식 처리 시설에서도 적용이 가능한 휘발성 유기 화합물 제거용 흡착제의 제조 방법을 제공하는데 있다.Accordingly, the present invention has been made in view of the problems of the prior art, and the object of the present invention is to focus on the fact that stabilization of hazardous materials by pretreatment of incineration fly ash that has to be disposed of in order to prevent environmental pollution can be recycled as a resource. By adding coal tar pitch, an organic carbon-based raw material, and activating by adding potassium carbonate and water as an activator, it is molded to have a certain strength and size to remove volatile organic compounds that have excellent specific surface area and can be applied in continuous processing facilities. It is to provide a method for preparing the adsorbent.

도 1은 본 발명에 따른 휘발성 유기 화합물 제거용 흡착제의 제조 방법을 설명하기 위한 공정도.1 is a process chart for explaining the manufacturing method of the adsorbent for removing volatile organic compounds according to the present invention.

상기 목적을 달성하기 위하여, 본 발명은 소각물의 소각 중에 발생되는 비산재를 이용한 휘발성 유기 화합물 제거용 흡착제 제조 방법에 있어서, (a) 비산재를 수열 합성하는 단계; (b) 상기 비산재의 성형성을 높여주기 위한 결합제와, 기공 형성을 활성화시켜 주는 화합물을 상기 수열 합성한 비산재에 혼합하여 혼합물을 얻는 단계; (c) 상기 혼합물을 성형하여 성형물을 얻는 단계; (d) 상기 성형물을열처리하여 발생되는 가스에 의하여 다수의 기공이 형성되도록 하는 활성화 단계; (e) 상기 활성화된 성형물을 수세한 후 건조시켜 흡착제를 얻는 단계를 포함하는 것을 특징으로 하는 휘발성 유기 화합물 제거용 흡착제의 제조 방법을 제공한다.In order to achieve the above object, the present invention provides a method for preparing an adsorbent for removing volatile organic compounds using fly ash generated during incineration of an incinerator, comprising: (a) hydrothermally synthesizing the fly ash; (b) mixing a binder for improving the moldability of the fly ash and a compound for activating pore formation with the fly ash synthesized by the hydrothermal synthesis to obtain a mixture; (c) molding the mixture to obtain a molding; (d) an activation step of forming a plurality of pores by a gas generated by heat treatment of the molding; (e) providing a method for producing an volatile organic compound removal adsorbent, comprising the step of obtaining an adsorbent by washing the activated molded product with water and then drying it.

상기 (b) 단계의 결합제 및 화합물은 콜타르 피치와 탄산칼륨이며, 상기 비산재, 콜타르 피치, 탄산칼륨은 1.0 : 1.0 : 0.5∼1.0 중량비로 조성된다.The binder and the compound of step (b) are coal tar pitch and potassium carbonate, and the fly ash, coal tar pitch, potassium carbonate is 1.0 to 1.0: 0.5 to 1.0 weight ratio.

그리고, 상기 (d) 단계의 활성화 처리는 상기 (c) 단계의 성형물을 800∼900℃ 온도의 환원 분위기에서 열처리하는 것이다.The activation process of step (d) is to heat-treat the molded product of step (c) in a reducing atmosphere at a temperature of 800 to 900 ° C.

본 발명에 사용되는 콜타르 피치는 실온에서 고체이며 방향족 또는 헤테로고리(Heterocyclic) 탄화수소로 이루어진 화합물로서 열처리 시 휘발 성분이 날아가고 견고한 구조인 탄소-탄소 결합만이 남아 강도를 증진시키며 원료의 탄소비율을 높이는 역할을 한다.Coal tar pitch used in the present invention is a solid solid at room temperature and composed of aromatic or heterocyclic hydrocarbons. Play a role.

그리고, 비산재에 대한 콜타르 피치의 혼합비가 높을수록 흡착제의 성능, 즉 요오드 흡착능 값이 증진되지만, 본 발명에서는 소각 비산재가 주 재료이므로 비산재와 콜타르 피치의 혼합비를 1.0 : 1.0으로 혼합하였다.And, the higher the mixing ratio of coal tar pitch to fly ash is, the higher the adsorbent performance, i.e., the iodine adsorption capacity, but in the present invention, since the incineration fly ash is the main material, the mixing ratio of fly ash and coal tar pitch is mixed at 1.0: 1.0.

