KR20040029667A - Uranium dioxide fuel containing SiO2-CaO-Cr2O3 and thereof method - Google Patents
Uranium dioxide fuel containing SiO2-CaO-Cr2O3 and thereof method Download PDFInfo
- Publication number
- KR20040029667A KR20040029667A KR1020020060014A KR20020060014A KR20040029667A KR 20040029667 A KR20040029667 A KR 20040029667A KR 1020020060014 A KR1020020060014 A KR 1020020060014A KR 20020060014 A KR20020060014 A KR 20020060014A KR 20040029667 A KR20040029667 A KR 20040029667A
- Authority
- KR
- South Korea
- Prior art keywords
- powder
- sintered body
- cao
- nuclear fuel
- powders
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
본 발명은 SiO2-CaO-Cr2O3첨가제를 함유한 이산화우라늄계 핵연료 소결체 및 그 제조방법에 관한 것으로, 특히 핵연료 소결체의 크리프 변형속도를 빠르게 한 이산화우라늄계(UO2, 이하 UO2계로 칭함) 소결체 및 그 제조방법에 관한 것이다.The present invention relates to a uranium dioxide-based fuel sintered body containing a SiO 2 -CaO-Cr 2 O 3 additive and a method for manufacturing the same, and more particularly to a uranium dioxide-based (UO 2 , hereinafter UO 2 system) which accelerates the creep deformation rate of the fuel sintered body. The present invention relates to a sintered compact and a method of manufacturing the same.
원자로에서 핵연료로 사용되는 UO2소결체의 제조 방법은 UO2분말을 원료분말로 하여 성형체(green pellet)를 만들고, 이 성형체를 수소 기체 분위기, 1600℃ - 1800℃ 온도에서 2-4 시간 동안 소결하여 소결체를 제조한다.The method for producing a UO 2 sintered body used as a nuclear fuel in a nuclear reactor is made of green pellets using UO 2 powder as a raw material powder, and the sintered body is sintered for 2-4 hours in a hydrogen gas atmosphere at 1600 ° C-1800 ° C. A sintered compact is manufactured.
이때 UO2분말의 유동성이 좋으면 UO2분말을 직접 압축 성형하여 성형체를 만들고, 그렇지 않으면 과립(granule)으로 제조한 다음 압축 성형하여 소결체를 제조한다.The flowability of the UO 2 powder, permitting to create a shaped article by directly compression molding a UO 2 powder, otherwise manufactured into granules (granule), and then to produce a sintered body by compression molding.
상기 공정으로 제조한 UO2소결체는 밀도가 95 %TD 이고 결정립 크기는 6-8㎛ 범위에 있다.The UO 2 sintered body prepared by the above process had a density of 95% TD and a grain size in the range of 6-8 μm.
UO2소결체는 지르코늄 합금 피복관에 장입되어 원자로에서 연소되는데, 연소 중에 핵연료 피복관은 안쪽으로 변형하고 소결체는 바깥쪽으로 팽창하기 때문에 소결체와 피복관은 서로 접촉하면서 응력이 발생하게 되고, 이러한 핵연료와 피복관의 상호작용을 PCI(Pellet -Clad Interaction)이라 하며 이 상호작용이 지속되면 결과적으로 피복관이 파손될 수 있다.The UO 2 sintered body is charged into a zirconium alloy cladding tube and burned in the reactor. During combustion, the fuel cladding deforms inward and the sintered body expands outward so that the sintered body and the cladding are in contact with each other to generate stresses. The action is called pellet-clad interaction (PCI), and if this interaction persists, the sheath can break.
연소 중에 피복관이 파손되면 방사성을 띤 물질이 피복관 밖으로 유출되고, 따라서 원자로의 안전성이 위협받는다.If the cladding breaks during combustion, radioactive material flows out of the cladding, thus jeopardizing the safety of the reactor.
이러한 피복관의 파손을 방지 혹은 감소시키기 위해서는 UO2소결체가 피복관에 가하는 응력을 줄여야 한다.In order to prevent or reduce the damage of such a cladding is UO 2 sintered body is to reduce the stress applied to the cladding tube.
