KR20040105195A - Gas Supplying Method of Atomic Layer Deposition Equipment - Google Patents

Gas Supplying Method of Atomic Layer Deposition Equipment Download PDF

Info

Publication number
KR20040105195A
KR20040105195A KR1020030036502A KR20030036502A KR20040105195A KR 20040105195 A KR20040105195 A KR 20040105195A KR 1020030036502 A KR1020030036502 A KR 1020030036502A KR 20030036502 A KR20030036502 A KR 20030036502A KR 20040105195 A KR20040105195 A KR 20040105195A
Authority
KR
South Korea
Prior art keywords
gas
atomic layer
reaction
supplied
purge
Prior art date
Application number
KR1020030036502A
Other languages
Korean (ko)
Inventor
김효정
황기현
고창현
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020030036502A priority Critical patent/KR20040105195A/en
Publication of KR20040105195A publication Critical patent/KR20040105195A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Abstract

PURPOSE: A gas supply method of an atomic layer deposition apparatus is provided to prevent the flowing backward of a reactive gas, thereby preventing the reaction with other reactive gases by supplying a reactive gas and a purge gas simultaneously. CONSTITUTION: At least two sorts of reactive gases are supplied to a gas reacting room(1) at regular intervals. A first reactive gas is supplied from a first gas supply unit(15), thereby forming a fist atomic layer, And then, a second reactive gas is supplied from a second gas supply unit(17), thereby forming a second atomic layer on the first atomic layer. When each of the reactive gases is supplied, a purge gas is supplied simultaneously.

Description

원자층 박막 증착 설비의 가스공급방법{Gas Supplying Method of Atomic Layer Deposition Equipment}Gas Supplying Method of Atomic Layer Deposition Equipment

본 발명은 원자층 박막 증착 설비의 가스공급방법에 관한 것으로서, 더욱 상세하게는 반응가스 공급방법을 개선하여 서로 다른 종의 반응가스가 접촉하는 것을 방지하는 원자층 박막 증착 설비의 가스공급방법에 관한 것이다.The present invention relates to a gas supply method of an atomic layer thin film deposition apparatus, and more particularly, to a gas supply method of an atomic layer thin film deposition apparatus to improve the reaction gas supply method to prevent the reaction gas of different species contact. will be.

반도체집적기술의 발달로 인하여 고순도, 고품질의 박막을 증착 시키는 공정은 반도체 제조공정 중에서 중요한 부분을 차지하게 되었다. 박막형성의 대표적인 방법으로 화학 증착(Chemical Vapour Deposition, CVD)법과 물리 증착(Physical Vapour Deposition, PVD)법이 있다. 스퍼터링(sputtering)법 등의 물리 증착법은 형성된 박막의 단차 피복성(step coverage)이 나쁘기 때문에 요철이 있는 표면에 균일한 두께의 막을 형성하는 데에는 사용할 수 없다. 화학 증착법은 가열된 기판의 표면 위에서 기체상태의 물질들이 반응하고, 그 반응으로 생성된 화합물이 기판 표면에 증착되는 방법이다. 화학 증착법은 물리 증착법에 비하여 단차 피복성이 좋고, 박막이 증착되는 기판의 손상이 적고, 박막의 증착 비용이 적게 들며, 박막을 대량 생산할 수 있기 때문에 많이 적용되고 있다.Due to the development of semiconductor integrated technology, the process of depositing high purity and high quality thin film has become an important part of the semiconductor manufacturing process. Representative methods of thin film formation include chemical vapor deposition (CVD) and physical vapor deposition (PVD). Physical vapor deposition, such as sputtering, cannot be used to form a film of uniform thickness on a surface having irregularities because the step coverage of the formed thin film is poor. Chemical vapor deposition is a method in which gaseous substances react on a surface of a heated substrate, and a compound produced by the reaction is deposited on the surface of the substrate. Compared with physical vapor deposition, chemical vapor deposition has been widely applied because of better step coverage, less damage to a substrate on which thin films are deposited, low deposition cost of thin films, and mass production of thin films.