또한, 상기 탄산칼륨의 중량비가 하한값인 중량비 0.5 미만일 경우는 만족할만한 흡착제의 성능, 즉 요오드 흡착능 값을 충분히 얻을 수가 없으며, 상한 값인 중량비 1.0을 초과하는 경우에는 성형물의 형태가 유지되지 않는 문제가 발생한다.In addition, when the weight ratio of potassium carbonate is lower than the weight ratio of 0.5, the satisfactory performance of the adsorbent, that is, the iodine adsorption capacity cannot be sufficiently obtained, and when the weight ratio of the weight ratio exceeds 1.0, the form of the molded article is not maintained. do.

또한, 상기 성형된 성형물은 800∼900℃, 환원 분위기에서 30분 이상 활성화하는 것이 바람직한데, 그 이유는, 열처리 온도가 800℃ 미만이면 흡착능을 나타내는 요오드 흡착능 값이 다른 조건보다 감소하기 때문이며, 900℃를 초과한 온도에서는 고열에 의한 흡착제의 중량 감소가 크게 나타나 입상 구조가 유지되지 않는다.In addition, the molded article is preferably activated at a temperature of 800 to 900 ° C. for 30 minutes or more in a reducing atmosphere, because when the heat treatment temperature is less than 800 ° C., the iodine adsorption capacity value indicating the adsorption capacity decreases than other conditions. At temperatures exceeding ° C, the weight loss of the adsorbent due to high heat is large and the granular structure is not maintained.

한편, VOCs가 흡착되는 일반적인 흡착제는 다음과 같은 구비 조건을 갖추어야 한다. 즉 첫째, 단위 무게당 흡착력이 우수하여야 한다. 둘째, 물에 용해되지 않으면서 내산성, 내 알칼리성이어야 한다. 셋째, 재생이 가능하여야 한다. 넷째, 다공질이며 입경(부피)에 대해 비표면적이 커야 한다. 다섯째, 액체상이나 기체상에서 유독 물질을 발생하지 않아야 한다. 여섯째, 입도 분포가 균일하여야 한다. 일곱째, 구입이 용이하고 가격이 저렴하여야 한다.On the other hand, the general adsorbent to which the VOCs are adsorbed must meet the following conditions. That is, first, the adsorption force per unit weight should be excellent. Second, it must be acid and alkali resistant without dissolving in water. Third, playback should be possible. Fourth, it must be porous and have a large specific surface area for the particle size (volume). Fifth, it should not generate toxic substances in liquid or gas phase. Sixth, the particle size distribution should be uniform. Seventh, it should be easy to purchase and low price.

(실시예)(Example)

상기와 같은 조건을 갖춘 흡착제를 제조하기 위한 본 발명을 첨부한 도면을 참조하여 더욱 상세히 설명하고자 한다.With reference to the accompanying drawings, the present invention for producing an adsorbent with the above conditions will be described in more detail.

본 발명은 도 1의 공정도에 나타낸 바와 같이, 우선 수열 합성한 소각 비산재에 일정량의 콜타르 피치와 활성화제 그리고 물을 첨가하여 일정크기와 형상으로 성형하여 전기로에서 활성화를 수행함에 따라 흡착제를 제조한다.As shown in the process diagram of FIG. 1, first, a predetermined amount of coal tar pitch, an activator, and water are added to an incineration fly ash synthesized by hydrothermal synthesis to form a predetermined size and shape to prepare an adsorbent by activation in an electric furnace.

즉, 먼저, 100메쉬 이하의 크기를 가지는 비산재를 준비한다(S 1).That is, first, a fly ash having a size of 100 mesh or less is prepared (S 1).