즉, UO2소결체의 크리프 변형이 잘 일어나야만 피복관에 가하는 응력이 감소하게 된다.In other words, the creep strain of the UO 2 sintered body should be good to reduce the stress applied to the cladding.
그렇지만 UO2소결체는 원자로의 연소조건에서 크리프 변형속도가 작다는 단점이 있다.However, UO 2 sintered body has a disadvantage that the creep deformation rate is small under the combustion conditions of the reactor.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 핵연료 피복관의 파손을 방지 혹은 감소시키기 위해서 UO2계 소결체가 피복관에 가하는 응력을 줄이도록 원자로의 연소조건에서 크리프 변형속도가 큰 UO2계 소결체 및 그 제조방법을 제공하는데 있다.An object of the present invention for solving the above problems is UO 2 type sintered body the creep strain rate is large UO 2-based sintered body in the combustion conditions of the nuclear reactor to reduce the stress applied to the cladding tube in order to reduce prevention or damage to the fuel cladding and It is to provide a method for the production.
도 1은 본 발명에서 제공하는 이산화우라늄계 소결체 제조공정의 흐름도이고,1 is a flow chart of the uranium dioxide-based sintered body manufacturing process provided by the present invention,
도 2는 SiO2-CaO-Cr2O3상태도이며,2 is a SiO 2 -CaO-Cr 2 O 3 state diagram,
도 3은 결정립계상을 나타내는 조직사진이다.3 is a tissue photograph showing grain boundaries.
상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명은 핵연료 소결체에 있어서,In the nuclear fuel sintered body of the present invention to achieve the object as described above and to perform the problem for removing the conventional defects,
결정립계 상을 형성하는 0.1 중량% - 2중량%의 첨가제 분말과 나머지는 UO2계 분말로 조성된 것을 특징으로 한다.0.1 wt% to 2 wt% of the additive powder forming the grain boundary phase and the remainder is characterized in that composed of a UO 2 based powder.
상기 첨가제 분말은 SiO2분말, CaO 분말과 Cr2O3분말로 구성되며 총 중량 비율을 100으로 할 때 SiO2분말의 중량비율은 35 - 55, CaO 분말의 중량비율은 45- 65, Cr2O3분말의 중량비율은 1 - 7이다.The additive powder is composed of SiO 2 powder, CaO powder and Cr 2 O 3 powder, when the total weight ratio is 100, the weight ratio of SiO 2 powder is 35-55, the weight ratio of CaO powder is 45-65, Cr 2 The weight ratio of the O 3 powder is 1-7.
상기 UO2계 분말은 UO2분말, UO2분말에 추가로 PuO2분말, Gd2O3분말, ThO2분말 중의 하나 이상이 혼합된 분말로 이루어진 군중에서 선택된 하나이다.The UO 2 is one based powder is UO 2 powder, in addition to the UO 2 powder PuO 2 powder and Gd 2 O 3 powder, ThO one or more selected from the group consisting of a mixed powder in the second powder.
상기와 같은 핵연료 소결체를 제조하는 본 발명의 방법은 결정립계 상을 형성하는 첨가제 분말의 총합이 0.1 중량% - 2중량% 되도록 UO2계 분말에 첨가 혼합하여 혼합분말을 제조하는 단계와, 혼합분말로부터 과립을 제조하는 단계와, 과립을 압축 성형하여 성형체를 제조하는 단계와, 상기 성형체를 수소함유 기체 분위기에서 1500℃-1800℃로 가열하여 결정립계 액체상이 UO2계 결정립계를 따라서 형성되도록 소결시키는 단계로 이루어진 방법을 특징으로 한다.In the method of the present invention for producing a nuclear fuel sintered body as described above is a step of preparing a mixed powder by adding and mixing the UO 2 based powder so that the total amount of the additive powder forming the grain boundary phase is 0.1% by weight-2% by weight, and from the mixed powder Preparing granules; compressing the granules to form a molded article; and heating the molded article at 1500 ° C.-1800 ° C. in a hydrogen-containing gas atmosphere to sinter such that a grain-based liquid phase is formed along the UO 2 based grain boundary. Characterized by the method made.