그러나, 최근 반도체 소자의 집적도가 서브 마이크론(sub-micron) 단위로까지 향상됨에 따라, 종래 방식의 화학 증착법 만으로는 웨이퍼 기판에서 서브 마이크론 단위의 균일한 두께를 얻거나, 우수한 단차피복성(step coverage)을 얻는데 한계에 이르고 있으며, 웨이퍼 기판에 서브 마이크론 크기의 콘택홀(contact hole), 비아(via) 또는 트렌치(trench)와 같은 단차가 존재하는 경우에 위치에 상관없이 일정한 조성을 가지는 물질막을 얻는데도 어려움을 겪게 되었다.However, as the degree of integration of semiconductor devices has recently been improved to sub-micron units, the conventional chemical vapor deposition method alone obtains a uniform thickness of sub-micron units on a wafer substrate, or has excellent step coverage. It is difficult to obtain a material film having a constant composition regardless of the position when there is a step such as a submicron-sized contact hole, via or trench in the wafer substrate. Suffered.

따라서, 종래의 모든 공정 기체들을 동시에 주입하는 화학 증착법과 다르게 원하는 박막을 얻는데 필요한 두 가지 이상의 공정 기체들을 기상에서 만나지 않도록 시간에 따라 순차적으로 분할하여 공급하되, 이들 공급 주기를 주기적으로 반복하여 박막을 형성하는 원자층 증착(atomic layer deposition) 방식이 새로운 박막 형성 방법으로 적용되고 있다. 상기한 원자층 증착 방식을 이용하면, 기판표면에흡착되는 물질(일반적으로 박막의 구성원소를 포함하는 화학 분자)에 의해서만 증착이 발생하게 되며, 이들의 흡착량은 일반적으로 기판 상에서 자체 제한(self-limiting)되기 때문에 기상으로 공급되는 양에 크게 의존하지 않고 기판 전체에 걸쳐 균일하게 얻어지므로, 매우 높은 종횡비를 가지는 단차에서도 위치에 상관없이 일정한 두께의 막을 얻을 수 있으며, 수 나노미터 단위의 매우 얇은 막의 두께 조절이 가능해 진다. 또한, 공정기체의 공급 주기 당 증착되는 막의 두께가 일정하므로, 공급주기 횟수를 통하여 정확한 막 두께의 조절 및 평가가 가능해진다. 그런데, 원자층 증착 방식을 이루기 위해서 공급되는 기체 원료들 간의 기상에서의 혼합을 억제하기 위해 제1반응가스를 공급한 후 제2반응가스를 공급하기 전에 제1반응가스가 기체 상태에서 모두 제거되어야 하므로, 수초간 진공 배기(evacuation) 시키거나 불활성 기체를 이용하여 퍼지(purge)시켜야 하는 과정이 상기 기체 원료들의 공급 사이에 포함되어야 한다.Therefore, unlike chemical vapor deposition which simultaneously injects all the conventional process gases, two or more process gases necessary to obtain a desired thin film are sequentially divided and supplied according to time so as not to meet in the gas phase, and the supply cycles are repeated periodically to repeat the thin film. Atomic layer deposition is being applied as a new thin film formation method. Using the above-described atomic layer deposition method, deposition occurs only by a substance adsorbed on the surface of the substrate (generally, chemical molecules including constituent elements of the thin film), and the amount of their adsorption is generally self-limiting on the substrate. It is not limited to the amount supplied to the gas phase, so it is uniformly obtained throughout the substrate, so that even a step with a very high aspect ratio, a film having a constant thickness regardless of the position can be obtained, and is very thin in several nanometers. The thickness of the membrane can be adjusted. In addition, since the thickness of the film deposited per supply cycle of the process gas is constant, accurate film thickness can be controlled and evaluated through the number of supply cycles. However, in order to achieve atomic layer deposition, all of the first reaction gas must be removed from the gas state before supplying the second reaction gas after supplying the first reaction gas to suppress mixing in the gas phase between the gaseous raw materials supplied. Therefore, a process of evacuating for several seconds or purging with an inert gas should be included between the supply of the gaseous raw materials.