그리고, 상기 열처리된 비산재와 1∼4N(바람직하게는 3N)의 수산화나트륨(NaOH) 용액을 사용하여 실온에서 180℃(바람직하게는 100℃)까지 온도와 반응시간을 변화시켜 처리한 다음, 원심분리를 이용하여 고액분리를 하고 과량의 수산화나트륨(NaOH)용액을 제거하기 위해 증류수로 수세, 여과하고 90℃의 온도에서 건조시키는 수열 합성 처리를 한다(S 2).Then, by treating the fly ash with a 1 ~ 4N (preferably 3N) sodium hydroxide (NaOH) solution by changing the temperature and reaction time from room temperature to 180 ℃ (preferably 100 ℃), and then centrifuged Solid-liquid separation using separation and washing with distilled water to remove excess sodium hydroxide (NaOH) solution, followed by hydrothermal synthesis treatment to dry at a temperature of 90 ℃ (S 2).

상기 수열 합성된 비산재에 콜타르 피치(S 31), 활성화제인 탄산칼륨(S 32)과 물을 첨가하여 혼합기에서 잘 혼합한 후(S 3), 일정 구조를 가지는 성형물로 성형한다(S 4).Coal tar pitch (S 31), activator potassium carbonate (S 32) and water are added to the hydrothermally synthesized fly ash and mixed well in a mixer (S 3), and then molded into a molding having a predetermined structure (S 4).

여기서, 상기 성형물은 유로에 장입된 상태에서 가스의 통과가 자유로우면서 넓은 접촉 면적을 가지도록 펠릿 형태, 원형 로드 형태, 실린더 형태, 다면체 등의 형태로 성형되는 것이 바람직하며, 그 크기가 너무 작으면 성형물 서로간에 형성되는 공극이 너무 작아져 가스의 유동성을 방해하므로 직경이 3±0.5mm, 길이 6∼7mm 정도의 크기가 적당하다.Here, the molding is preferably formed in the form of pellets, circular rods, cylinders, polyhedrons, etc. in such a way that the gas is free to pass and have a large contact area in a state in which it is charged in the flow path. Since the pores formed between the moldings are too small to disturb the fluidity of the gas, a size of 3 ± 0.5 mm in diameter and 6 to 7 mm in length is appropriate.

상기 성형물을 건조한 후에(S 5), 기공 형성을 활성화시키기 위하여 800∼900℃에서 환원성 분위기에서 30분 이상 열처리한 후(S 6), 수세 처리한 후에(S 7), 건조기에서 60℃ 이하로 건조시킨다(S 8).After drying the molding (S 5), after heat treatment at 800 to 900 ℃ for 30 minutes or more in a reducing atmosphere (S 6) in order to activate the pore formation (S 6), after washing with water (S 7), to 60 ℃ or less in a dryer Dry (S 8).

상기 비산재에 콜타르 피치 및 탄산칼륨이 혼합되어 성형된 후 활성화 처리 과정에서 이루어지는 반응 메커니즘을 설명하면 다음과 같다.When the coal tar pitch and potassium carbonate are mixed and molded in the fly ash, the reaction mechanism of the activation process is as follows.

반응식 1과 같이 탄소에 의해 탄산칼륨(K2CO3)이 환원되어 K와 CO 성분으로 휘발되므로 성형물에 많은 기공을 형성하며, 또한 알칼리 금속 원자인 칼륨(K)은 탄소원자의 이온화 에너지(ionization potential)를 바꿔 흡착제의 기공 형성에 촉매 역할을 하며, 탄소질 표면에서 분산도 및 습윤성이 좋아 뛰어난 활성을 나타내지만 소각재 내의 금속 성분 중 실리케이트(silicate)나 알루미나 등과 반응하여 손실될 우려가 있으므로, 이를 감안하여 충분한 양이 공급되어야 한다.As shown in Scheme 1, potassium carbonate (K 2 CO 3 ) is reduced by carbon to volatilize into K and CO components, thereby forming a lot of pores in the molding, and potassium (K), an alkali metal atom, is ionization energy of carbon atoms. ), It acts as a catalyst for the formation of pores of the adsorbent, and shows excellent activity due to good dispersion and wettability on the carbonaceous surface, but it may be lost by reacting with silicate or alumina among the metal components in the incineration ash. Sufficient quantity must be supplied.

