KR20040100207A - SILICON SOLAR CELL WITH ZnS ANTI-REFLECTION COATING LAYER AND METHOD OF FABRICATING THE SAME - Google Patents

SILICON SOLAR CELL WITH ZnS ANTI-REFLECTION COATING LAYER AND METHOD OF FABRICATING THE SAME Download PDF

Info

Publication number
KR20040100207A
KR20040100207A KR1020030032467A KR20030032467A KR20040100207A KR 20040100207 A KR20040100207 A KR 20040100207A KR 1020030032467 A KR1020030032467 A KR 1020030032467A KR 20030032467 A KR20030032467 A KR 20030032467A KR 20040100207 A KR20040100207 A KR 20040100207A
Authority
KR
South Korea
Prior art keywords
silicon substrate
solar cell
type
electrode
layer
Prior art date
Application number
KR1020030032467A
Other languages
Korean (ko)
Other versions
KR100543507B1 (en
Inventor
준 신 이
유진수
김경해
이재형
Original Assignee
준 신 이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 준 신 이 filed Critical 준 신 이
Priority to KR1020030032467A priority Critical patent/KR100543507B1/en
Publication of KR20040100207A publication Critical patent/KR20040100207A/en
Application granted granted Critical
Publication of KR100543507B1 publication Critical patent/KR100543507B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A silicon solar cell and a manufacturing method thereof are provided to reduce effectively surface reflectivity of the cell at low cost regardless of the size of the cell by depositing ZnS layer on the cell using a CBD(Chemical Bath Deposition). CONSTITUTION: An N type doped layer(400), a native oxide layer(500), a first ZnS anti-reflective coating(600), a front electrode grid(700), busbars(800) are sequentially formed on a P type silicon substrate(300). A field effect layer(200), an aluminium electrode(100), a second ZnS anti-reflective coating(610), and Ag/Al electrodes(110,120) are sequentially formed under the P type silicon substrate. The first and second ZnS anti-reflective coatings are formed by using a CBD.

Description

황화아연 반사방지막을 갖는 실리콘 태양전지 및 그 제조방법{SILICON SOLAR CELL WITH ZnS ANTI-REFLECTION COATING LAYER AND METHOD OF FABRICATING THE SAME}Silicon solar cell having zinc sulfide antireflection film and its manufacturing method {SILICON SOLAR CELL WITH ZnS ANTI-REFLECTION COATING LAYER AND METHOD OF FABRICATING THE SAME}

본 발명은 반사방지막을 갖는 실리콘 태양전지 및 그 제조방법에 관한 것으로, 보다 구체적으로는 다른 방법들에 비해 가격면에서 저렴하고 대면적화가 용이한 CBD(chemical bath deposition)법으로 실리콘 표면에 황화아연(ZnS)막을 증착함으로서 실리콘계 태양전지의 표면 반사율을 효과적으로 줄일 수 있는 반사방지막을 갖는 실리콘 태양전지 및 그 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon solar cell having an antireflection film and a method of manufacturing the same. More specifically, zinc sulfide is deposited on a silicon surface by a chemical bath deposition (CBD) method, which is inexpensive compared to other methods and easy to large area The present invention relates to a silicon solar cell having an antireflection film capable of effectively reducing the surface reflectance of a silicon solar cell by depositing a (ZnS) film, and a method of manufacturing the same.

우리나라는 부존자원이 빈약하여 석유를 주축으로 하는 대부분의 에너지를 외국에서 수입하여 사용하고 있는 반면에 전력 수요량은 지속적으로 급증하고 있다. 1973년 중동에서의 석유 파동이래 발전용 연료의 다원화는 정책 이슈로 작용되어 왔으며, 우리나라의 경우도 석유 화력 발전소를 대체하기 위하여 원자력 발전소와 석탄 화력 발전소가 지속적으로 건설되고 있으며, 아울러 발전 효율 향상을 위한 노력이 계속되고 있다. 그러나 원자력 발전의 경우에는 사고의 위험과 핵폐기물 처리 문제가 존재하므로 무한정의 건설은 곤란하다. 이와 같은 추세는 선진국에서도 같은 실정이며 원자력, 수력, 석탄, 화력, 태양광 또는 지열발전 등 각 국의 실정에 적합하고 가능한 모든 방안을 선택하고 있으며, 이와 병행하여 효율 높은 새로운 발전 방식에 관한 연구 개발에도 많은 투자를 하고 있다. 특히, 기존의 수력 및 화력 발전 기술에서 사용되는 터빈과 같은 회전 동작이 전혀 필요 없이 전기로의 직접 에너지 변환이 가능한 새로운 발전 기술에 관한 연구 개발은 미국, 일본, 호주, 독일, 그리고 이탈리아와 같은 국가에서 집중적으로 수행되어 오고 있다.In Korea, most of the energy, mainly oil, is imported and used in foreign countries due to poor resources, while the demand for electricity is continuously increasing. Since the oil surge in the Middle East in 1973, the diversification of fuels for power generation has been a policy issue. In Korea, nuclear power plants and coal-fired power plants are continuously being constructed to replace oil-fired power plants. Efforts are ongoing. However, in the case of nuclear power generation, it is difficult to build indefinitely because of the risk of accidents and nuclear waste disposal problems. This trend is the same in developed countries, and it selects all possible and suitable methods for each country such as nuclear power, hydropower, coal, thermal power, photovoltaic or geothermal power generation. Investing a lot. In particular, research and development on new power generation technologies that can convert energy directly into electricity without the need for rotational operations, such as turbines used in conventional hydro and thermal power generation technologies, have been carried out in countries such as the United States, Japan, Australia, Germany, and Italy. It has been done intensively.

태양광 발전(photovoltaic power generation)은 무한한 태양에너지를 이용하는 신재생 에너지의 하나로서 천연자원의 한계성에 따른 미래의 대체에너지 공급원으로서 주목받고 있고, 국내외적으로 활발한 연구개발이 이루어지고 있다. 현재 등대, 원격지 통신, 인공위성 등의 전원 공급원으로 주로 사용되고 있으나 2000년대 후반에는 대규모 발전의 장점으로는 무공해, 무진장의 에너지원이면서 설치 장소의 제약 조건도 비교적 적다는 장점을 갖고 있다. 그러나 아직 기존의 사용전력에 비해 생산 단가가 높기 때문에, 이러한 문제를 해결하는 방안으로 생산 단가를 낮추면서도 변환 효율이 높은 태양전지의 제작에 대한 필요성이 크게 대두되고 있다.Photovoltaic power generation is one of renewable energy that uses infinite solar energy and is attracting attention as a future alternative energy supply source due to the limitation of natural resources, and active research and development is being made at home and abroad. Currently, it is mainly used as a power source for lighthouses, telecommunications, satellites, etc., but in the late 2000s, the advantages of large-scale power generation are pollution-free, inexhaustible energy sources, and relatively low installation constraints. However, since the production cost is still higher than the existing power, there is a great need for manufacturing solar cells with high conversion efficiency while lowering the production cost as a solution to this problem.