이를 위하여 종래에는 제1반응가스를 주입하여 기판 상에 제1원자층을 증착시킨 후에 퍼지가스를 주입하여 제1반응가스를 반응실 외부로 배출시킨 뒤, 제 2반응가스를 주입하는 방식을 취하였다.To this end, conventionally, after injecting a first reaction gas to deposit a first atomic layer on a substrate, a purge gas is injected to discharge the first reaction gas out of the reaction chamber, and then a second reaction gas is injected. It was.

그러나, 상술한 방식에 있어서는 제1반응가스 또는 제2반응가스를 공급할 때에 퍼지가스가 공급되는 라인쪽으로 상기 제1반응가스 또는 제2반응가스가 역류하여 2종의 반응가스가 서로 접촉하게되는 문제점이 있다.However, in the above-described method, when the first reaction gas or the second reaction gas is supplied, the first reaction gas or the second reaction gas flows back toward the line to which the purge gas is supplied so that the two reaction gases come into contact with each other. There is this.

본 발명은 상술한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 반응가스공급 및 퍼지가스 공급방법을 개선하여 반응가스가 역류하여 서로 다른 반응가스가 접촉하는 문제점을 해소시키는 원자층 박막 증착 설비의 가스공급방법을 제공하는 데 있다.The present invention is to solve the above-mentioned problems, an object of the present invention is to improve the reaction gas supply and purge gas supply method of the atomic layer thin film deposition equipment to solve the problem that the reaction gas back flow to contact the different reaction gases To provide a gas supply method.

도 1은 본 발명의 일 실시 예에 의한 원자층 박막 증착설비의 가스 흐름도를 도시한 구성도,1 is a configuration diagram showing a gas flow diagram of an atomic layer thin film deposition apparatus according to an embodiment of the present invention,

도 2는 상기 도 1의 구성에 의해 가스가 공급되는 과정을 도시한 순서도이다.2 is a flowchart illustrating a process of supplying gas by the configuration of FIG. 1.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

1 : 반응실 3,5 : 제1,2반응가스라인1: Reaction chamber 3, 5: Reaction gas line 1, 2

7,9,11 : 제1,2,3퍼지가스라인 13a~13e : 밸브7,9,11: 1st, 2nd, 3rd purge gas line 13a ~ 13e: valve

15,17 : 제1,2가스공급원15,17: 1st, 2nd gas supply source

상술한 목적을 달성하기 위한 본 발명에 의한 원자층 박막 증착설비의 가스공급 방법은 적어도 2종의 반응가스를 일정한 시간 간격을 두고 교대로 반응실 내부로 주입하고, 그 교대로 주입되는 사이에 퍼지가스가 주입되어 퍼지동작을 실시하는 것에 의해 기판 상에 적어도 2종의 원자층 박막을 순차적으로 적층시키는 원자층 박막 증착설비의 가스공급 방법에 있어서, 상기 반응가스가 공급되는 시기에 상기 퍼지가스를 동시에 공급시키는 것을 특징으로 한다.In the gas supply method of the atomic layer thin film deposition apparatus according to the present invention for achieving the above object, at least two reaction gases are alternately injected into the reaction chamber at regular time intervals, and the purges are alternately injected. A gas supply method of an atomic layer thin film deposition apparatus in which at least two kinds of atomic layer thin films are sequentially stacked on a substrate by injecting a gas to perform a purge operation, wherein the purge gas is supplied at a time when the reaction gas is supplied. It is characterized by supplying at the same time.

이하 첨부된 도면 도 1,2를 참조하여 본 발명의 일 실시 예에 의한 원자층 박막 증착 설비의 가스공급방법에 대해서 좀더 상세히 설명한다.Hereinafter, a gas supply method of an atomic layer thin film deposition apparatus according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2.

도 1은 본 발명에 의한 원자층 박막 증착 장치의 가스공급방법을 설명하기 위한 구성도이고, 도 2는 상기 도1의 구성에 의해 가스가 공급되는 과정을 도시한 순서도이다.1 is a configuration diagram for explaining a gas supply method of an atomic layer thin film deposition apparatus according to the present invention, Figure 2 is a flow chart illustrating a process of supplying gas by the configuration of FIG.