K2CO3+ 2C → 2K + 3COK 2 CO 3 + 2C → 2K + 3CO

본 발명에서는 상기와 같이 제조된 흡착제의 성능 평가를 요오드 흡착능으로 측정하였으며, 요오드 흡착능은 제조된 흡착제의 내부 표면적을 측정하기 위한 방법으로, 요오드가 1mg 흡착되었을 때, 이는 내부 표면적이 1m2라는 것을 나타낸다.In the present invention, the performance evaluation of the adsorbent prepared as described above was measured by the iodine adsorption capacity, the iodine adsorption capacity is a method for measuring the internal surface area of the prepared adsorbent, when 1 mg of iodine adsorbed, it is that the inner surface area is 1m 2 Indicates.

상기 요오드 흡착능 시험은 한국공업규격의 입상활성탄 시험방법(KSM 1802)에 따라 실시하였다.The iodine adsorption performance test was carried out according to the granular activated carbon test method (KSM 1802) of the Korean Industrial Standards.

본 발명에 의한 흡착제는 상용되는 대기오염물질 제거용 흡착제보다는 흡착능은 낮지만, 앞으로 발생량이 증가될 폐자원인 소각 비산재를 이용하여 흡착제를 제조한 것으로 연속식 처리시스템에서 종래에 분말 흡착제의 사용 시 발생하였던 압력강하가 발생하지 않고 일정한 유량과 유속이 보장되었으며, 사용이 용이하고 흡착능력이 우수한 일정한 크기와 강도를 가지는 입상으로 제조 가능하였다.The adsorbent according to the present invention has a lower adsorption capacity than a commercially available adsorbent for removing air pollutants, but the adsorbent is manufactured using incineration fly ash, which is a waste resource that will be increased in the future. Constant pressure and flow rate were guaranteed without any pressure drop that occurred, and it was easy to use and could be manufactured into granules with constant size and strength with excellent adsorption capacity.

상기와 같이 이루어지는 본 발명의 특징을 설명하기 위하여 종래의 기술에 의하여 제조된 흡착제(종래예 1, 2), 본 발명의 바람직한 실시예(실시예 1∼4), 본 발명의 실시예에 대한 비교예(비교예 1∼6)를 통하여 설명한다.Comparison of Examples of Adsorbents (Prior Examples 1 and 2), Preferred Embodiments of the Present Invention (Examples 1 to 4), and Preferred Embodiments of the Present Invention in order to explain the features of the present invention as described above It demonstrates through an example (comparative examples 1-6).

1. 종래예 1, 21. Conventional Examples 1 and 2

종래예 1, 2는 소각장에서 배출된 소각 비산재(ash)와 수열합성 한 후 얻어진 시료에 대하여 흡착능을 평가할 수 있는 자료와 중금속 용출량을 측정하여 표 1에 나타내었다.Conventional Examples 1 and 2 are shown in Table 1 by measuring the data and the heavy metal elution to evaluate the adsorption capacity for the sample obtained after incineration fly ash (ash) discharged from the incinerator and hydrothermal synthesis.

반응 조건Reaction conditions 비표면적(m2/g)Specific surface area (m 2 / g) 요오드흡착능(mg/g)Iodine adsorption capacity (mg / g) 중금속 용출량(mg/ℓ)Heavy Metal Elution (mg / ℓ) PbPb CuCu CdCD ZnZn CrCr 종래예 1Conventional Example 1 수열합성 전Before hydrothermal synthesis 11.811.8 67.3267.32 21.0821.08 0.220.22 61.7861.78 203.66203.66 1.081.08 종래예 2Conventional Example 2 수열합성 후After hydrothermal synthesis 69.5569.55 105.27105.27 0.370.37 미검출Not detected 0.030.03 0.010.01 0.360.36

표 1에 나타난 것과 같이 수열 합성 전인 종래예 1에 비하여, 종래예 2는 소각장에서 배출된 소각 비산재를 수열합성을 수행한 경우로 수열합성 후 요오드 흡착능 값이 105.27mg/g으로 증가하였으며, 중금속의 용출량도 낮게 나타났다.As shown in Table 1, compared with the conventional example 1 before the hydrothermal synthesis, the conventional example 2 performed the hydrothermal synthesis of the incineration fly ash discharged from the incinerator, and the iodine adsorption capacity increased to 105.27 mg / g after the hydrothermal synthesis. The amount of elution was also low.