태양광 발전 시스템의 가장 핵심적인 소자인 태양전지는 태양 에너지의 변환 효율을 높이기 위해서 태양광을 효과적으로 수집해야 하는데, 현재 양산되고 있는 대부분의 태양전지인 실리콘계의 경우 입사되는 빛 중 30% 이상을 기판인 실리콘 웨이퍼 표면에서 반사시키는 문제점을 갖고 있다.The solar cell, the most essential element of the photovoltaic power generation system, needs to collect sunlight effectively to improve the conversion efficiency of solar energy. In the case of silicon-based solar cells, which are currently mass-produced, more than 30% of the incident light It has a problem of reflecting on the surface of a silicon wafer.

현재 효과적인 빛 수집을 위해 가장 많이 사용하는 방법으로는 표면 텍스춰링(texturing)과 반사 방지막(anti-reflection(AR) coating) 형성을 들 수 있다. 표면 텍스춰링은 크게 기계적인 방법과 화학적인 방법으로 나눌 수 있는데, 먼저 기계적인 방법은 날의 각도를 변화시킬 수 있는 미세한 다이아몬드 블레이드를 이용하여 반도체의 표면에 피라미드 형태 또는 브이(V)자형 홈을 파는 것이며, 이 홈의 각도를 조정함으로 인해서 어느 정도 반사율을 줄 일수 있다. 또한, 빠른 속도로 만들 수 있으므로, 수율 향상에 도움이 된다. 다음으로, 화학적인 방법은 포토 리소그래피를 이용하여 태양전지의 표면에 SiO2,포토레지스트 등을 이용하여 마스크를 형성하고, 단결정인 경우에는 특정 면 방향만을 식각하는 이방성 식각용액을 이용하여 피라미드 혹은 역 피라미드 형태의 표면 구조물을 형성하며, 다결정인 경우에는 등방성 식각용액을 이용한다. 전자의 경우 빠른 속도로 제조가 가능하나 표면에 심각한 손상을 주게 되어 후에 등방성 식각 용액을 이용한 화학적인 처리를 병행해야만 하는 결점이 있다. 후자의 경우 빛 수집 효과는 우수하지만 900℃ 이상의 고온 산화막 공정이 수반되고 구조물의 형성 절차가 너무 복잡하여 실제 생산단계에서는 적용이 곤란하다. 따라서 표면 텍스춰링에 비하여 간단하게 수행할 수 있는 반사 방지막이 현재 거의 모든 태양전지에 사용되고 반사 방지막을 적용할 경우 반사율을 3% 미만으로 줄일 수 있다.Currently, the most used methods for effective light collection include surface texturing and anti-reflection (AR) coating formation. Surface texturing can be largely divided into mechanical and chemical methods. First, the mechanical method uses a fine diamond blade that can change the angle of the blade to form pyramidal or V-shaped grooves on the surface of the semiconductor. Digging, and by adjusting the angle of this groove can reduce the reflectance to some extent. In addition, it can be made at high speed, which helps to improve the yield. Next, a chemical method uses photolithography to form a mask using SiO 2 , photoresist, or the like on the surface of a solar cell, and in the case of a single crystal, a pyramid or inverted solution using an anisotropic etching solution for etching only a specific surface direction. It forms a pyramid-shaped surface structure, and in the case of polycrystal, isotropic etching solution is used. The former can be manufactured at a high speed, but the surface is seriously damaged, and there is a drawback that a chemical treatment with an isotropic etching solution must be performed at the same time. In the latter case, the light collection effect is excellent, but it is difficult to apply in actual production stage because it involves high temperature oxide process over 900 ℃ and the formation procedure of structure is too complicated. Therefore, an anti-reflection film which is simpler than surface texturing is currently used in almost all solar cells, and when the anti-reflection film is applied, the reflectance can be reduced to less than 3%.

본 출원인에 의해 1999년 8월 31일자로 출원된 대한민국 특허출원번호 제1999-36482호의 "태양전지 반사방지막의 제조방법"에도 공지된 바와 같이, 일반적으로 고효율 실리콘 태양전지에 가장 많이 사용되고 있는 MgF2의 이층 구조 반사 방지막은 비교적 넓은 파장 범위에서 반사율을 효과적으로 감소시키지만, 제조가격 상승 및 제품 수율 면에서 문제가 있다. 또한 대부분 진공 증착법에 의해 MgF2를 증착하기 때문에 고가의 진공 장비를 필요로 하며, 넓은 면적에 균일한 두께 및 굴절율을 갖는 반사 방지막 제조가 어렵다는 단점이 있다.MgF 2 generally used in high efficiency silicon solar cells, as known in the "Method of manufacturing solar cell anti-reflection film" of Korean Patent Application No. 1999-36482, filed August 31, 1999 by the applicant The bilayer antireflection film effectively reduces the reflectance over a relatively wide wavelength range, but has problems in terms of manufacturing price and product yield. In addition, since most of the deposition of MgF 2 by the vacuum deposition method requires expensive vacuum equipment, there is a disadvantage that it is difficult to manufacture an anti-reflection film having a uniform thickness and refractive index in a large area.

단층 구조의 경우에는 낮은 반사율을 얻을 수 있는 파장 범위가 좁아지는 단점은 있으나 표면 텍스춰링과 병행하면 효과적으로 반사율을 줄일 수 있다.In the case of the single layer structure, the wavelength range for obtaining low reflectance is narrowed, but the reflectance can be effectively reduced when combined with surface texturing.

상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 실리콘계 태양전지의 표면 반사율을 효과적으로 줄일 수 있고, 저가격 및 대면적 증착이 가능한 반사방지막을 갖는 실리콘 태양전지 및 그 제조방법을 제공하는데 있다.The present invention has been made to solve the above problems, an object of the present invention to effectively reduce the surface reflectance of a silicon-based solar cell, to provide a silicon solar cell having a low-cost and large-area anti-reflection coating and a method for manufacturing the same have.

본 발명의 다른 목적은 제조 공정이 간단하고 제조 비용이 저렴하여 태양전지의 광범위한 실용화에 기여할 수 있고, 태양전지 이외의 반사율이 필수적인 광학 기기에도 응용이 가능한 반사방지막을 갖는 실리콘 태양전지 및 그 제조방법을 제공하는데 있다.Another object of the present invention is a silicon solar cell having an anti-reflection film and a method of manufacturing the same, which can contribute to the widespread practical use of solar cells due to the simple manufacturing process and low manufacturing cost, and can be applied to optical devices that require reflectance other than solar cells. To provide.

도 1은 본 발명에 따라 황화아연(ZnS) 박막을 증착하는 장치를 개략적으로 도시한 도면으로서,1 is a view schematically showing an apparatus for depositing a zinc sulfide (ZnS) thin film according to the present invention,

도 1a는 정단면도,1a is a front cross-sectional view,

도 1b는 사시도.1B is a perspective view.

도 2는 본 발명에 따라 제조된 반사방지막을 갖는 실리콘 태양전지의 구조를 나타낸 도면.2 is a view showing the structure of a silicon solar cell having an anti-reflection film prepared according to the present invention.

도 3은 본 발명에 따른 실리콘 태양전지의 제조순서도.Figure 3 is a manufacturing flowchart of the silicon solar cell according to the present invention.

도 4는 본 발명에 따른 실리콘 태양전지를 제조하는 단계를 순서적으로 도시한 도면.4 is a view showing the steps of manufacturing a silicon solar cell according to the present invention in sequence.

도 5는 본 발명에 따라 반사방지막이 형성된 태양전지의 전후면 버스바아 영역에 전기적 접촉을 위한 황화아연 반사방지막의 제거 방법을 개략적으로 도시한 도면.FIG. 5 schematically illustrates a method of removing a zinc sulfide antireflection film for electrical contact with front and rear busbar regions of a solar cell having an antireflection film formed thereon according to the present invention.

도 6은 본 발명에 따라 CBD방법으로 제조한 황화아연 반사방지막의 반사특성을 나타낸 그래프.Figure 6 is a graph showing the reflection characteristics of the zinc sulfide antireflection film prepared by the CBD method according to the present invention.

도 7은 본 발명에 따라 CBD방법으로 제조한 황화아연 반사방지막을 갖는 태양전지 완성품의 사진과 광조사에 따른 전류-전압 성능을 나타낸 그래프.Figure 7 is a graph showing the current-voltage performance according to the photo and light irradiation of the finished solar cell having a zinc sulfide anti-reflection film prepared by the CBD method according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

100 : 후면 알루미늄전극100: rear aluminum electrode

110, 120 : 버스바아용 은/알루미늄 전극110, 120: silver / aluminum electrode for bus bar

200 : 후면전계효과층 300 : p-형 실리콘 기판200: back field effect layer 300: p-type silicon substrate

400 : n-형 도핑층 500 : 자연산화막400: n-type doped layer 500: natural oxide film

600 : 반사방지막 700 : 전면전극 그리드600: antireflection film 700: front electrode grid

800 : 버스바아800: busbar

상기의 목적을 달성하기 위한 본 발명에 따른 반사방지막을 갖는 실리콘 태양전지는 p-형 실리콘 기판의 전면 상부층에 순서대로 n-형 도핑층, 그 상부에 열처리시 생성되는 자연산화막, 및 황화아연 반사방지막이 형성되고, 상기 p-형 실리콘 기판의 전면전극으로서 전면전극 그리드와 버스바아가 인쇄형성되며, 상기 p-형 실리콘 기판의 후면 하부층에는 순서대로 후면전계효과층, 그 하부에 후면 알루미늄전극 및 황화아연 반사방지막이 형성되고, 상기 p-형 실리콘 기판의 후면전극으로서 버스바아용 은/알루미늄(AgAl)전극이 인쇄형성되어 이루어진다.Silicon solar cell having an anti-reflection film according to the present invention for achieving the above object is an n-type doped layer in order on the front upper layer of the p-type silicon substrate, a natural oxide film produced during heat treatment on the top, and zinc sulfide reflection A barrier film is formed, and a front electrode grid and a bus bar are printed as front electrodes of the p-type silicon substrate, and a rear field effect layer is sequentially formed on the rear lower layer of the p-type silicon substrate, and a rear aluminum electrode is disposed thereunder. A zinc sulfide antireflection film is formed, and a silver / aluminum (AgAl) electrode for a bus bar is formed as a back electrode of the p-type silicon substrate.

또한, 본 발명에 따른 반사방지막을 갖는 실리콘 태양전지의 제조방법은 p-형 실리콘 기판을 준비하는 단계; 상기 p-형 실리콘 기판 상에 잔존하고 있는 오염물질을 세정하고, 표면을 식각하는 습식에칭 단계; 습식에칭 후에 초순수 물로 세정하고 건조하는 단계; POCl3와 질소, 산소를 함께 공급하여 상기 실리콘 기판 상에 n-형 도핑층을 확산하여 형성하는 단계; n-형 도핑층 확산과정 후, 표면에 자연 형성되는 PSG(phosphorous silicate glass)와 가장자리 측면의 n-형 도핑층을 제거하는 단계; 상기 p-형 실리콘 기판의 후면에 알루미늄 금속과 후면 버스바아용 AgAl금속을 증착하여 후면전극을 형성하는 단계; 상기 p-형 실리콘 기판의 전면에 전면전극으로서 은(Ag)으로 된 전면전극 그리드와 버스바아를 스크린 인쇄를 통해서 형성하는 단계; CBD(chemical bath deposition) 기법을 이용하여 ZnS 반사방지막을 성장시키고 세척 건조하는 단계; 및 브러시 장치를 사용하여 태양전지의 전후면의 버스바아 영역에 성장된 ZnS 반사방지막을 제거하는 단계를 포함한다.In addition, the method for manufacturing a silicon solar cell having an antireflection film according to the present invention comprises the steps of preparing a p-type silicon substrate; A wet etching step of cleaning the contaminants remaining on the p-type silicon substrate and etching the surface; Washing and drying with ultrapure water after wet etching; Supplying POCl 3 with nitrogen and oxygen together to form an n-type doped layer on the silicon substrate; after the n-type doped layer diffusion process, removing the PSG (phosphorous silicate glass) naturally formed on the surface and the n-type doped layer on the side of the edge; Forming a rear electrode by depositing aluminum metal and AgAl metal for a rear bus bar on a rear surface of the p-type silicon substrate; Forming a front electrode grid and a bus bar made of silver (Ag) on the front surface of the p-type silicon substrate through screen printing; Growing and washing dry the ZnS antireflective coating using a chemical bath deposition (CBD) technique; And removing the ZnS anti-reflection film grown on the bus bar area on the front and rear surfaces of the solar cell using a brush device.

이하, 첨부된 도면을 참조하여 본 발명에 따른 반사방지막을 갖는 실리콘 태양전지 및 그 제조방법에 대해 상세히 설명한다.Hereinafter, a silicon solar cell having an anti-reflection film according to the present invention and a method of manufacturing the same will be described in detail with reference to the accompanying drawings.

도 1a 및 도 1b는 본 발명에 따라 황화아연(ZnS) 박막을 증착하는 장치를 개략적으로 도시한 도면이다.1A and 1B schematically show an apparatus for depositing a zinc sulfide (ZnS) thin film according to the present invention.

도 1a 및 1b에 도시된 바와 같이, 본 발명에 따른 반사방지막을 갖는 실리콘 태양전지는 황화아연(ZnS) 박막을 제조하기 위해 도 1에 도시된 장치를 이용한다. 아연과 황의 공급원으로 각각 수용액 상태의 황산 아연(zinc sulfuric acid, ZnSO4), 티오 요소(thiourea,(NH2)2CS)를 사용하고, 착화합물(complex) 및 pH 조절제로는 암모니아(ammonia, NH3)를 사용한다. 또한 반응 용액 내에 아연 이온의 생성을 촉진시키기 위해 적정량의 히드라진 하이드레이트(hydrozine hydrate)용액을 첨가한다.As shown in Figs. 1A and 1B, a silicon solar cell having an antireflection film according to the present invention uses the apparatus shown in Fig. 1 to produce a zinc sulfide (ZnS) thin film. Zinc sulfuric acid (zinc sulfuric acid, ZnSO 4 ) and thiourea (NH 2 ) 2 CS are used as a source of zinc and sulfur, and ammonia (Ammonia, NH) is used as a complex and pH regulator. 3 ). In addition, an appropriate amount of hydrazine hydrate solution is added to promote the production of zinc ions in the reaction solution.

즉, 황화아연(ZnS) 박막의 성장을 위하여 적정량의 탈 이온수가 들어있는 반응용기(10)에 다양한 방법으로 제조된 태양전지(20)를 지지시킨 후, 황산아연, 암모니아, 히드라진 하이드레이트 및 티오요소 순서로 수용액 상태의 시약을 첨가시킨다. 이때, 반응조(reaction bath)내에 설치된 가열기(40)를 이용하여 반응용기(10) 내의 온도를 일정하게 유지시키고, 용액의 원활한 반응을 위하여 교반기로 계속 교반한다. 티오요소를 넣는 순간부터를 반응시간으로 정하여 반응시간을 조절하면서 원하는 두께의 박막을 증착한다.That is, after supporting the solar cell 20 manufactured by various methods in the reaction vessel 10 containing an appropriate amount of deionized water for the growth of zinc sulfide (ZnS) thin film, zinc sulfate, ammonia, hydrazine hydrate and thiourea In order, the reagents in aqueous solution are added. At this time, the temperature in the reaction vessel 10 is kept constant using the heater 40 installed in the reaction bath, and the stirring is continued with a stirrer for smooth reaction of the solution. The reaction time is controlled by setting the reaction time from the moment of adding thiourea, and a thin film having a desired thickness is deposited.

이러한 방법으로 제조된 황화아연 반사 방지막을 갖는 실리콘 태양전지의 구조가 도 2에 도시되어 있다. 도 2에 도시된 바와 같이, CBD(chemical bath deposition) 방법으로 제조한 황화아연 반사방지막을 갖는 태양전지의 구성을 살펴보면, p-형 실리콘 기판(300)의 전면 상부층에는 순서대로 n-형 도핑층(400), 그 상부에 열처리시 생성되는 자연산화막(500), 및 황화아연 반사방지막(600)이 형성되고, 상기 p-형 실리콘 기판(300)의 전면전극으로서 전면전극 그리드(700)와 버스바아(800: busbar)가 인쇄형성된다.The structure of a silicon solar cell having a zinc sulfide antireflection film produced in this manner is shown in FIG. 2. As shown in FIG. 2, the structure of a solar cell having a zinc sulfide antireflection film manufactured by a chemical bath deposition (CBD) method is described. An n-type doping layer is sequentially formed on the front upper layer of the p-type silicon substrate 300. 400, a natural oxide film 500 generated during heat treatment on the upper surface, and a zinc sulfide antireflection film 600 are formed, and the front electrode grid 700 and the bus are used as front electrodes of the p-type silicon substrate 300. A bar 800 is printed.

또한, 상기 p-형 실리콘 기판(300)의 후면 하부층에는 순서대로 후면전계효과층(200), 그 하부에 후면 알루미늄전극(100) 및 황화아연 반사방지막(610)이 형성되고, 상기 p-형 실리콘 기판(300)의 후면전극으로서 버스바아용 은/알루미늄(AgAl)전극(110),(120)이 인쇄형성된다.In addition, a rear field effect layer 200, a rear aluminum electrode 100 and a zinc sulfide anti-reflection film 610 are formed on the lower rear layer of the p-type silicon substrate 300 in order, and the p-type As the back electrode of the silicon substrate 300, silver / aluminum (AgAl) electrodes 110 and 120 for bus bars are printed.

도 3은 본 발명에 따른 실리콘 태양전지의 제조순서도로서, 도 3을 참조하면, 본 발명에 따른 실리콘 태양전지는 다음과 같은 순서에 의해 제조된다.3 is a manufacturing flowchart of the silicon solar cell according to the present invention. Referring to FIG. 3, the silicon solar cell according to the present invention is manufactured in the following order.

먼저, p-형 실리콘 기판(300)을 준비하고, 준비된 p-형 실리콘기판을 세정한 후 텍스쳐 에칭을 실행한다. 그 후에, POCl3를 사용하여 n-형 도핑층(400)을 형성하고, n-형 도핑층(400)의 확산 후 PSG(phosphorous silicate glass)를 제거하며, 태양전지의 가장자리 측면의 n-형 도핑층을 제거한다. 기판의 후면에는 후면 알루미늄전극(100) 및 버스바용 AgAl 전극(110),(120)이 형성되고, 기판의 전면에는 전면전극 그리드(700)와 버스바아(800)가 형성된다. 그리고, CBD 방법으로 ZnS 반사방지막(600),(610)을 형성하며, 버스바아 상의 반사방지막을 제거하여, 본 발명에 따른 실리콘 태양전지를 완성하게 된다.First, the p-type silicon substrate 300 is prepared, the prepared p-type silicon substrate is cleaned, and texture etching is performed. Thereafter, the n-type doped layer 400 is formed using POCl 3 , and the phosphorus silicate glass (PSG) is removed after diffusion of the n-type doped layer 400, and the n-type on the edge side of the solar cell is formed. Remove the doped layer. The rear aluminum electrode 100 and the AgAl electrodes 110 and 120 for the bus bar are formed on the rear surface of the substrate, and the front electrode grid 700 and the bus bar 800 are formed on the front surface of the substrate. In addition, the ZnS antireflection films 600 and 610 are formed by the CBD method, and the antireflection film on the bus bar is removed to complete the silicon solar cell according to the present invention.

이하, 도 4를 참조하여 본 발명에 따른 실리콘 태양전지의 제조방법을 보다 구체적으로 설명하겠다.Hereinafter, a method of manufacturing a silicon solar cell according to the present invention will be described in more detail with reference to FIG. 4.

도 4a는 p-형 실리콘 기판(300)을 도시한 것으로, 그 실리콘 기판의 두께는 350∼450㎛ 범위값을 가지고, 비저항은 0.1∼10 Ω-cm, 크기는 100 mm X 100 mm에서 200 mm X 200 mm 사이의 값을 가진다.4A shows a p-type silicon substrate 300, which has a thickness ranging from 350 to 450 μm, resistivity of 0.1 to 10 Ω-cm and size of 100 mm × 100 mm to 200 mm. It has a value between X 200 mm.

도 4b는 p-형 실리콘 기판(300)에 잔존하고 있는 오염물질을 제거하고 습식에칭 단계에서 표면에 피라미드형 구조물 형성 단계인 텍스쳐(texture)를 마친 후, 초순수 물에 세정하고 건조한 시료를 n-형 도핑층(400) 형성을 위해서 POCl3와 질소및 산소를 함께 공급하여 850℃ 이상의 온도에서 25분간 확산처리 한다.Figure 4b is after removing the contaminants remaining on the p-type silicon substrate 300 and the texture (pyramid-like structure forming step on the surface in the wet etching step, the surface (texture), washed in ultrapure water and dried sample n- In order to form the type doping layer 400, POCl 3 and nitrogen and oxygen are supplied together to be diffused for 25 minutes at a temperature of 850 ℃ or more.

도 4c는 n-형 도핑층(400) 확산과정 후에 표면에 자연 형성되는 PSG(phosphorous silicate glass)를 제거한 후에, 태양전지 가장자리 측면의 n-형 도핑층(400)을 분리하면 상부 n-형 도핑층(400)과 하부 n-형 도핑층(410)으로 분리된다.4C shows that after removing the PSG (phosphorous silicate glass) naturally formed on the surface after the n-type doping layer 400 is diffused, the n-type doping layer 400 of the solar cell edge side is separated and the upper n-type doping is removed. Layer 400 and bottom n-type doped layer 410 are separated.

도 4d는 상기 p-형 실리콘 기판(300)의 후면에 알루미늄 금속과 후면 버스바아용 AgAl금속을 증착하여 후면전극을 형성한 다음, 850℃에서 급속 열처리를 하여 후면전계효과층(200)과 후면 알루미늄전극(100) 및 버스바용 AgAl 전극(110),(120)을 동시에 형성한다. 이때, 상기 p-형 실리콘 기판(300)의 전면에서는 고온의 급속열처리 중에서 5 nm 이하의 엷은 자연산화막(500)이 생성된다.FIG. 4D illustrates a rear electrode formed by depositing an aluminum metal and AgAl metal for a rear bus bar on a rear surface of the p-type silicon substrate 300, and then performing rapid heat treatment at 850 ° C. to form a rear field effect layer 200 and a rear surface. The aluminum electrode 100 and the AgAl electrodes 110 and 120 for the bus bar are simultaneously formed. At this time, a thin natural oxide film 500 of 5 nm or less is formed on the front surface of the p-type silicon substrate 300 during the high temperature rapid heat treatment.

도 4e는 전면에 전면전극으로서 은(Ag)으로 된 전면전극 그리드(700)와 버스바아(800)를 스크린 인쇄를 통해서 형성하고, 온도를 조절하여 건조 후에 700℃ 이상으로 가열하여 n-형 도핑층(400)과 전극이 접촉되도록 한다.4E shows a front electrode grid 700 and a bus bar 800 made of silver (Ag) as a front electrode on the front surface through screen printing, and is heated to 700 ° C. or higher after drying by controlling temperature to n-type doping. The electrode 400 is brought into contact with the layer 400.

도 4f는 CBD 기법을 이용하여 ZnS 반사방지막(600, 610)을 성장하고 세척 건조한 다음, 브러시 장치를 사용하여 태양전지의 전후면의 버스바아(110, 120, 800) 영역에 성장된 ZnS 반사방지막(600, 610)을 제거하여 태양전지 제조를 완성한다.4F illustrates ZnS anti-reflective coatings 600, 610 grown and washed and dried using a CBD technique, and ZnS anti-reflective coating films grown on busbar regions 110, 120, and 800 of the front and rear surfaces of the solar cell using a brush device. Removing the (600, 610) to complete the solar cell manufacturing.

한편, CBD 기법을 이용하여 생성된 ZnS 반사방지막은 전기적으로 절연체이므로 전면 및 후면 전극들과의 전기적 접촉을 위하여 브러싱(brushing) 기법을 사용하여 전면 및 후면 전극들에 위치한 ZnS 반사방지막(600, 610)을 제거한다. 이는도 5에 도시된 바와 같이, 좌우로 이동가능한 이동부재(1) 상의 홀더(3)에 ZnS가 코팅된 태양전지를 위치시킨 후, 이동부재(1)를 우측으로 이동시키면 위치고정식 롤러(7)가 회전하면서 태양전지에 코팅된 ZnS 반사방지막을 제거하게 된다.Meanwhile, since the ZnS anti-reflection film generated by using the CBD technique is an electrical insulator, the ZnS anti-reflection films 600 and 610 positioned on the front and rear electrodes using the brushing technique for electrical contact with the front and rear electrodes are used. ). As shown in FIG. 5, after the ZnS-coated solar cell is placed in the holder 3 on the movable member 1 movable from side to side, the movable member 1 is moved to the right side, and the position fixing roller 7 is moved. ) Rotates to remove the ZnS anti-reflective coating on the solar cell.

이때, 브러싱(brushing) 세기(B.S.)는 아래와 같은 변수에 의해서 조절하여 스크린 인쇄된 전극이 과도하게 손상되지 않도록 한다.At this time, the brushing strength (B.S.) is adjusted by the following parameters so that the screen printed electrode is not excessively damaged.

Brushing Sterngth ( B.S.) = N t [1 + 2r (R/60) / V ]Brushing Sterngth (B.S.) = N t [1 + 2r (R / 60) / V]

여기서N : Brushing횟수, t : Brushing Depth(mm), R : Roller r.p.m., r : Roller 반경 (mm), V :스테이지 이동속도(mm/sec)를나타낸다. Where N is the number of brushing , t is the brushing depth (mm), R is the roller rpm, r is the roller radius (mm), and V is the stage movement speed (mm / sec) .

도 6은 CBD 방법으로 제조한 ZnS 반사 방지막(600, 610)의 반사특성을 다른 물질과 비교하였다. 아연과 황의 공급원으로 각각 수용액 상태의 황산아연(zinc sulfuric acid, ZnSO4), 티오 요소(thiourea,(NH2)2CS)를 사용하고, 착화합물(complex) 및 pH 조절제로는 암모니아(ammonia, NH3)를 사용한다. 또한 반응 용액 내에 아연 이온의 생성을 촉진시키기 위해 적정량의 히드라진 하이드레이트(hydrozine hydrate)용액을 첨가한다. 형성조건에 따라서 굴절율은 1.9에서 2.3까지 가변 가능하다. 실시 예로서 ZnS3시료에서 n=2.1, ZnS4시료에서 n=2.3, ZnS5시료에서 n=1.9 달성이 가능하고, 굴절율이 1.9에서는 ZnS 박막의 두께가 700nm 부근에서 반사도가 가장 낮으며, 굴절율이 높아질수록 ZnS 박막의 두께가 엷어져서 굴절율이 2.3 부근에서는 500nm 부근에서 반사도가 가장 낮다. 태양전지 자체로는굴절율 1.9가 최적이고, 강화유리를 사용하여 태양전지 모듈로 만들 때에는 굴절율 2.3이 최적이다. 따라서 태양전지 응용 목적에 따라서 CBD 기법에 따라 제조된 ZnS 반사방지막(600, 610)의 굴절율과 두께조절이 가능하다.6 compares the reflection characteristics of the ZnS anti-reflection films 600 and 610 manufactured by the CBD method with other materials. Zinc sulfuric acid (zinc sulfuric acid, ZnSO 4 ) and thiourea (NH 2 ) 2 CS are used as a source of zinc and sulfur, and ammonia (Ammonia, NH) is used as a complex and pH regulator. 3 ). In addition, an appropriate amount of hydrazine hydrate solution is added to promote the production of zinc ions in the reaction solution. Depending on the formation conditions, the refractive index can be varied from 1.9 to 2.3. Was embodiment as the in ZnS 3 samples n = 2.1, at n = 2.3, ZnS 5 samples from ZnS 4 samples n = 1.9 to achieve this is possible, and a refractive index of 1.9 the thickness of the ZnS films reflectivity the lowest in the vicinity of 700nm, a refractive index As the thickness increases, the thickness of the ZnS thin film becomes thinner, and the reflectance is lowest at around 500 nm when the refractive index is around 2.3. The refractive index of 1.9 is optimal for the solar cell itself, and the refractive index of 2.3 is optimal when the solar cell module is made of tempered glass. Therefore, the refractive index and the thickness of the ZnS anti-reflection films 600 and 610 manufactured according to the CBD technique can be adjusted according to the solar cell application purpose.

도 7은 본 발명에 따라 CBD 방법으로 제조한 ZnS 반사 방지막을 코팅한 태양전지 완성품 사진과 광조사에 따른 전류-전압 성능이다. 태양전지는 13.9%의 효율로 고효율, 저가, 대용량 생산 달성이 가능하다. 제작된 태양전지의 성능 측정은 국제표준 조건인 AM1.5 (100mW/cm2)에서 측정된 것이다. 태양전지의 직렬저항(Rs), 병렬저항(Rsh), fill factor(FF), 개방전압 (Voc), 단락전류(Isc), 최대출력 전압(Vmax), 최대출력 전류(Imax)의 세부 내역을 표 1에 요약하였다. 단락전류 값과 직렬저항 병렬 저항 값이 모두 기존 태양전지 보다 우수한 특성을 가지며, 개방전압은 기존 스크린 인쇄된 태양전지와 유사한 값을 가지고 있다. 개방전압은 도핑(doping) 공정을 조정하여 더욱 개선 할 수 있을 것이다.Figure 7 is a current photo-voltage performance according to the photovoltaic finished product photo and light irradiation coated ZnS anti-reflection film prepared by the CBD method according to the invention. Solar cells can achieve high efficiency, low cost, and large capacity production with an efficiency of 13.9%. The performance measurement of the fabricated solar cell was measured under the international standard condition AM1.5 (100mW / cm 2 ). Details of solar cell series resistance (Rs), parallel resistance (Rsh), fill factor (FF), open voltage (Voc), short circuit current (Isc), maximum output voltage (Vmax) and maximum output current (Imax) It is summarized in Table 1. Both the short-circuit current value and the series resistance parallel resistance value have better characteristics than the conventional solar cell, and the open voltage has similar value as the conventional screen printed solar cell. The open circuit voltage can be further improved by adjusting the doping process.

[표 1] CBD 기법에 따라 ZnS 반사방지막을 코팅한 태양전지의 성능[Table 1] Performance of solar cells coated with ZnS anti-reflection film according to CBD

면적: 103mm X 103mm, 측정 조건: AM1.5 (100mW/cm2), 온도: 25℃Area: 103mm x 103mm, Measurement conditions: AM1.5 (100mW / cm 2 ), Temperature: 25 ℃

Voc(mV)Voc (mV) Isc(A)Isc (A) Vmax(mV)Vmax (mV) Imax(A)Imax (A) FF(%)FF (%) Rs(ohm)Rs (ohm) Rsh(ohm)Rsh (ohm) 효율(%)efficiency(%) 598.7598.7 3.353.35 479.4479.4 3.003.00 7272 0.010.01 160160 13.813.8

이상 설명한 바와 같이, 본 발명에 따른 반사방지막을 갖는 실리콘 태양전지 및 그 제조방법은 태양전지의 표면에 저가격 및 대면적화가 용이한 CBD법으로 ZnS박막을 증착함으로써 실리콘계 태양전지의 표면 반사율을 줄여서 단락 전류밀도를 향상시키는 효과를 얻음과 동시에 변환 효율 향상을 기대할 수 있다.As described above, the silicon solar cell having the anti-reflection film according to the present invention and a method for manufacturing the same by reducing the surface reflectance of the silicon-based solar cell by depositing a ZnS thin film on the surface of the solar cell by a low cost and easy CBD method The effect of improving the current density and the conversion efficiency can be expected.

또한 비교적 간단한 제조 공정과 낮은 가격으로 효율을 올릴 수 있기 때문에 태양전지의 상용화에도 기여할 수 있으며, 태양전지 외에 저반사율 및 고굴절율이 요구되는 기타 광학 기기에도 응용이 가능하다.In addition, it can contribute to the commercialization of solar cells because the efficiency can be increased at a relatively simple manufacturing process and low cost, and can be applied to other optical devices requiring low reflectance and high refractive index in addition to solar cells.

상기에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당기술 분야의 숙련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to a preferred embodiment of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the invention described in the claims below. It will be appreciated.

Claims (8)

p-형 실리콘 기판(300)의 전면 상부층에는 순서대로 n-형 도핑층(400), 그 상부에 열처리시 생성되는 자연산화막(500), 및 황화아연 반사방지막(600)이 형성되고, 상기 p-형 실리콘 기판(300)의 전면전극으로서 전면전극 그리드(700)와 버스바아(800: busbar)가 인쇄형성되며,An n-type doped layer 400, a natural oxide film 500 generated during heat treatment, and a zinc sulfide antireflection film 600 are sequentially formed on the front upper layer of the p-type silicon substrate 300. A front electrode grid 700 and a busbar 800 are printed as a front electrode of the silicon substrate 300. 상기 p-형 실리콘 기판(300)의 후면 하부층에는 순서대로 후면전계효과층(200), 그 하부에 후면 알루미늄전극(100) 및 황화아연 반사방지막(610)이 형성되고, 상기 p-형 실리콘 기판(300)의 후면전극으로서 버스바아용 은/알루미늄(AgAl)전극(110),(120)이 인쇄형성되어 이루어진 것을 특징으로 하는 반사방지막을 갖는 실리콘 태양전지.A rear field effect layer 200, a rear aluminum electrode 100 and a zinc sulfide antireflection film 610 are formed on the rear lower layer of the p-type silicon substrate 300 in order, and the p-type silicon substrate A silicon solar cell having an anti-reflection film as a back electrode of 300, wherein silver / aluminum (AgAl) electrodes 110 and 120 for bus bars are formed by printing. 제 1항에 있어서,The method of claim 1, 상기 황화아연 반사방지막(600),(610)은 CBD(chemical bath deposition) 기법에 의해 형성되는 것을 특징으로 하는 반사방지막을 갖는 실리콘 태양전지.The zinc sulfide anti-reflection films 600 and 610 are formed by chemical bath deposition (CBD). 제 1항에 있어서,The method of claim 1, 상기 전면전극 그리드(700)와 버스바아(800)는 은(Ag)으로 형성된 것을 특징으로 하는 반사방지막을 갖는 실리콘 태양전지.The front electrode grid 700 and the bus bar (800) is a silicon solar cell having an anti-reflection film, characterized in that formed of silver (Ag). p-형 실리콘 기판(300)을 준비하는 단계;preparing a p-type silicon substrate 300; 상기 p-형 실리콘 기판(300)상에 잔존하고 있는 오염물질을 세정하고, 표면을 식각하는 습식에칭 단계;A wet etching step of cleaning the contaminants remaining on the p-type silicon substrate 300 and etching the surface; 습식에칭 후에 초순수 물로 세정하고 건조하는 단계;Washing and drying with ultrapure water after wet etching; POCl3와 질소, 산소를 함께 공급하여 상기 실리콘 기판(300)상에 n-형 도핑층(400)을 확산하여 형성하는 단계;Supplying POCl 3 , nitrogen, and oxygen together to diffuse and form an n-type doped layer 400 on the silicon substrate 300; n-형 도핑층(400) 확산과정 후, 표면에 자연 형성되는 PSG(phosphorous silicate glass)와 가장자리 측면의 n-형 도핑층을 제거하는 단계;after the diffusion process of the n-type doped layer 400, removing the PSG (phosphorous silicate glass) naturally formed on the surface and the n-type doped layer on the side of the edge; 상기 p-형 실리콘 기판(300)의 후면에 알루미늄 금속과 후면 버스바아용 AgAl금속을 증착하여 후면전극을 형성하는 단계;Forming a rear electrode by depositing aluminum metal and AgAl metal for a rear bus bar on a rear surface of the p-type silicon substrate 300; 상기 p-형 실리콘 기판의 전면에 전면전극으로서 은(Ag)으로 된 전면전극 그리드(700)와 버스바아(800)를 스크린 인쇄를 통해서 형성하는 단계;Forming a front electrode grid 700 and a bus bar 800 made of silver (Ag) on the front surface of the p-type silicon substrate through screen printing; CBD(chemical bath deposition) 기법을 이용하여 ZnS 반사방지막(600, 610)을 성장시키고 세척 건조하는 단계; 및Growing and washing and drying the ZnS antireflective films 600 and 610 using chemical bath deposition (CBD) techniques; And 브러시 장치를 사용하여 태양전지의 전후면의 버스바아(110, 120, 800) 영역에 성장된 ZnS 반사방지막(600, 610)을 제거하는 단계를 포함하는 것을 특징으로 하는 반사방지막을 갖는 실리콘 태양전지의 제조방법.Removing the ZnS anti-reflection films 600 and 610 grown on the busbars 110, 120, and 800 areas of the front and rear surfaces of the solar cell by using a brush device. Manufacturing method. 제 4항에 있어서,The method of claim 4, wherein 상기 다결정 실리콘 기판(100)은 두께가 350∼450㎛ 범위값을 가지고, 비저항은 0.1∼10 Ω-cm의 값을 가지는 것을 특징으로 하는 실리콘 태양전지의 제조방법.The polycrystalline silicon substrate (100) has a thickness of 350 ~ 450㎛ range, the specific resistance of the silicon solar cell, characterized in that the value of 0.1 ~ 10 Ω-cm. 제 4항에 있어서,The method of claim 4, wherein 상기 n-형층을 형성하는 단계는 상기 실리콘 기판을 850℃ 이상의 온도에서 25분간 확산처리하는 단계를 포함하는 것을 특징으로 하는 실리콘 태양전지의 제조방법.Forming the n-type layer is a silicon solar cell manufacturing method comprising the step of diffusing the silicon substrate for 25 minutes at a temperature of 850 ℃ or more. 제 4항에 있어서,The method of claim 4, wherein 상기 후면전극을 형성하는 단계는,Forming the back electrode, 850℃에서 급속 열처리를 하여 후면전계효과층(200)과 후면 알루미늄전극(100) 및 버스바용 AgAl 전극(110),(120)을 동시에 형성하는 단계; 및Rapid heat treatment at 850 ° C. to simultaneously form the rear field effect layer 200, the rear aluminum electrode 100, and AgAl electrodes 110 and 120 for the busbar; And 상기 p-형 실리콘 기판(300)의 전면에서는 고온의 급속열처리 중에서 5 nm 이하의 엷은 자연산화막(500)을 형성하는 단계를 포함하는 것을 특징으로 하는 실리콘 태양전지의 제조방법.And forming a thin natural oxide film (500) of 5 nm or less in a high temperature rapid heat treatment on the front surface of the p-type silicon substrate (300). 제 4항에 있어서,The method of claim 4, wherein 상기 p-형 실리콘 기판의 전면에 전면전극을 그리드(700)와 버스바아(800)를스크린 인쇄를 통해서 형성하는 단계는,Forming the front electrode on the front of the p-type silicon substrate grid 700 and the bus bar 800 through screen printing, 700℃ 이상으로 가열하여 n-형 도핑층과 상기 전극이 접촉되도록 하는 단계를 포함하는 것을 특징으로 하는 실리콘 태양전지의 제조방법.Method of manufacturing a silicon solar cell comprising the step of making the n-type doped layer and the electrode in contact by heating to 700 ℃ or more.
KR1020030032467A 2003-05-22 2003-05-22 METHOD OF SILICON SOLAR CELL WITH ZnS ANTI-REFLECTION COATING LAYER KR100543507B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030032467A KR100543507B1 (en) 2003-05-22 2003-05-22 METHOD OF SILICON SOLAR CELL WITH ZnS ANTI-REFLECTION COATING LAYER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030032467A KR100543507B1 (en) 2003-05-22 2003-05-22 METHOD OF SILICON SOLAR CELL WITH ZnS ANTI-REFLECTION COATING LAYER

Publications (2)

Publication Number Publication Date
KR20040100207A true KR20040100207A (en) 2004-12-02
KR100543507B1 KR100543507B1 (en) 2006-01-20

Family

ID=37377626

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030032467A KR100543507B1 (en) 2003-05-22 2003-05-22 METHOD OF SILICON SOLAR CELL WITH ZnS ANTI-REFLECTION COATING LAYER

Country Status (1)

Country Link
KR (1) KR100543507B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101103501B1 (en) * 2011-05-30 2012-01-09 한화케미칼 주식회사 Solar cell and the fabrication method thereof
KR101110467B1 (en) * 2006-02-28 2012-01-31 큐-쎌즈 아게 Solar cell marking method, and solar cell
KR101223061B1 (en) * 2006-12-29 2013-01-17 엘지전자 주식회사 Method of preparing solar cell and solar cell prepared by the same
KR101356849B1 (en) * 2012-03-15 2014-02-03 고려대학교 산학협력단 Crystalline-silicon solar cells and methods of manufacturing the crystalline-silicon solar cell

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101736970B1 (en) 2010-12-17 2017-05-30 삼성전자주식회사 Graphene electronic device and method of fabricating the same
KR101224643B1 (en) * 2011-05-31 2013-01-21 현대중공업 주식회사 Manufacture method of solar cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110467B1 (en) * 2006-02-28 2012-01-31 큐-쎌즈 아게 Solar cell marking method, and solar cell
US8492240B2 (en) 2006-02-28 2013-07-23 Hanwha Q.CELLS GmbH Solar-cell marking method and solar cell
KR101223061B1 (en) * 2006-12-29 2013-01-17 엘지전자 주식회사 Method of preparing solar cell and solar cell prepared by the same
KR101103501B1 (en) * 2011-05-30 2012-01-09 한화케미칼 주식회사 Solar cell and the fabrication method thereof
WO2012165756A1 (en) * 2011-05-30 2012-12-06 Hanwha Chemical Corporation. Solar cell and method of manufacturing the same
KR101356849B1 (en) * 2012-03-15 2014-02-03 고려대학교 산학협력단 Crystalline-silicon solar cells and methods of manufacturing the crystalline-silicon solar cell

Also Published As

Publication number Publication date
KR100543507B1 (en) 2006-01-20

Similar Documents

Publication Publication Date Title
Aberle et al. Progress in low‐temperature surface passivation of silicon solar cells using remote‐plasma silicon nitride
KR101000064B1 (en) Hetero-junction silicon solar cell and fabrication method thereof
Xiao et al. High-efficiency silicon solar cells—materials and devices physics
US8354585B2 (en) Solar cell and method of fabricating the same
CN115207137B (en) Combined passivation back contact battery and preparation method thereof
JP2001267610A (en) Solar battery
KR101878397B1 (en) Solar cell and method for fabricating the same
JP7291282B2 (en) Solar cells and photovoltaic modules
KR100543507B1 (en) METHOD OF SILICON SOLAR CELL WITH ZnS ANTI-REFLECTION COATING LAYER
KR101252171B1 (en) Solar cell and manufacturing method of the same
Meier et al. Efficiency enhancement of amorphous silicon pin solar cells by LP-CVD ZnO
CN114725225A (en) Efficient P-type IBC battery and preparation method thereof
Meier et al. Enhanced light-trapping for micromorph tandem solar cells by LP-CVD ZnO
Chen et al. Single-crystalline silicon solar cell with selective emitter formed by screen printing and chemical etching method: a feasibility study
Wettling High efficiency silicon solar cells: State of the art and trends
CN115528136A (en) Back contact battery, manufacturing method thereof, battery assembly and photovoltaic system
CN109980026A (en) A kind of efficient cadmium telluride nano crystal solar cell of Copper-cladding Aluminum Bar and preparation method thereof
KR101289277B1 (en) Silicon solar cell having ultra high efficiency and preparation method thereof
CN207705207U (en) Full back-contact heterojunction solar battery
CN111211194B (en) MIS-silicon heterojunction solar cell and preparation method thereof
CN208538870U (en) A kind of p-type back contacts solar cell
CN100399584C (en) Tin dioxide thin film and silicon heterojunction solar battery
Cheng et al. Investigation of low-cost surface processing techniques for large-size multicrystalline silicon solar cells
CN110578176A (en) texture surface making accelerant for single-crystal high-dense-grid solar cell with small texture surface and using method of texture surface making accelerant
Metz et al. High-quality passivated rear contact structure for silicon solar cells based on simple mechanical abrasion

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130103

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140106

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150107

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160106

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170508

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20181031

Year of fee payment: 14