도 1에 도시된 바와 같이 소정의 원자층 박막공정을 실시하기 위한 반응공간을 제공하는 반응실(1)이 있고, 상기 반응실(1)에는 각종 반응가스 및 퍼지가스(Purge Gas)를 주입하기 위한 주입구(1a)가 마련되고 그 일측에는 소정의 공정을 실시한 반응가스를 배기시키는 배출구(1b)가 마련된다.As shown in FIG. 1, there is a reaction chamber 1 which provides a reaction space for performing a predetermined atomic layer thin film process, and injecting various reaction gases and purge gases into the reaction chamber 1. Inlet 1a for the purpose is provided and one side thereof is provided with an outlet 1b for exhausting the reaction gas subjected to a predetermined process.

상기 가스주입구(1a)에는 서로 다른 종류의 가스(예컨대, 트리 메틸 알루미늄(Tri-methyl Aluminum: Al(CH3)3)가스 및 오존(O3))를 독립적으로 공급하는 제1,2반응가스라인(3,5)이 연결되고, 상기 제1반응가스라인(3)에는 제1퍼지가스라인(7)이 연결되고, 제2반응가스라인(5)에는 제2,3퍼지가스라인(9,11)이 각각 연결되어 있다.First and second reaction gases that independently supply different kinds of gases (eg, tri-methyl aluminum (Al (CH 3 ) 3 ) gas and ozone (O 3 )) to the gas inlet 1a. Lines 3 and 5 are connected, and a first purge gas line 7 is connected to the first reaction gas line 3, and a second and third purge gas line 9 is connected to the second reaction gas line 5. And 11 are connected respectively.

상기 제1,2가스공급라인(3,5) 및 제1 내지 제3퍼지가스라인(7,9,11)에는 그 유로를 개폐시키는 밸브(13a ~ 13e)가 각각 설치되어 있다.The first and second gas supply lines 3 and 5 and the first to third purge gas lines 7, 9 and 11 are provided with valves 13a to 13e for opening and closing the flow paths, respectively.

도 1에서 미설명부호(15,17)는 제1,2가스공급원을 나타낸다.In FIG. 1, reference numerals 15 and 17 denote first and second gas supply sources.

다음 도 2를 참조로 하여 상술한 바와 같이 구성된 원자층 증착 설비의 반응가스 공급 과정에 대해서 설명하면 아래와 같다.Next, the reaction gas supply process of the atomic layer deposition apparatus configured as described above with reference to FIG. 2 will be described.

먼저, 밸브(13b)를 개방하여 제1반응가스라인(3)을 통해 제1반응가스를 공급한다. 이때, 제1 내지 제3 퍼지가스라인(7,9,11)의 각 밸브(13c,13d,13e)를 개방하여 퍼지가스(N2가스)를 동시에 공급함으로써, 상기 제1반응가스라인(3)을 통해 공급되는 제1반응가스가 상기 제2반응가스공급라인(5) 및 제1 내지 제3퍼지가스라인(7,9,11)으로 역류되는 것을 방지한다.(S10)First, the valve 13b is opened to supply the first reaction gas through the first reaction gas line 3. At this time, each of the valves 13c, 13d, and 13e of the first to third purge gas lines 7, 9, and 11 is opened to simultaneously supply the purge gas (N 2 gas), thereby providing the first reaction gas line 3. The first reaction gas supplied through) is prevented from flowing back to the second reaction gas supply line 5 and the first to third purge gas lines 7, 9, and 11.

다음, 반응실(1)내부로 주입되어 소정시간동안 기판(미도시)과 반응을 실시한 후 반응실(1) 내부공간의 제1가스를 제거시키는 과정을 실시하기 위하여 밸브(13c)를 개방하여 제1퍼지가스라인(7)을 통해 퍼지가스를 공급한다.(S20)Next, the valve 13c is opened in order to perform a process of removing the first gas in the inner space of the reaction chamber 1 after being injected into the reaction chamber 1 and reacting with the substrate (not shown) for a predetermined time. The purge gas is supplied through the first purge gas line 7 (S20).