2. 실시예 1,2; 비교예 1∼32. Examples 1,2; Comparative Examples 1 to 3

실시예 1, 2 및 비교예 1∼3은 강도 유지와 흡착 능력을 증진시키기 위해 콜타르 피치와 활성화제의 첨가량에 따른 영향을 나타낸 것으로, 비산재를 수열 합성한 후 콜타르 피치와 탄산칼륨의 첨가량을 변화시켜 실린더 타입으로 성형하여 800℃의 환원 분위기에서 1시간 활성화한 후 60℃ 이하로 건조하여 요오드 흡착능 값을 측정하여 표 2에 나타낸 것이다.Examples 1 and 2 and Comparative Examples 1 to 3 show the effects of the coal tar pitch and the amount of the activator added in order to maintain the strength and improve the adsorption capacity, and change the amount of coal tar pitch and potassium carbonate after hydrothermal synthesis of fly ash. After molding to a cylinder type and activated for 1 hour in a reducing atmosphere of 800 ℃ and dried to 60 ℃ or less is shown in Table 2 to measure the iodine adsorption capacity value.

반응 조건Reaction conditions 요오드흡착능(mg/g)Iodine adsorption capacity (mg / g) 실시예 1Example 1 수열합성 비산재/콜타르 피치/탄산칼륨(1:1:0.5)Hydrothermal synthesis fly ash / coal tar pitch / potassium carbonate (1: 1: 0.5) 508.42508.42 실시예 2Example 2 수열합성 비산재/콜타르 피치/탄산칼륨(1:1:0.8)Hydrothermal synthesis fly ash / coal tar pitch / potassium carbonate (1: 1: 0.8) 496.00496.00 비교예 1Comparative Example 1 수열합성 비산재/콜타르 피치/탄산칼륨(1:1:0.1)Hydrothermal synthesis fly ash / coal tar pitch / potassium carbonate (1: 1: 0.1) 250.80250.80 비교예 2Comparative Example 2 수열합성 비산재/콜타르 피치/탄산칼륨(1:1:1.3)Hydrothermal synthesis fly ash / coal tar pitch / potassium carbonate (1: 1: 1.3) 496.15496.15 비교예 3Comparative Example 3 수열합성 비산재/콜타르 피치/탄산칼륨(1:1:2.0)Hydrothermal synthesis fly ash / coal tar pitch / potassium carbonate (1: 1: 2.0) 440.95440.95

실시예 1∼2와 비교예 1∼3에서는 수열 합성한 소각 비산재와 콜타르 피치의 양을 1 : 1로 고정하고, 탄산칼륨의 첨가량을 0.1∼2의 비율로 첨가한 것으로 요오드 흡착능 값이 탄산칼륨의 첨가량을 0.5∼0.8의 비율로 첨가한 본 발명에 의한 실시예 1, 2가 508.42mg/g, 496.00 mg/g으로 높은 흡착능을 보였다.In Examples 1 to 2 and Comparative Examples 1 to 3, the amount of incineration fly ash and coal tar pitch synthesized by hydrothermal synthesis was fixed at 1: 1, and the amount of potassium carbonate added was added at a ratio of 0.1 to 2, so that the iodine adsorption capacity value was potassium carbonate. Example 1 and bivalent by the present invention which added the addition amount of in the ratio of 0.5-0.8 showed high adsorption capacity at 508.42 mg / g and 496.00 mg / g.