상기 혼합분말 제조단계에서 첨가제 분말은 SiO2분말, CaO 분말과 Cr2O3분말로 구성되며 총 중량 비율을 100으로 할 때 SiO2분말의 중량비율은 35 - 55, CaO 분말의 중량비율은 45 - 65, Cr2O3분말의 중량비율은 1 - 7이 되도록 조절한다.In the mixed powder manufacturing step, the additive powder is composed of SiO 2 powder, CaO powder and Cr 2 O 3 powder. When the total weight ratio is 100, the weight ratio of SiO 2 powder is 35-55, and the weight ratio of CaO powder is 45 -65, Cr 2 O 3 powder weight ratio is adjusted to 1-7.
상기 혼합분말을 제조하는 단계에서 첨가제 분말은 UO2분말에 첨가전에 600-1700℃에서 열처리하여 SiO2-CaO-Cr2O3물질을 미리 합성하고, 상기 물질을 분쇄하여 첨가하는 단계를 포함한다.In the step of preparing the mixed powder, the additive powder includes a step of pre-synthesizing SiO 2 -CaO-Cr 2 O 3 material by heat treatment at 600-1700 ° C. before adding to the UO 2 powder, and pulverizing the material. .
상기 소결시키는 단계에서 수소함유 기체는 수소기체와 수소기체에 불활성기체, 질소, 이산화탄소, 수증기 중의 하나 이상의 기체를 혼합한 기체로 이루어진 군중에서 선택된 하나이다.In the sintering step, the hydrogen-containing gas is one selected from the group consisting of a hydrogen gas and a gas in which one or more gases of inert gas, nitrogen, carbon dioxide, and water vapor are mixed with the hydrogen gas.
상기 혼합분말을 제조하는 단계에서 UO2계 분말은 UO2분말, UO2분말에 추가로 PuO2분말, Gd2O3분말, ThO2분말 중의 하나 이상이 혼합된 분말로 이루어진 군중에서 선택된 하나이다.One in the step of preparing the mixed powder UO 2 based powder is UO 2 powder, a UO added to the second powder PuO 2 powder and Gd 2 O 3 powder, ThO one or more selected from the group consisting of a mixed powder in the second powder.
이하 본 발명의 실시예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다.Hereinafter, the configuration and the operation of the embodiment of the present invention will be described in detail with reference to the accompanying drawings.
본 발명에서 제공하는 UO2계 소결체 제조방법을 도 1에 예시한다.A UO 2 type sintered body production method provided by the present invention will be illustrated in Fig.
본 발명에 따른 제조방법에서는 UO2계 분말에 SiO2-CaO-Cr2O3분말을 0.1 중량% 이상 2 중량%이하 첨가하여 혼합하고 혼합분말을 예비 성형해서 슬러그(slug)를 만들고, 이 슬러그를 파쇄하여 과립(granule)을 제조한다.In the production method according to the present invention, the SiO 2 -CaO-Cr 2 O 3 powder is added to the UO 2 powder, 0.1% by weight or more and 2% by weight or less, mixed, and preformed the mixed powder to form a slug. The granules are prepared by crushing.
이 과립을 압축 성형하여 성형체 (green pellet)를 만들며, 이 성형체를 수소 함유 기체 분위기에서 1500℃ 이상 온도로 가열하여 소결체를 제조한다.The granules are compression molded to form a green pellet, which is heated to a temperature of 1500 ° C. or higher in a hydrogen-containing gas atmosphere to produce a sintered body.
이러한 방법으로 제조한 소결체는 UO2결정립이 기지조직을 형성하고 SiO2-CaO-Cr2O3가 결정립계 상을 형성하게 된다.In the sintered body produced in this way, UO 2 grains form matrix structures and SiO 2 -CaO-Cr 2 O 3 forms grain boundaries.
결정립계 상을 형성하는 SiO2-CaO-Cr2O3는 첨가제로서 첨가할 때는 SiO2-CaCO3-Cr2O3분말로 첨가한다.SiO 2 -CaO-Cr 2 O 3 forming the grain boundary phase is added as an SiO 2 -CaCO 3 -Cr 2 O 3 powder when added as an additive.
혼합비율은 SiO2분말, CaCO3분말과 Cr2O3분말을 중량비율로 50:84:3으로 혼합한다.The mixing ratio is a mixture of SiO 2 powder, CaCO 3 powder and Cr 2 O 3 powder in a weight ratio of 50: 84: 3.
여기서 CaCO3는 900℃, H2분위기에서 2시간 열처리하면 CaO와 CO2로 분해되기 때문에, 실질적인 첨가제의 조성은 SiO2-CaO-Cr2O3가 50:47:3의 중량비율로 첨가되는 것이다.Since CaCO 3 is decomposed into CaO and CO 2 by heat treatment at 900 ° C. for 2 hours in an H 2 atmosphere, the substantial additive composition is that SiO 2 -CaO-Cr 2 O 3 is added at a weight ratio of 50: 47: 3. will be.
시작 첨가제로서 CaO가 아닌 CaCO3를 사용하는 이유는 CaO는 장기 보관시 공기중의 수분 또는 이산화탄소와 반응하여 Ca(OH)2또는 CaCO3로 되기 때문에 정밀한 조성 조절이 어렵다.The reason for using CaCO 3 rather than CaO as a starting additive is that it is difficult to precisely control the composition because CaO becomes Ca (OH) 2 or CaCO 3 by reacting with moisture or carbon dioxide in air during long-term storage.
그러나 CaCO3는 낮은 온도(500-600℃)에서부터 CaO와 CO2로 열분해가 시작되며 상온에서 안정하다.However, CaCO 3 starts to decompose into CaO and CO 2 at low temperature (500-600 ℃) and is stable at room temperature.
즉 CaO 보다는 CaCO3가 좀 더 정확한 조성 조절이 가능하다.That is, CaCO 3 is more accurate composition control than CaO.
도 2에 도시된 SiO2-CaO-Cr2O3의 상태도(Phase Diagrams for Ceramists, 미국요업학회, 1975)에 따르면, 50중량% SiO2- 47 중량% CaO - 3 중량% Cr2O3조성의 경우 각 물질의 용융온도보다 낮은 1510℃에서 공정반응을 통해서 액상을 만든다.47 wt% CaO - - 3 wt.% Cr 2 O 3 state of the SiO 2 -CaO-Cr 2 O 3 shown in Figure 2 also (Phase Diagrams for Ceramists, American Ceramic Society, 1975), 50 wt% SiO 2, according to In the case of composition, a liquid phase is formed through a process reaction at 1510 ° C. lower than the melting temperature of each material.
결정립계에 존재하는 상들은 고온에서 매우 소프트(soft) 상태이고 이 소프트(soft)한 결정립계상들은 응력을 받게 되면 결정립의 이동을 증진시켜 크리프 변형속도에 영향을 주는 것으로 생각된다.The phases present at the grain boundaries are very soft at high temperatures and these soft grain phases are thought to affect the creep strain rate by increasing the grain movement under stress.
결정립계 상은 UO2계 보다 용융점이 낮고 연한 물질이므로 고온에서 UO2계 보다 훨씬 빠르게 크리프 변형이 가능하다.The grain boundary phase has a lower melting point and softer material than the UO 2 system, and thus creep deformation can be performed much faster than the UO 2 system at a high temperature.
따라서 소결체에 응력이 가해지면 결정립계 상이 먼저 변형하고 결정립계가 미끄러지면서(sliding) 크리프 변형이 일어나게 된다.Therefore, when stress is applied to the sintered body, the grain boundary phase deforms first, and the grain boundary slips, causing creep deformation.
동일한 온도 및 응력 조건에서는 결정립계 상이 형성된 소결체가 순수 UO2계 소결체 보다 크리프 변형이 빠르게 일어나게 된다.Under the same temperature and stress conditions, the sintered body in which the grain boundary phase is formed is more rapidly creep than the pure UO 2 based sintered body.
결정립계상은 첨가제의 총 첨가량에 의하여 결정되므로, 첨가제의 총량을 높이면 결정립계상이 증가하여 크리프 변형속도가 빨라지는 장점이 있다.Since the grain boundary phase is determined by the total amount of the additive added, increasing the total amount of the additive has an advantage of increasing the grain boundary phase and increasing the creep deformation rate.