다음, 밸브(13b)를 개방하여 제2반응가스라인(5)을 통해 제2반응가스를 공급한다. 이때에도 역시 상기 제1반응가스를 공급할 때와 마찬가지로 제1 내지 제3퍼지가스라인(7,9,11)을 개방하여 퍼지가스를 동시에 공급한다. 따라서, 제2반응가스(5)를 통하여 공급된 제2반응가스가 상기 제1 내지 제3퍼지가스라인(7,9,11)으로 역류되는 것을 방지한다.(S30)Next, the valve 13b is opened to supply the second reaction gas through the second reaction gas line 5. In this case, as in the case of supplying the first reaction gas, the first to third purge gas lines 7, 9, and 11 are opened to simultaneously supply the purge gas. Therefore, the second reaction gas supplied through the second reaction gas 5 is prevented from flowing back to the first to third purge gas lines 7, 9, and 11.

그후 반응실(1) 내부로 주입되어 소정의 시간동안 기판과 반응을 실시하여 제2원자층을 형성시키고 난 제2반응가스를 제거시키기 위하여 제2퍼지가스라인(9) 또는 제3퍼지가스라인(11)을 통하거나 또는 상기 제2,3퍼지가스라인(9,11)을 동시에 개방하여 퍼지가스를 반응실(1)의 내부로 주입한다.(S40)Then, the second purge gas line 9 or the third purge gas line is injected into the reaction chamber 1 to react with the substrate for a predetermined time to remove the second reaction gas which has formed the second atomic layer. The purge gas is injected into the reaction chamber 1 through (11) or by simultaneously opening the second and third purge gas lines 9 and 11 (S40).

상술한 바와 같이 제1 또는 제2반응가스가 공급되는 동안 제1,2,3퍼지가스라인을 동시에 개방하여 퍼지가스가 함께 공급되도록 함에 따라 제1 또는 제2반응가스가 역류되는 것이 방지되어 서로 다른 제1,2반응가스가 접촉되는 것을 효과적으로 차단하게 된다.As described above, the first, second and third purge gas lines are simultaneously opened to supply the purge gas together while the first or second reaction gas is supplied, thereby preventing the first or second reaction gas from flowing backwards. Effectively blocking the contact of the other first and second reaction gases.

상술한 구성에 있어서, 제1,2반응가스 및 제1 내지 제3퍼지가스가 하나의 주입구(1a)를 통하여 주입되는 예를 들어 설명하였으나, 그에 한정된 것은 아니며, 제1,2반응가스라인(3,5)이 반응실(1)에 각각 독립적으로 연결되거나, 제1 내지 제3퍼지가스라인(7,9,11)이 반응실(1)에 독립적으로 연결되어 있을 경우에도 상기와 같은 기본 개념을 적용시켜 사용할 수 있음은 물론이다.In the above-described configuration, an example in which the first and second reaction gases and the first to third purge gases are injected through one injection hole 1a has been described, but is not limited thereto, and the first and second reaction gas lines ( 3 and 5 are independently connected to the reaction chamber 1 or the first to third purge gas lines 7, 9 and 11 are independently connected to the reaction chamber 1. Of course, the concept can be applied and used.

상술한 바와 같이 반응가스가 공급될 때 퍼지가스를 동시에 공급하여 반응가스가 상기 퍼지가스를 통해 역류하는 것을 방지하여 서로 다른 종류의 반응가스가 접촉하는 것을 방지한다. 상기와 같이 서로 다른 반응가스가 반응하는 것을 방지함에 따라 이물질이 생성되는 것을 방지하여 기판 상에 발생되는 결함 요인을 줄이는 이점이 있다.As described above, when the reaction gas is supplied, the purge gas is supplied at the same time to prevent the reaction gas from flowing backward through the purge gas, thereby preventing the contact of different kinds of reaction gases. As described above, as different reactant gases are prevented from reacting, there is an advantage of reducing defects generated on the substrate by preventing foreign substances from being generated.

이와 같이, 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 안되며 후술하는 특허청구범위 뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.As described above, in the detailed description of the present invention, specific embodiments have been described. However, various modifications may be made without departing from the scope of the present invention. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.