만일, 상기 탄산칼륨의 첨가량의 비율이 0.5 미만일 경우는 만족할만한 흡착능을 충분히 얻을 수가 없었으며, 상한 값인 1.3 비율을 초과하는 경우에는 비교예 2∼3에 나타난 것과 같이 요오드 흡착능의 값은 높게 나타났으나 성형물의 입상형태가 유지되지 않는 문제가 있음을 알 수 있었다.If the ratio of the added amount of potassium carbonate was less than 0.5, satisfactory adsorption capacity could not be obtained sufficiently. If the ratio exceeded the upper limit of 1.3, the iodine adsorption capacity was high as shown in Comparative Examples 2 to 3. It was found that there was a problem that the granular form of the molded product was not maintained.

3. 실시예 3, 4; 비교예 4∼63. Examples 3 and 4; Comparative Examples 4 to 6

실시예 3∼4 및 비교예 4∼6은 적정 활성화 온도를 찾기 위해 수열 합성한 비산재 및 콜타르 피치 그리고 탄산칼륨의 첨가량을 1 : 1 : 0.5의 비율로 고정하고 활성화 온도를 변화시켜 환원분위기에서 활성화한 후 60℃ 이하로 건조하여 활성화 온도에 따른 요오드 흡착능 값을 측정하여 표 3에 나타내었다.Examples 3 to 4 and Comparative Examples 4 to 6 were fixed in hydrothermally synthesized fly ash, coal tar pitch, and potassium carbonate at a ratio of 1: 1: 1, and the activation temperature was changed to find an appropriate activation temperature. After drying to 60 ℃ or less and measured the iodine adsorption capacity value according to the activation temperature is shown in Table 3.

반응 조건Reaction conditions 요오드 흡착능(mg/g)Iodine adsorption capacity (mg / g) 실시예 3Example 3 800℃800 ℃ 508.42508.42 실시예 4Example 4 900℃900 ℃ 526.82526.82 비교예 4Comparative Example 4 500℃500 ℃ 314.10314.10 비교예 5Comparative Example 5 600℃600 ℃ 252.09252.09 비교예 6Comparative Example 6 700℃700 ℃ 413.31413.31

표 3에서 보는 바와 같이, 실시예 3, 4 및 비교예 4∼6은 활성화 온도를 변화하여 실험한 것으로, 최고의 흡착능을 가지는 조건은 실시예 3, 4에 따른 활성화를 800∼900℃에서 수행하였을 때 높은 흡착능을 나타내었다.As shown in Table 3, Examples 3 and 4 and Comparative Examples 4 to 6 were experiments by changing the activation temperature, the conditions having the highest adsorption capacity were performed at 800 to 900 ℃ according to Examples 3 and 4 activation. When it showed a high adsorption capacity.

상기한 바와 같이 이루어진 본 발명은 소각 중에 발생되는 비산재를 수열 합성한 후 탄소원과 활성화제를 첨가하여 활성화함으로써 비산재 중에 함유되어 있는 유해물질을 안정화시키고, 안정화된 비산재를 흡착능이 우수하고 경제적인 흡착제로 재활용함으로써 자원을 유용하게 이용할 수 있을 뿐만 아니라 도시 고형폐기물의 소각재 문제를 해결하는 유력한 방법으로 활용될 수 있다.The present invention made as described above stabilizes harmful substances contained in fly ash by hydrothermally synthesizing fly ash generated during incineration, and then adding carbon source and activator, and stabilized fly ash as an adsorbent having excellent adsorption capacity and economical efficiency. By recycling, not only can resources be usefully used, they can also be used as a viable way to solve the problem of municipal solid waste incineration.

따라서, 본 발명에 의한 흡착제는 VOCs 뿐만 아니라 유해한 대기오염물질의 처리에 효과적으로 사용할 수 있다. 또한 본 발명의 흡착제는 부가가치가 낮은 무한한 자원을 이용하고, 대기 중의 VOCs를 흡착제에 흡착시킨 뒤 흡착제를 분리하여 일정한 장소에 매립하거나, 흡착제에 흡착된 VOCs를 회수한 후 재 사용할 수 있으므로 경제적이다.Therefore, the adsorbent according to the present invention can be effectively used for the treatment of harmful air pollutants as well as VOCs. In addition, the adsorbent of the present invention is economical because it uses infinite resources with low added value, can adsorb VOCs in the air to the adsorbent, separate the adsorbent and landfill it in a fixed place, or recover and reuse the VOCs adsorbed on the adsorbent.

이상에서는 본 발명을 특정의 바람직한 실시예를 예로 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments and the general knowledge in the technical field to which the present invention pertains without departing from the spirit of the present invention. Various changes and modifications will be made by those who possess.

Claims (4)

소각물의 소각 중에 발생되는 비산재를 이용한 휘발성 유기 화합물 제거용 흡착제 제조 방법에 있어서,In the manufacturing method of the adsorbent for removing volatile organic compounds using fly ash generated during incineration of incinerators, (a) 비산재를 수열 합성하는 단계;(a) hydrothermally synthesizing fly ash; (b) 상기 비산재의 성형성을 높여주기 위한 결합제와, 기공 형성을 활성화시켜 주는 화합물을 상기 수열 합성한 비산재에 혼합하여 혼합물을 얻는 단계;(b) mixing a binder for improving the moldability of the fly ash and a compound for activating pore formation with the fly ash synthesized by the hydrothermal synthesis to obtain a mixture; (c) 상기 혼합물을 성형하여 성형물을 얻는 단계;(c) molding the mixture to obtain a molding; (d) 상기 성형물을 열처리하여 발생되는 가스에 의하여 다수의 기공이 형성되도록 하는 활성화 단계;(d) an activation step of forming a plurality of pores by the gas generated by heat treatment of the molding; (e) 상기 활성화된 성형물을 수세한 후 건조시켜 흡착제를 얻는 단계를 포함하는 것을 특징으로 하는 휘발성 유기 화합물 제거용 흡착제의 제조 방법.(e) washing the activated molded product and washing the dried molded product to obtain an adsorbent. 제 1항에 있어서, 상기 (b) 단계의 결합제 및 화합물은 콜타르 피치와 탄산칼륨인 것을 특징으로 하는 휘발성 유기 화합물 제거용 흡착제의 제조 방법.The method of claim 1, wherein the binder and the compound of step (b) are coal tar pitch and potassium carbonate. 제 1항 또는 제 2항에 있어서, 상기 비산재, 콜타르 피치, 탄산칼륨은 1.0 : 1.0 : 0.5∼1.0 중량비로 조성되는 것을 특징으로 하는 휘발성 유기 화합물 제거용 흡착제의 제조 방법.The method for producing an adsorbent for removing volatile organic compounds according to claim 1 or 2, wherein the fly ash, coal tar pitch, and potassium carbonate are formed in a weight ratio of 1.0: 1.0: 0.5 to 1.0. 제 1항에 있어서, 상기 (d) 단계의 활성화 처리는 상기 (c) 단계의 성형물을 800∼900℃ 온도의 환원 분위기에서 열처리하는 것을 특징으로 하는 휘발성 유기 화합물 제거용 흡착제의 제조 방법.The method according to claim 1, wherein the activation process of step (d) comprises heat treating the molded article of step (c) in a reducing atmosphere at a temperature of 800 to 900 ° C.
KR1020030034494A 2003-05-29 2003-05-29 Manufacturing Method of Adsorbent to Remove Volatile Organic Compounds KR20040103546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030034494A KR20040103546A (en) 2003-05-29 2003-05-29 Manufacturing Method of Adsorbent to Remove Volatile Organic Compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030034494A KR20040103546A (en) 2003-05-29 2003-05-29 Manufacturing Method of Adsorbent to Remove Volatile Organic Compounds

Publications (1)

Publication Number Publication Date
KR20040103546A true KR20040103546A (en) 2004-12-09

Family

ID=37379477

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030034494A KR20040103546A (en) 2003-05-29 2003-05-29 Manufacturing Method of Adsorbent to Remove Volatile Organic Compounds

Country Status (1)

Country Link
KR (1) KR20040103546A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100421780C (en) * 2006-08-26 2008-10-01 陈宜平 Modified coal slag adsorbent and method for preparing same
KR101333238B1 (en) * 2011-04-11 2013-11-26 주식회사 에코프로 Method for preparation of adsorbent using ash with copper oxide deposited
CN108816236A (en) * 2018-05-15 2018-11-16 锡林郭勒职业学院 A kind of fly ash base VOCs catalyst for catalytic combustion and preparation method thereof
CN111841500A (en) * 2020-08-26 2020-10-30 华能国际电力股份有限公司 Method and system for synthesizing VOCs adsorbent by using fly ash and waste oil
CN112246843A (en) * 2020-10-21 2021-01-22 盐城工学院 Integrated device and method for treating waste incineration fly ash

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100421780C (en) * 2006-08-26 2008-10-01 陈宜平 Modified coal slag adsorbent and method for preparing same
KR101333238B1 (en) * 2011-04-11 2013-11-26 주식회사 에코프로 Method for preparation of adsorbent using ash with copper oxide deposited
CN108816236A (en) * 2018-05-15 2018-11-16 锡林郭勒职业学院 A kind of fly ash base VOCs catalyst for catalytic combustion and preparation method thereof
CN111841500A (en) * 2020-08-26 2020-10-30 华能国际电力股份有限公司 Method and system for synthesizing VOCs adsorbent by using fly ash and waste oil
CN111841500B (en) * 2020-08-26 2023-09-19 华能国际电力股份有限公司 Method and system for synthesizing VOCs adsorbent from fly ash and waste grease
CN112246843A (en) * 2020-10-21 2021-01-22 盐城工学院 Integrated device and method for treating waste incineration fly ash
CN112246843B (en) * 2020-10-21 2022-05-24 盐城工学院 Integrated device and method for treating waste incineration fly ash

Similar Documents

Publication Publication Date Title
Chunfeng et al. Adsorption of dye from wastewater by zeolites synthesized from fly ash: kinetic and equilibrium studies
Fan et al. Effective utilization of waste ash from MSW and coal co-combustion power plant—Zeolite synthesis
CN112897624B (en) Pyrite/biochar composite material and preparation method and application thereof
Alhooshani Adsorption of chlorinated organic compounds from water with cerium oxide-activated carbon composite
US6030922A (en) Synthesizing carbon from sludge
Guan et al. Value-added utilization of paper sludge: Preparing activated carbon for efficient adsorption of Cr (VI) and further hydrogenation of furfural
CN114321939A (en) Waste incineration treatment process
CA2335267A1 (en) Adsorbent for dioxins
KR20040103546A (en) Manufacturing Method of Adsorbent to Remove Volatile Organic Compounds
KR20140081952A (en) Adsorbent of organic compounds in waste water by using coal fly ash and preparation method thereof
KR20010076859A (en) Absorbent For Water Treatment Using Water Plant Sludges And Its Method Of Preparation
JP4029443B2 (en) Incinerator flue blowing agent and exhaust gas treatment method
JP2005263521A (en) Zeolite combined carbonized material and method for manufacturing the same
JP3438545B2 (en) Adsorbent for exhaust gas treatment and method for treating the adsorbent
JP2006263587A (en) Method for treatment of combustion exhaust-gas
KR20170040823A (en) Removal method of mercury contained in exhaust gas by ferro-nickel slag
Manocha et al. Preparation and characterization of activated carbon from demineralized tyre char
KR101073682B1 (en) METHOD FOR MANUFACTURING AMMONIA GAS ABSORBENT USING Fe-ZEOLITE
KR100425780B1 (en) The manufacture method of adsorbent by hydrothermal reaction of MSWI fly ash
JP7274132B2 (en) hydrogen chloride remover
JP4029439B2 (en) Incinerator flue blowing agent and exhaust gas treatment method
KR100834451B1 (en) Mercury removal by sulfidated iron oxide
JP5024654B2 (en) Wastewater treatment method
KR100527036B1 (en) Method for Manufacturing Absorbent Capable of Absorbing Heavy Metal Using MSWI Fly Ash and Admixture
KR100482935B1 (en) Adsorption removal device of dioxin

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application