그렇지만 첨가제 총량이 너무 많아지면 핵연료 소결체 내 우라늄 양이 상대적으로 감소하므로 소결체에서 발생하는 열이 감소하게 되어 경제성이 떨어진다.However, if the total amount of additives is too large, the amount of uranium in the nuclear fuel sinter is relatively reduced, thereby reducing the heat generated in the sintered compact, thereby reducing economic efficiency.
따라서 첨가제의 총량은 2 중량%로 제한하는 것이 바람직하다.Therefore, the total amount of the additive is preferably limited to 2% by weight.
또한 첨가제의 총량이 0.1중량%이하에서는 크리프 변형속도 증가에 영향을 주지 못한다. 따라서 첨가제의 총량은 0.1중량% 이상 2 중량% 이하로 제한한다.In addition, if the total amount of the additive is less than 0.1% by weight does not affect the creep deformation rate increase. Therefore, the total amount of the additive is limited to 0.1% by weight or more and 2% by weight or less.
동일한 SiO2-CaO-Cr2O3첨가량에서는 중량 비율이 50:47:3 일 때 비교적 많은 결정립계상이 형성되고 상기 비율에서 벗어나면 상대적으로 적은 결정립계상이 형성된다.In the same SiO 2 -CaO-Cr 2 O 3 addition amount, a relatively large grain boundary phase is formed when the weight ratio is 50: 47: 3, and a relatively small grain boundary phase is formed when out of the ratio.
따라서 가능한 많은 결정립계상을 소결체 안에 만들기 위해서는 중량 비율이 50:47:3 로 유지하는 것이 좋지만, 첨가제의 총 중량 비율을 100으로 할 때 SiO2분말의 중량비율은 35 - 55, CaO 분말의 중량비율은 45 - 65, Cr2O3분말의 중량비율은 1 - 7의 범위 내에서 조절 가능하다.Therefore, in order to make as many grain boundary phases as possible in the sintered body, it is better to keep the weight ratio at 50: 47: 3, but when the total weight ratio of the additive is 100, the weight ratio of SiO 2 powder is 35-55, the weight ratio of CaO powder The weight ratio of silver 45-65 and Cr 2 O 3 powder can be adjusted within the range of 1-7.
SiO2-CaCO3-Cr2O3를 첨가할 경우에는 첨가량의 총 중량 비율을 100으로 할 때 SiO2분말의 중량비율은 35 - 55, CaCO3분말의 중량비율은 80- 115, Cr2O3분말의 중량비율은 1 - 7의 범위 내에서 조절 가능하다.In case of adding SiO 2 -CaCO 3 -Cr 2 O 3 , the weight ratio of SiO 2 powder is 35-55, the weight ratio of CaCO 3 powder is 80-115, Cr 2 O The weight ratio of 3 powder can be adjusted within the range of 1-7.
그렇지만 상기 비율을 벗어나더라도 총 첨가량을 증가시키면 동일한 양의 결정립계 상을 만들 수 있기 때문에 상기 중량비율은 고정되어 있지 않다.However, even if it is out of the said ratio, since the total addition amount increases, the said weight ratio is not fixed because the same amount of grain boundary phase can be made.
또한 상기 첨가제 분말은 UO2계 분말에 첨가 전에 600-1700℃에서 열처리하여 SiO2-CaO-Cr2O3를 미리 합성하고, 합성된 물질을 분쇄하여 첨가하여 소결하는 것도 가능하다.In addition, the additive powder may be pre-synthesized SiO 2 -CaO-Cr 2 O 3 by heat treatment at 600-1700 ° C prior to addition to the UO 2 powder, and sintered by pulverizing the synthesized material.
본 발명에서 제공하는 방법은 결정립계 상을 통해서 핵연료 소결체의 크리프 변형속도를 빠르게 하는 것이다.The method provided by the present invention is to increase the creep strain rate of the nuclear fuel sintered body through the grain boundary phase.
즉, 본 발명에서 제공하는 방법은 핵연료 소결체의 기지조직(matrix)의 물질에 관계없이 적용이 가능하다.That is, the method provided by the present invention can be applied regardless of the material of the matrix of the nuclear fuel sintered body.
따라서 UO2계는 순수한 UO2뿐만 아니라 UO2소결체가 PuO2또는 Gd2O3또는ThO2을 함유한 경우에도 본 발명에서 제시하는 방법으로 크리프 변형속도가 큰 소결체의 제조가 가능하다.Thus UO 2 system is available, as well as the pure UO 2 UO 2 or PuO 2 sintered body is Gd 2 O 3, or manufacturing the creep strain rate of large sintered in a manner set out in this invention, even if containing a ThO 2.
본 발명의 바람직한 실시예는 다음과 같다.Preferred embodiments of the present invention are as follows.
(실시예 1)(Example 1)
UO2분말에 SiO2-CaCO3-Cr2O3분말을 중량비율로 50:84:3으로 첨가하여 900℃, H2분위기에서 2시간 열처리하면 CaCO3는 CaO와 CO2로 분해되어 최종적으로 SiO2-CaO-Cr2O3가 50:47:3의 중량비율이 된다.When SiO 2 -CaCO 3 -Cr 2 O 3 powder was added to UO 2 powder at a weight ratio of 50: 84: 3 and heat treated at 900 ° C. and H 2 atmosphere for 2 hours, CaCO 3 was decomposed into CaO and CO 2 and finally SiO 2 -CaO-Cr 2 O 3 has a weight ratio of 50: 47: 3.
첨가제는 SiO2-CaCO3-Cr2O3를 기준으로 각각 0.1, 0.3, 0.5 중량% 첨가하였는데 이것은 SiO2-CaO-Cr2O3를 기준으로 하면 각각 0.07, 0.23, 0.38 중량%에 해당한다.Additives were added 0.1, 0.3 and 0.5 wt% based on SiO 2 -CaCO 3 -Cr 2 O 3 , respectively, corresponding to 0.07, 0.23 and 0.38 wt% based on SiO 2 -CaO-Cr 2 O 3 , respectively. .
100 mesh 체를 3회 통과시키는 방법으로 UO2분말과 첨가제를 혼합하였다.The UO 2 powder and the additive were mixed by three passes through a 100 mesh sieve.
혼합분말을 예비 성형하여 슬러그(slug)를 제조하고, 이 슬러그(slug)를 파쇄하여 과립(granule)을 제조하였다.The mixed powder was preformed to produce a slug, and the slug was crushed to prepare granules.
과립을 3 ton/cm2의 압력으로 압축성형 하여 원주형 성형체(green pellet)를 제조하고, 성형체를 소결하여 소결체를 제조하였다.The granules were compression molded at a pressure of 3 ton / cm 2 to prepare a cylindrical green pellet, and the molded body was sintered to prepare a sintered compact.
소결은 900℃, H2분위기에서2시간 유지한 후 1700℃, H2-5%CO2분위기에서 4시간 소결하였다.The sintering was carried out at 900 ° C. and H 2 atmosphere for 2 hours, and then sintered at 1700 ° C. and H 2 -5% CO 2 atmosphere for 4 hours.
소결체의 밀도는 이론밀도의 95.5% 였다. 비교를 위해서 첨가제를 첨가하지 않은 순수 UO2소결체를 제조하였다.The density of the sintered compact was 95.5% of theoretical density. For comparison, a pure UO 2 sintered body without an additive was prepared.
소결체를 압축 크리프 시험장치에 장전하고 1500℃에서 압축응력을 각각 20 및 35 MPa로 가하면서 크리프 변형을 측정하고 크리프 변형으로부터 변형속도를 계산하였다.The sintered body was loaded into a compression creep test apparatus and creep strain was measured at 1500 ° C. with a compressive stress of 20 and 35 MPa, respectively, and the strain rate was calculated from the creep strain.
SiO2-CaCO3-Cr2O3첨가량과 크리프 변형속도를 표 1에 나타낸다. 첨가제에 의해서 크리프 변형속도가 순수 UO2보다 커지는 것을 확인할 수 있다.Table 1 shows the SiO 2 -CaCO 3 -Cr 2 O 3 addition amount and creep strain rate. It can be seen that the creep strain rate is greater than that of pure UO 2 by the additive.
표1. 실시예에 따른 SiO2-CaCO3-Cr2O3첨가 소결체의 크리프 변형속도(hr-1)Table 1. Creep Strain Rate (hr -1 ) of SiO 2 -CaCO 3 -Cr 2 O 3 Added Sintered Body According to Examples
도 3은 SiO2-CaCO3-Cr2O3를 1중량% 첨가하였을 때 결정립계에 존재하는 상을 보여주는 사진이다. 응력을 받으면 이 결정립계상이 결정립의 이동을 증진시켜 크리프 변형속도에 영향을 주게 된다.Figure 3 is a photograph showing the phase present in the grain boundary when 1% by weight of SiO 2 -CaCO 3 -Cr 2 O 3 is added. Under stress, this grain boundary enhances grain movement and affects creep strain rate.
본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.
상기와 같은 본 발명에 의해 제조된 핵연료 소결체는 크리프 변형속도가 커 원자로에서 소결체와 피복관이 서로 접촉하면서 발생하는 피복관의 파손을 감소시키므로 핵연료의 안전성을 높일 수 있다는 장점이 있어서 산업상 이용이 크게 기대되는 유용한 발명인 것이다.The nuclear fuel sintered body manufactured by the present invention as described above has a high creep deformation rate, which reduces the breakage of the cladding tube generated when the sintered body and the cladding tube are in contact with each other in the reactor, and thus has the advantage of increasing the safety of the nuclear fuel. It is a useful invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0060014A KR100521638B1 (en) | 2002-10-02 | 2002-10-02 | Uranium dioxide fuel containing SiO2-CaO-Cr2O3 and thereof method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0060014A KR100521638B1 (en) | 2002-10-02 | 2002-10-02 | Uranium dioxide fuel containing SiO2-CaO-Cr2O3 and thereof method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040029667A true KR20040029667A (en) | 2004-04-08 |
KR100521638B1 KR100521638B1 (en) | 2005-10-13 |
Family
ID=37331030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2002-0060014A KR100521638B1 (en) | 2002-10-02 | 2002-10-02 | Uranium dioxide fuel containing SiO2-CaO-Cr2O3 and thereof method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100521638B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2504032C1 (en) * | 2012-07-17 | 2014-01-10 | федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) | Method to manufacture ceramic fuel pellets |
US9190179B2 (en) | 2010-10-20 | 2015-11-17 | Korea Atomic Energy Research Institute | Method of controlling solubility of additives at and near grain boundaries, and method of manufacturing sintered nuclear fuel pellet having large grain size using the same |
WO2019107655A1 (en) * | 2017-11-28 | 2019-06-06 | 한전원자력연료 주식회사 | Sintered nuclear fuel pellets having excellent oxidation resistance, and manufacturing method therefor |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100964953B1 (en) | 2008-10-15 | 2010-06-21 | 한국원자력연구원 | Method of producing large-grained nuclear fuel pellet by controlling chrome cation solubility in uo2 lattice |
KR101001202B1 (en) | 2008-11-11 | 2010-12-15 | 한국수력원자력 주식회사 | Uranium dioxide nuclear fuel containing Mn and Al compounds as additives and method of manufacturing the same |
WO2019231046A1 (en) * | 2018-05-29 | 2019-12-05 | 한전원자력연료 주식회사 | Uranium dioxide pellets having excellent fission gas adsorbing property and manufacturing method therefor |
KR102273295B1 (en) | 2019-09-25 | 2021-07-06 | 한전원자력연료 주식회사 | The UO2 ADDITIVES FOR FORMING A COATING CAPABLE OF IMPROVING OXIDATION RESISTANCE OF A NUCLEAR FUEL PELLETS AND A MANUFACTURING METHOD THEROF |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6429796A (en) * | 1987-07-27 | 1989-01-31 | Mitsubishi Atomic Power Ind | Production of uo2 nuclear fuel pellet |
JP3012671B2 (en) * | 1990-08-03 | 2000-02-28 | 日本核燃料開発株式会社 | Method for producing nuclear fuel pellets |
JPH04285591A (en) * | 1991-03-13 | 1992-10-09 | Toshiba Corp | Washing machine with centrifugal function |
JP2505119B2 (en) * | 1991-03-14 | 1996-06-05 | 原子燃料工業株式会社 | Manufacturing method of nuclear fuel pellets |
JP2672420B2 (en) * | 1991-09-20 | 1997-11-05 | 日本核燃料開発株式会社 | Mixed oxide fuel pellet and method for producing the same |
JPH06281774A (en) * | 1993-03-25 | 1994-10-07 | Nuclear Fuel Ind Ltd | Manufacture of nuclear fuel pellet |
JPH11287884A (en) * | 1998-04-03 | 1999-10-19 | Nippon Nuclear Fuel Dev Co Ltd | Nuclear fuel pellet and its production method |
KR100272727B1 (en) * | 1998-11-24 | 2000-11-15 | 장인순 | Method of manufacturing uranium dioxide fuel pellet consisting of duplex grains |
JP2000352593A (en) * | 1999-06-10 | 2000-12-19 | Mitsubishi Materials Corp | Uranium pellet in imitation of spent uranium pellet and its manufacturing method |
-
2002
- 2002-10-02 KR KR10-2002-0060014A patent/KR100521638B1/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9190179B2 (en) | 2010-10-20 | 2015-11-17 | Korea Atomic Energy Research Institute | Method of controlling solubility of additives at and near grain boundaries, and method of manufacturing sintered nuclear fuel pellet having large grain size using the same |
RU2504032C1 (en) * | 2012-07-17 | 2014-01-10 | федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) | Method to manufacture ceramic fuel pellets |
WO2019107655A1 (en) * | 2017-11-28 | 2019-06-06 | 한전원자력연료 주식회사 | Sintered nuclear fuel pellets having excellent oxidation resistance, and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
KR100521638B1 (en) | 2005-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100794071B1 (en) | Method of producing nuclear fuel pellet | |
US6251310B1 (en) | Method of manufacturing a nuclear fuel pellet by recycling an irradiated oxide fuel pellet | |
US9190179B2 (en) | Method of controlling solubility of additives at and near grain boundaries, and method of manufacturing sintered nuclear fuel pellet having large grain size using the same | |
KR102102977B1 (en) | Method of manufacturing nuclear fuel pellet consisting of duplex grains | |
US8989340B2 (en) | Uranium dioxide nuclear fuel containing Mn and Al as additives and method of fabricating the same | |
US6251309B1 (en) | Method of manufacturing large-grained uranium dioxide fuel pellets containing U3O8 | |
KR100521638B1 (en) | Uranium dioxide fuel containing SiO2-CaO-Cr2O3 and thereof method | |
KR101839320B1 (en) | The composition and manufacturing method of large grain UO pellet | |
JPS5892987A (en) | Production of nuclear fuel sintered body with oxide | |
US3342562A (en) | High density urania fuel elements | |
KR100272727B1 (en) | Method of manufacturing uranium dioxide fuel pellet consisting of duplex grains | |
KR100331483B1 (en) | Method of manufacturing oxide fuel pellets containing neutron-absorbing materials | |
US20170249998A1 (en) | Composition and method for manufacturing large-grained uranium oxide nuclear fuel pellet | |
KR100982665B1 (en) | Super-plasticity uranium oxide nuclear fuel pellet and method of manufacturing the same | |
KR100446587B1 (en) | Method of manufacturing uranium dioxide pellets with high creep rate | |
US3168601A (en) | Process for the production of plutonium oxide-containing nuclear fuel compacts | |
KR101107294B1 (en) | Uranium dioxide nuclear fuel containing Ti and Mg-compounds as additives and method of manufacturing the same | |
KR100450711B1 (en) | Method of manufacturing nuclear fuel pellet consisting of duplex grains | |
JP3012671B2 (en) | Method for producing nuclear fuel pellets | |
US3327027A (en) | Process for the production of plutonium oxide-containing nuclear fuel powders | |
KR100569589B1 (en) | Method for manufacturing nuclear fuel pellet | |
US3657137A (en) | Nuclear fuel comprising uranium dioxide in a porous ceramic oxide matrix | |
KR100266480B1 (en) | Uranium dioxide pellet manufacturing method | |
JPH0761820A (en) | Production of nuclear fuel pellet | |
JPH01304391A (en) | Production of oxide nuclear fuel body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120928 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20130923 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20141230 Year of fee payment: 11 |
|
LAPS | Lapse due to unpaid annual fee |