Claims (1)

적어도 2종의 반응가스를 일정한 시간 간격을 두고 교대로 반응실 내부로 주입하고, 그 교대로 주입되는 사이에 퍼지가스가 주입되어 퍼지 동작을 실시하는 것에 의해 기판 상에 적어도 2종의 원자층 박막을 순차적으로 적층시키는 원자층 박막 증착 설비의 가스공급방법에 있어서,At least two kinds of the atomic layer thin films on the substrate by injecting at least two kinds of reaction gases into the reaction chamber alternately at regular time intervals, and purging gas is injected between the two injections alternately. In the gas supply method of the atomic layer thin film deposition equipment to sequentially deposit the 상기 반응가스가 공급되는 시기에 상기 퍼지가스를 동시에 공급시키는 것을 특징으로 하는 원자층 박막 증착 설비의 가스 공급 방법.The gas supply method of the atomic layer thin film deposition equipment, characterized in that to supply the purge gas at the same time when the reaction gas is supplied.
KR1020030036502A 2003-06-05 2003-06-05 Gas Supplying Method of Atomic Layer Deposition Equipment KR20040105195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030036502A KR20040105195A (en) 2003-06-05 2003-06-05 Gas Supplying Method of Atomic Layer Deposition Equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030036502A KR20040105195A (en) 2003-06-05 2003-06-05 Gas Supplying Method of Atomic Layer Deposition Equipment

Publications (1)

Publication Number Publication Date
KR20040105195A true KR20040105195A (en) 2004-12-14

Family

ID=37380334

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030036502A KR20040105195A (en) 2003-06-05 2003-06-05 Gas Supplying Method of Atomic Layer Deposition Equipment

Country Status (1)

Country Link
KR (1) KR20040105195A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100555575B1 (en) * 2004-09-22 2006-03-03 삼성전자주식회사 Atomic layer deposition apparatus and method
KR101248998B1 (en) * 2012-05-22 2013-04-02 주성엔지니어링(주) Method for forming thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100555575B1 (en) * 2004-09-22 2006-03-03 삼성전자주식회사 Atomic layer deposition apparatus and method
KR101248998B1 (en) * 2012-05-22 2013-04-02 주성엔지니어링(주) Method for forming thin film

Similar Documents

Publication Publication Date Title
US7635502B2 (en) ALD apparatus and method
KR100601821B1 (en) Thin film forming method and thin film forming device
KR100497748B1 (en) ALD equament and ALD methode
US20060196538A1 (en) Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers
KR20020002579A (en) A method for forming zirconium oxide film using atomic layer deposition
US7771535B2 (en) Semiconductor manufacturing apparatus
JP2000212752A (en) Reaction chamber gas flowing method and shower head used therefor
KR101554334B1 (en) Shower-head assembly and thin film deposition apparatus and method having the same
KR20090039083A (en) Method of depositing ruthenium film
KR100758758B1 (en) Atomic layer deposition methods of forming silicon dioxide comprising layers
KR20070096248A (en) Appratus for atomic layer deposition using showerhead having gas separative type
US20060251815A1 (en) Atomic layer deposition methods
CN109576674B (en) Atomic layer deposition apparatus
KR20040105195A (en) Gas Supplying Method of Atomic Layer Deposition Equipment
KR100651599B1 (en) Atomic layer deposition device
KR100631305B1 (en) A method and equipment for atomic layer deposition
KR100483208B1 (en) Valve system of thin-firm deposition apparatus for atomic layer deposition
KR102534076B1 (en) Deposition apparatus and method using the same
KR101027754B1 (en) Atomic layer deposition equipment and atomic layer deposition method using thereof
US20060231026A1 (en) Vapor deposition systems having separate portions configured for purging using different materials
KR20020088621A (en) Gas injector for ALD device
KR20010036268A (en) Method for forming a metallic oxide layer by an atomic layer deposition
KR20060029554A (en) A method for depositing thin film using ald
KR101334221B1 (en) Method of manufacturing multi-level metal thin film and apparatus for manufacturing the same
KR20060082142A (en) Equipment for atomic layer deposition

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination