WO2019231046A1 - Uranium dioxide pellets having excellent fission gas adsorbing property and manufacturing method therefor - Google Patents

Uranium dioxide pellets having excellent fission gas adsorbing property and manufacturing method therefor Download PDF

Info

Publication number
WO2019231046A1
WO2019231046A1 PCT/KR2018/009386 KR2018009386W WO2019231046A1 WO 2019231046 A1 WO2019231046 A1 WO 2019231046A1 KR 2018009386 W KR2018009386 W KR 2018009386W WO 2019231046 A1 WO2019231046 A1 WO 2019231046A1
Authority
WO
WIPO (PCT)
Prior art keywords
uranium dioxide
additive
sio
sintered body
sintered
Prior art date
Application number
PCT/KR2018/009386
Other languages
French (fr)
Korean (ko)
Inventor
임광영
정태식
나연수
이승재
유종성
Original Assignee
한전원자력연료 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한전원자력연료 주식회사 filed Critical 한전원자력연료 주식회사
Publication of WO2019231046A1 publication Critical patent/WO2019231046A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G43/00Compounds of uranium
    • C01G43/01Oxides; Hydroxides
    • C01G43/025Uranium dioxide
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/02Manufacture of fuel elements or breeder elements contained in non-active casings
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a sintered body containing an oxide additive in order to promote grain size growth of the sintered uranium dioxide sintered body used as a nuclear heat fuel and to increase nuclear fission gas adsorption performance, and a method of manufacturing the same.
  • Uranium dioxide sintered bodies used in nuclear power plants have been actively studied from the 1970s to the present for improving the performance.
  • Nuclear fuel suppliers ANF, AREVA (currently Framatome), and Westinghouse Atom, respectively, have found that Al 2 O 3 -SiO 2 , Cr 2 O 3 , Cr 2 O 3 -Al 2 O 3 The development has been completed and is currently licensed or under license for regulatory development.
  • the fuel rod damage caused by PCI occurs when the cladding tube and the sintered body come into contact with each other from 30 GWD / MTU or more. From this time, the sintered body exerts a mechanical deformation and causes breakage by applying an external force in the radial direction of the cladding.
  • the sintered bodies having the large grain microstructure as a result of the addition oxides cause plastic deformation of the sintered body itself before the deformation of the cladding, and solve the mutual stress with the cladding resulting from the volume expansion by heat.
  • the area of the grain boundary which is a passage through which various kinds of fission gases generated by the nuclear reaction, can be reduced, thereby reducing the rate of fission gas out of the sintered body.
  • the role of the PCI damage reduction sintering additive is basically to make the grains of the uranium dioxide sintered body large. This is the result of the oxide additive during sintering of uranium dioxide to promote the movement of uranium cations at the sintering temperature, this developed microstructure improves safety and power plant operating margin when burning in the furnace of a nuclear power plant (furnace).
  • uranium dioxide-based candidates include silicon carbide whiskers or composite materials in which diamond particles are dispersed in the uranium dioxide sintered body, and metal microcells in which a metal network is formed in the uranium dioxide base. These are all aimed at improving the thermal conductivity.
  • uranium dioxide sinters with large grains added with oxides are considered to be the most promising final candidates for the most feasible ATF sinters. There is.
  • Japanese Patent Nos. 263382 and 3999843 show that Al 2 O 3 and SiO 2 are added at 0.01 to 0.25% by weight in various ratios to obtain large grains, thereby obtaining a high creep rate.
  • Rare earth metal oxides are generally known to be added to refractory materials to serve to raise the glass transition temperature (T g ) or the melting point (T m ).
  • T g glass transition temperature
  • T m melting point
  • NBO non-bridging oxygen atoms
  • the present invention provides a uranium dioxide sintered body and a manufacturing method containing an additive capable of efficiently trapping cesium, a fissile material, by stably forming a liquid phase capable of promoting grain growth of uranium dioxide, which is a nuclear fuel used in a nuclear power plant.
  • the purpose is to do that.
  • the present invention in the uranium dioxide nuclear fuel sintered body, uranium dioxide; And it provides a uranium dioxide sintered body comprising a sintering additive consisting of La 2 O 3 , Al 2 O 3 , SiO 2 .
  • the sintering additive La 2 O 3 -Al 2 O 3 -SiO 2 to move the uranium ions quickly through the liquid phase obtained through the liquid phase to promote grain growth and is applied to the grain boundary sessile capacitive gas produced during combustion in the furnace always You can.
  • the additive may contain 0.05 to 0.15 parts by weight based on 100 parts by weight of uranium dioxide.
  • the additive may be a La 2 O 3 : Al 2 O 3 : SiO 2 mixed weight ratio of 1 to 2: 1 to 2: 7 to 8.
  • the present invention provides a method for producing a uranium dioxide fuel sintered body, comprising the steps of: (a) preparing an additive by mixing La 2 O 3 , Al 2 O 3 , SiO 2 ; (b) adding the additive to uranium dioxide powder and mixing the same to prepare a mixed powder; (c) compression molding the mixed powder to produce a molded body; And (d) provides a method for producing a uranium dioxide sintered body comprising the step of sintering the molded body in the sintering furnace during the reducing atmosphere.
  • the present invention adds lanthanum oxide (La 2 O 3 ), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ) to uranium dioxide powder, which is a fuel sintered body, and is sintered in a weakly reducing atmosphere and stable at high temperatures. By forming a liquid phase, large crystal grains can be efficiently formed.
  • La 2 O 3 , Al 2 O 3 , SiO 2 may be mixed in a weight ratio of 1 to 2: 1 to 2: 7 to 8.
  • the additive may be added 0.05 to 0.15 parts by weight based on 100 parts by weight of uranium dioxide powder.
  • the step (d) may be performed at 1730 to 1780 ° C., and may maintain the hydrogen gas injection rate at 200 to 2,000 ml / min.
  • La 2 O 3 -Al 2 O 3 -SiO 2 in uranium dioxide By adding the sintering additive, the liquid phase produced during the sintering of the uranium dioxide sintered body accelerates the movement of grains and promotes grain growth, and the low vapor pressure of the liquid phase reduces the volatilization during sintering, thereby exhibiting an efficient additive performance.
  • the liquid phase surrounding the grain boundary can effectively adsorb cesium, a fission gas.
  • the sintered uranium dioxide sintered body can reduce PCI damage as well as improve safety margin in an accident scenario.
  • EDS 3 is an energy dispersive X-ray method of preparing a uranium dioxide sintered body containing 5 wt% La 2 O 3 -Al 2 O 3 -SiO 2 according to the sintered body manufacturing method of an embodiment of the present invention.
  • Spectroscopy is used to show the distribution of metal elements located in the microstructure.
  • FIG. 5 is a photograph taken by a microstructured optical microscope of a uranium dioxide sintered body to which Al 2 O 3 -SiO 2 is prepared according to a comparative example of the present invention (x 1,000 magnification).
  • Figure 6 shows the results of the quantitative analysis of the mixed powder used in one embodiment and Comparative Example in the present invention, and the Si element contained in the sintered body prepared in Example and Comparative Example using an inductively coupled plasma spectrometer .
  • the present invention is a uranium dioxide nuclear fuel sintered body, uranium dioxide; It comprises an additive consisting of lanthanum oxide (La 2 O 3 ), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), the additive contains 0.05 to 0.15 parts by weight relative to 100 parts by weight of uranium dioxide, La It provides a uranium dioxide sintered body characterized in that the mixed weight ratio of 2 O 3 : Al 2 O 3 : SiO 2 is 1-2: 1-2: 7-8.
  • the additive is composed of lanthanum oxide (La 2 O 3 ), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), forms a liquid phase at the sintering temperature to accelerate the material movement of uranium atoms to promote grain growth Promote In addition, it forms a film on the grain interface to adsorb the fission gas generated during combustion in the furnace of a nuclear power plant.
  • La 2 O 3 lanthanum oxide
  • Al 2 O 3 aluminum oxide
  • SiO 2 silicon oxide
  • the present invention is a method for producing a uranium dioxide fuel sintered body, (a) La 2 O 3 , Al 2 O 3 , SiO 2 by mixing in a weight ratio of 1-2 to 1-2: 7 to 8 to prepare an additive Step (S11); (b) adding the additive to 0.05 to 0.15 parts by weight based on 100 parts by weight of the uranium dioxide powder and mixing to prepare a mixed powder (S12); (c) compression molding the mixed powder to produce a molded product (S13); And (d) provides a method for producing a uranium dioxide sintered body comprising the step (S14) of heating the molded body at 1730 to 1780 °C in the sintering furnace in the reducing atmosphere.
  • step S11 is a step of mixing an additive used as uranium dioxide oxide, and the additive composition includes La 2 O 3 , Al 2 O 3 , and SiO 3 .
  • the ratio of the oxide additive in the step S11 is the composition range with the highest liquid fraction, as La 2 O 3 -Al 2 O 3 -SiO 2 equilibrium three-component state diagram of Figure 2, La 2 O 3 , Al 2 O 3 , SiO It adds in 3 ratio (weight ratio).
  • the mixing is performed homogeneously using a Turbula mixer capable of three-axis rotational mixing with a zirconia ball of 5 mm diameter.
  • step S11 only the additives are mixed first. This is to maintain the composition ratio between the additive powder which is mixed with the uranium dioxide which is the parent powder because the additive system is multicomponent.
  • the additive content is limited to 0.05 to 0.15 parts by weight relative to 100 parts by weight of uranium dioxide powder.
  • the addition of 0.05 wt% or more in the step S12 is to form a sufficient liquid phase.
  • the reason for not exceeding 0.15% by weight is to minimize the neutron economy deterioration due to the addition of elements having a high thermal neutron absorption cross-sectional area.
  • the amount of the additive is limited to 0.05 to 0.15 parts by weight based on 100 parts by weight of the uranium dioxide powder in order to apply the liquid phase containing SiO 2 to the crystal grains for growth up to 40 ⁇ m or more and high fission material adsorption.
  • the mixing is carried out for three hours using a Turbula mixer with a zirconia ball of diameter 5 mm for three hours of rotating homogeneous mixing.
  • step S13 as a step of compacting the mixed additive powder and uranium dioxide powder, a mixed powder is added to a molding mold and a molded body is manufactured at a pressure of 2.5 ton / cm 2 .
  • step S14 as a step of sintering the manufactured molded body, 100% hydrogen gas is injected at 200 ml / min to 2,000 ml / min at a temperature in the range of 1700 to 1780 ° C, and the sintering is performed for 3 to 5 hours.
  • 100% hydrogen gas is injected at 200 ml / min to 2,000 ml / min at a temperature in the range of 1700 to 1780 ° C, and the sintering is performed for 3 to 5 hours.
  • 100% hydrogen gas is injected at 200 ml / min to 2,000 ml / min at a temperature in the range of 1700 to 1780 ° C, and the sintering is performed for 3 to 5 hours.
  • the reason for not exceeding 2,000 ml / min is to lower the pressure loaded inside by the clogging phenomenon of condensed water generated in the gas outlet by a small amount of steam discharged during sintering.
  • a large grain sintered body having an average grain size of 40 ⁇ m or more can be produced.
  • the liquid phase can be formed in the present sintering process.
  • the elements constituting the secondary phase in the liquid phase state obtained by containing the additive were identified.
  • the lanthanum surrounding the uranium dioxide grains in the sintered compact containing 5 parts by weight of the La 2 O 3 -Al 2 O 3 -SiO 2 additive in an amount of 5 parts by weight relative to 100 parts by weight of the uranium dioxide powder The signal from the area
  • La 2 O 3 , Al 2 O 3 , SiO 2 additives were mixed in three dimensions homogeneously for 4 hours using a Turbula mexer with a 5 mm zirconia ball diameter ( ⁇ ) at a weight ratio of 1: 1: 8. 0.1 parts by weight of the mixed additive was added to 100 parts by weight of uranium dioxide powder, mixed for 4 hours using a Turbula mixer, and then pressed at 3.5 ton / cm 2 to prepare a molded product.
  • the molded body was heated to 1730 ° C. at a rate of 5 ° C./min, and sintered at 1730 ° C. for 4 hours.
  • the sintering atmosphere was controlled by injecting 100% hydrogen gas at a rate of 250 ml / min.
  • uranium dioxide sintered body in which 0.09 parts by weight of an additive mixed with a weight ratio of 1: 8 was added to 100 parts by weight of uranium dioxide powder was prepared in the same manner as in the above example.
  • the linear cross-section method was used to measure the grain size, and the grain size was measured as an average size of 45.5 ⁇ m larger than about 9 ⁇ m of a typical uranium dioxide sintered body.
  • the grain size was measured with an average grain size of 21.5 ⁇ m.
  • the Example shows a grain size about twice as large as that of the sintered compact to which 0.09 parts by weight of Al 2 O 3 -SiO 2 additive of the Comparative Example was added.
  • ICP Inductively Coupled Plasma Spectrometer
  • Figure 6 shows the results of measuring the content of the silicon metal element present in the powder used in the Examples and Comparative Examples and the sintered uranium dioxide prepared in Examples and Comparative Examples.
  • Si content in SiO 2 added at 800 ppm was 372.8 ppm, which is 46.6%, and both Examples and Comparative Examples showed Si content close to 370 ppm.
  • the sintered body it was measured as 320.7 and 130.7ppm, respectively, and it was found that Si was volatilized by about 50ppm and 240ppm. Therefore, the sintered compact of the Example is excellent in volatilization resistance about 4.8 times compared with the sintered compact of the comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention relates to pellets containing an oxide additive to promote the size growth of crystal grains of uranium dioxide pellets used as nuclear fuel and increase fission gas adsorbing performance, and to a manufacturing method therefor. The La2O3-Al2O3-SiO2 sintering additive is added to uranium dioxide, so that a liquid generated upon sintering of the uranium dioxide pellets accelerates mass transfer to promote the growth of crystal grains and a low vapor pressure of the liquid results in less volatilization during sintering, and thus the additive can exert efficient performance, and as a result, the liquid enclosing crystal grain boundaries can effectively adsorb the fission gas cesium.

Description

핵분열 기체 흡착성이 우수한 이산화우라늄 소결체 및 제조방법Sintered uranium dioxide with excellent fission gas adsorption and manufacturing method
본 발명은 핵열료로 사용되는 이산화우라늄 소결체의 결정립 크기 성장을 촉진시키고 핵분열 기체 흡착성능을 높이기 위해 산화물 첨가제를 함유한 소결체 및 이의 제조방법에 관한 것이다.The present invention relates to a sintered body containing an oxide additive in order to promote grain size growth of the sintered uranium dioxide sintered body used as a nuclear heat fuel and to increase nuclear fission gas adsorption performance, and a method of manufacturing the same.
원자력발전소에서 사용되는 이산화우라늄 소결체는 성능 개선을 위해 1970년대부터 현재까지 활발히 연구되고 있다. 먼저, 1970년대부터 시작된 이산화우라늄 소결체 개발은 산화물 첨가를 통한 결정립 크기 성장으로 정상 및 천이상태 운전 시 소결체-피복관 상호작용(Pellet Cladding Interation, PCI)에 의해 발생될 수 있는 연료봉 파단현상을 막는 것에 집중되었다. 전 세계적으로 첨가제 연구가 활발히 진행된 결과, 핵연료 납품업체인 ANF, AREVA(현, Framatome), 그리고 Westinghouse Atom 사는 각각 Al2O3-SiO2, Cr2O3, Cr2O3-Al2O3 개발을 완료한 상태이며, 현재 상업 발전을 위해 규제기관의 인허가를 취득하였거나 인허가 중에 있다.Uranium dioxide sintered bodies used in nuclear power plants have been actively studied from the 1970s to the present for improving the performance. First, the development of uranium dioxide sintered compacts, which started in the 1970s, focused on preventing fuel rod failures that could be caused by pellet cladding interaction (PCI) during normal and transitional operations due to grain size growth through the addition of oxides. It became. Nuclear fuel suppliers ANF, AREVA (currently Framatome), and Westinghouse Atom, respectively, have found that Al 2 O 3 -SiO 2 , Cr 2 O 3 , Cr 2 O 3 -Al 2 O 3 The development has been completed and is currently licensed or under license for regulatory development.
PCI에 의한 연료봉 파손 현상은 30 GWD/MTU 이상부터 피복관과 소결체가 서로 접촉하게 되면서부터 발생하게 되는데, 이때부터 소결체를 피복관의 반경방향으로 외력을 가하며 기계적 변형을 일으키고 파단에 이르게 한다. 하지만, 첨가 산화물들에 의한 결과인 큰 결정립 미세조직을 가지는 소결체들은 피복관의 변형을 일으키기 전, 소결체 자체적으로 소성변형을 일으키며, 열에 의한 부피 팽창으로부터 발생되는 피복관과의 상호 응력을 해소시킨다. 그뿐만 아니라, 핵반응에 의해 생성되는 여러 종류의 핵분열 기체들이 빠져나갈 수 있는 통로가 되는 결정립계의 면적이 줄어들면서 소결체 외부로의 핵분열 기체 방술속도를 감소시킨다.The fuel rod damage caused by PCI occurs when the cladding tube and the sintered body come into contact with each other from 30 GWD / MTU or more. From this time, the sintered body exerts a mechanical deformation and causes breakage by applying an external force in the radial direction of the cladding. However, the sintered bodies having the large grain microstructure as a result of the addition oxides cause plastic deformation of the sintered body itself before the deformation of the cladding, and solve the mutual stress with the cladding resulting from the volume expansion by heat. In addition, the area of the grain boundary, which is a passage through which various kinds of fission gases generated by the nuclear reaction, can be reduced, thereby reducing the rate of fission gas out of the sintered body.
따라서, 연료봉 내부 표면을 열화시키는 핵분열 기체를 소결체 내로 포집시킴으로써, 응력부식 균열에 의한 파손 거동을 약화시킬 수 있다. 이와 같이, PCI 손상 저감 소결 첨가제의 역할은 기본적으로 이산화우라늄 소결체의 결정립을 크게 만드는 것에 있다. 이는 이산화우라늄 소결시 산화물 첨가제가 소결 온도에서 우라늄양이온 이동을 촉진시킴으로써 나타난 결과이며, 이렇게 발달된 미세조직은 원자력발전소 노(furnace) 내 연소 시, 안전 및 발전소 운전 여유도를 향상시킨다.Thus, by trapping the nuclear fission gas that deteriorates the fuel rod inner surface into the sintered body, it is possible to weaken the failure behavior due to stress corrosion cracking. Thus, the role of the PCI damage reduction sintering additive is basically to make the grains of the uranium dioxide sintered body large. This is the result of the oxide additive during sintering of uranium dioxide to promote the movement of uranium cations at the sintering temperature, this developed microstructure improves safety and power plant operating margin when burning in the furnace of a nuclear power plant (furnace).
2011년 후쿠시마 제1원자력 발전소의 수소 폭발에 따른 방사능 누출사고로 인해 안전성을 더욱 보강시킨 핵연료 성능 개선을 목표로 전 세계적인 연구가 다시 한번 진행되었다. 결국, 사고저항성 핵연료(Accident Tolerant Fuel, ATF) 개발이 소결체 및 피복관을 대상으로 시작되었다. 2012년부터 미국 에너지부(Department of Energy)의 연구 개발금 투자로부터 시작된 전 세계적인 ATF 핵연료 개발은 현재 적절한 최종 후보군 도출을 위해 연구로, 조사 시험 후 시험연료봉(LTR, Lead Test Rod) 단위 시험 수준까지 진행되었다. 현재까지 개발된 ATF 소결체 중 이산화우라늄 기반 후보군으로는 탄화규소 휘스커(SiC whisker) 또는 다이아몬드 입자를 이산화우라늄 소결체 내에 분산 배치시킨 복합재료 형태, 그리고 금속망을 이산화우라늄 기지 내에 형성시킨 금속 미소셀 형태가 있으며, 이는 모두 열전도율 향상을 그 목적으로 한다. 하지만, 제조 및 노(furnace) 내 연소 중 치수 안정성 측면에서 산화물이 첨가된 큰 결정립을 가지는 이산화우라늄 소결체(PCI 손상 저감 첨가제 함유)가 가장 실현 가능성이 높은 ATF 소결체의 유력한 최종 후보군으로 꼽히며 현재까지 개발 중에 있다.In 2011, a global study was undertaken with the goal of improving the performance of nuclear fuel, which further strengthened safety due to the radiation leakage caused by the hydrogen explosion at the Fukushima Daiichi Nuclear Power Plant. Eventually, development of accident-tolerant fuel (ATF) began with sintered bodies and cladding. Starting with the US Department of Energy's R & D funding in 2012, global ATF fuel development is currently underway to identify appropriate final candidates, up to the unit test level of the LTR (Lead Test Rod) after survey testing. Progressed. Among the ATF sinters developed so far, uranium dioxide-based candidates include silicon carbide whiskers or composite materials in which diamond particles are dispersed in the uranium dioxide sintered body, and metal microcells in which a metal network is formed in the uranium dioxide base. These are all aimed at improving the thermal conductivity. However, in terms of dimensional stability during manufacture and furnace combustion, uranium dioxide sinters with large grains added with oxides (containing PCI damage reduction additives) are considered to be the most promising final candidates for the most feasible ATF sinters. There is.
일반적으로 큰 결정립 성장을 통한 성능 향상은 평균 결정립 크기 40 ㎛(2차원 측정) 이상의 소결체들에서 관찰된다. C. Delafoy et al., Proceeding of the 2007 International LWR Fuel Performance Meeting(2007)의 연구 결과에 따르면, 산화 시험의 결과로서 20 ㎛대의 평균 결정립 크기를 가지는 소결체는 무게 감소량이 40 ㎛ 이상의 평균 결정립을 가지는 소결체에 비해 5배가량 높게 나타난 결과를 보고하였다. 즉, 큰 결정립 소결체가 높은 산화저항성을 가지는 것을 알 수 있다.In general, performance improvement through large grain growth is observed in sintered bodies having an average grain size of 40 μm (two-dimensional measurement) or more. According to a study by C. Delafoy et al., Proceeding of the 2007 International LWR Fuel Performance Meeting (2007), as a result of the oxidation test, a sintered body having an average grain size of 20 µm has an average grain size of 40 µm or more. 5 times higher than the sintered body was reported. That is, it turns out that a large grain sintered compact has high oxidation resistance.
K. Fuglesang HWR-1161,(2016)의 연구 결과에서는 실험로(Experimental Reactor) 연소결과 40 ㎛ 이상의 결정립을 가지는 소결체에서 측정된 핵분열 기체량이 10 ㎛대의 일반 소결체보다 월등히 낮게 나타나는 것을 발표하였다. 원자로 내 사고 시 외부로 방출될 수 있는 방사선원(source term) 허용 기준은 U.S. NRC 10CFR50.67 "Accidnet source term"을 근거로 했을 때 소개지역경계(Exclusion Area Boundary) 기준으로 25 rem을 초과할 수 없는데, 사고 조건에서 이와 같이 외부로 누출될 수 있는 방사선원 양을 줄일 수 있는 효과를 큰 결정립 소결체는 가지고 있다.The results of K. Fuglesang HWR-1161, (2016) reported that the results of combustion of experimental reactors showed that the amount of fission gas measured in sintered bodies having grains of 40 µm or more was significantly lower than that of ordinary sintered bodies of 10 µm. Source term acceptance criteria that can be released outside of an accident in a reactor are described in U.S. Based on NRC 10CFR50.67 "Accidnet source term", it cannot exceed 25 rem on the basis of the Exclusion Area Boundary. The large grain sintered compact has.
일반적으로 기체 형태의 핵분열 물질은 대기확산 측면에서 외부 피복량에 중대한 영향을 끼칠 수 있는 잠재력을 가지고 있다. 따라서 핵분열 기체를 소결체 내부 물질과 반응시켜 화합물을 형성시킴으로써 대기확산을 막을 수 있는 긍정적인 결과가 Oak ridge national Lab. CNF11-19를 통해 알려졌다. 대표적인 핵분열 기체인 세슘(Cs)은 실리콘 산화물과 결합하여 Cs2Si4O3 화합물을 형성하며 안정화되므로, 핵분열 생성 포집을 위해 실리콘 산화물 함유된 큰 결정립 소결체 제조를 위한 첨가제 개발이 일본에서 수행되었다.In general, gaseous fissile materials have the potential to have a significant impact on external coverage in terms of atmospheric diffusion. Therefore, the positive result that can prevent atmospheric diffusion by reacting fission gas with the material inside the sintered body to form a compound, Oak ridge national Lab. Known through CNF11-19. Since cesium (Cs), a representative fission gas, combines with silicon oxide to form a Cs 2 Si 4 O 3 compound and is stabilized, development of additives for producing large grain sintered bodies containing silicon oxide for nuclear fission production capture has been carried out in Japan.
일본 등록특허 제2603382호, 제3999843호에서는 Al2O3와 SiO2를 다양한 비율로 0.01 내지 0.25 중량% 첨가하여 큰 결정립을 얻어, 높은 크립율 속도를 얻을 수 있다는 결과를 제시하였다. 일본 Osaka 대학교 마츠나가의 2014년도 박사학위 논문 "세슘/요도드 및 헬륨 산화물 연료와의 상호작용에 대한 연구"를 통해서 세슘이 첨가제인 Al2O3와 SiO2가 형성한 Aluminosilicate 액상에 포집된 결과를 보고하였다. 하지만, T.Matsuda et al., IAEA-TECDOC-1036(1996)에 따르면 Al2O3와 SiO2가 형성하는 액상은 이산화우라늄 소결온도 훨씬 전에 형성되어 높은 증기압에 의해 소결 중 휘발에 의한 무게 감소가 발생함을 보고하였고, 마츠나가의 박사학위 논문에서도 Al2O3-SiO2 첨가가 0.025 중량%, 0.25 중량% 경우에서 모두 20 ㎛(2차원 측정) 대에서 평균 결정립이 머물러 있는 것을 확인하였다. 이를 미루어 보았을 때, 소결 온도 및 특정 소결 분위기에서는 물질이동을 촉진하여 결정립 성장을 도모할 수 있고, 원자로 내 연소 시 발생되는 핵분열 생성물인 세슘을 포집할 수 있는 SiO2 함유 화합물의 휘발에 의해 그 기능이 저하되는 것을 알 수 있다. 즉, 보다 활발한 결정립 성장 촉진과 핵분열 물질 흡착을 위해 첨가제 함량을 증가시키더라도 Al2O3-SiO2 첨가제는 휘발에 의한 액상 분율 감소로 첨가제 효과가 한정적임을 의미한다.Japanese Patent Nos. 263382 and 3999843 show that Al 2 O 3 and SiO 2 are added at 0.01 to 0.25% by weight in various ratios to obtain large grains, thereby obtaining a high creep rate. A study on the interaction of cesium / yodod and helium oxide fuels with the 2014 doctoral dissertation from Matsunaga, Osaka University, Japan, was carried out to capture the results of the collection of cesium in aluminosilicate liquids formed by Al 2 O 3 and SiO 2 additives. Reported. However, according to T. Matsuda et al., IAEA-TECDOC-1036 (1996), the liquid phase formed by Al 2 O 3 and SiO 2 is formed well before the uranium dioxide sintering temperature, which reduces the weight due to volatilization during sintering due to high vapor pressure. In the case of Matsunaga's doctoral dissertation, it was confirmed that the average grains remained at 20 μm (two-dimensional measurement) in both Al 2 O 3 -SiO 2 addition 0.025 wt% and 0.25 wt%. In view of this, at the sintering temperature and in a specific sintering atmosphere, it is possible to promote mass transfer to promote grain growth, and its function is caused by volatilization of SiO 2 -containing compounds capable of capturing cesium, a fission product generated during combustion in a reactor. It turns out that this falls. That is, even if the additive content is increased to promote more active grain growth and adsorption of fissile material, the Al 2 O 3 -SiO 2 additive means that the additive effect is limited due to the decrease of the liquid fraction by volatilization.
희토류 금속 산화물은 일반적으로 내화재 물질에 첨가되어 유리 천이온도(Tg)나 녹는점(Tm)을 상승시키는 기능을 한다고 알려져 있다. 즉, 고온에서 유리상 또는 액상으로 존재하는 비정질 금속-산소 화합물들의 결합에 고장강도(High field strength)를 형성시킴으로써, 비-가교 산소원자(Non-Bridging Oxygen, NBO)의 결합력을 향상시킴으로써, 고온에서의 증발을 억제시킬 수 있다.Rare earth metal oxides are generally known to be added to refractory materials to serve to raise the glass transition temperature (T g ) or the melting point (T m ). In other words, by forming a high field strength in the bonding of the amorphous metal-oxygen compounds present in the glass or liquid phase at a high temperature, by improving the bonding strength of the non-bridging oxygen atoms (NBO), Can suppress evaporation.
본 발명은, 원자력발전소에서 사용되는 핵연료인 이산화우라늄의 결정립 성장을 촉진할 수 있는 액상을 안정적으로 형성시켜 핵분열 물질인 세슘을 효율적으로 포집할 수 있는 첨가제를 함유한 이산화우라늄 소결체 및 제조방법을 제공하는 것에 그 목적이 있다. 미세조직이 개선된 소결체를 이용함으로써 PCI 파손 및 원자력 발전소 사고에 대한 노내 연소 여유도를 확보할 수 있다.The present invention provides a uranium dioxide sintered body and a manufacturing method containing an additive capable of efficiently trapping cesium, a fissile material, by stably forming a liquid phase capable of promoting grain growth of uranium dioxide, which is a nuclear fuel used in a nuclear power plant. The purpose is to do that. By using the sintered body with improved microstructure, it is possible to secure the combustion margin in the furnace against PCI damage and nuclear power plant accidents.
상기 목적을 달성하기 위하여, 본 발명은 이산화우라늄 핵연료 소결체에 있어서, 이산화우라늄; 및 La2O3, Al2O3, SiO2로 이루어진 소결 첨가제를 포함하는 이산화우라늄 소결체를 제공한다. 상기 소결 첨가제 La2O3-Al2O3-SiO2 첨가를 통해 얻는 액상을 통해 우라늄 이온을 빠르게 이동시켜 결정립 성장을 도모하며 결정립계에 도포되어 노내 연소시 생성되는 핵분열 기체인 세슘 포집 능력을 항상 시킬 수 있다.In order to achieve the above object, the present invention in the uranium dioxide nuclear fuel sintered body, uranium dioxide; And it provides a uranium dioxide sintered body comprising a sintering additive consisting of La 2 O 3 , Al 2 O 3 , SiO 2 . The sintering additive La 2 O 3 -Al 2 O 3 -SiO 2 to move the uranium ions quickly through the liquid phase obtained through the liquid phase to promote grain growth and is applied to the grain boundary sessile capacitive gas produced during combustion in the furnace always You can.
상기 첨가제는 이산화우라늄 100 중량부 대비 0.05 내지 0.15 중량부를 함유할 수 있다.The additive may contain 0.05 to 0.15 parts by weight based on 100 parts by weight of uranium dioxide.
상기 첨가제는 La2O3:Al2O3:SiO2 혼합 중량비가 1~2 : 1~2 : 7~8일 수 있다.The additive may be a La 2 O 3 : Al 2 O 3 : SiO 2 mixed weight ratio of 1 to 2: 1 to 2: 7 to 8.
또한, 본 발명은 이산화우라늄 핵연료 소결체를 제조하는 방법에 있어서, (a) La2O3, Al2O3, SiO2를 혼합하여 첨가제를 제조하는 단계; (b) 상기 첨가제를 이산화우라늄 분말에 첨가 후 혼합하여 혼합분말을 제조하는 단계; (c) 상기 혼합분말을 압축성형하여 성형체를 제조하는 단계; 및 (d) 상기 성형체를 환원성 분위시의 소결로 내부에서 가열하여 소결하는 단계를 포함하는 이산화우라늄 소결체 제조 방법을 제공한다. 이로 인하여, 본 발명은 핵연료 소결체인 이산화우라늄 분말에 란타넘 산화물(La2O3), 알루미늄 산화물(Al2O3), 실리콘 산화물(SiO2)을 첨가하고 약환원성 분위기에서 소결하여 고온에서 안정한 액상을 형성시킴으로써 큰결정립을 효율적으로 형성시킬 수 있다.In addition, the present invention provides a method for producing a uranium dioxide fuel sintered body, comprising the steps of: (a) preparing an additive by mixing La 2 O 3 , Al 2 O 3 , SiO 2 ; (b) adding the additive to uranium dioxide powder and mixing the same to prepare a mixed powder; (c) compression molding the mixed powder to produce a molded body; And (d) provides a method for producing a uranium dioxide sintered body comprising the step of sintering the molded body in the sintering furnace during the reducing atmosphere. For this reason, the present invention adds lanthanum oxide (La 2 O 3 ), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ) to uranium dioxide powder, which is a fuel sintered body, and is sintered in a weakly reducing atmosphere and stable at high temperatures. By forming a liquid phase, large crystal grains can be efficiently formed.
상기 (a)단계에서, La2O3, Al2O3, SiO2를 1~2 : 1~2 : 7~8 중량비로 혼합할 수 있다.In step (a), La 2 O 3 , Al 2 O 3 , SiO 2 may be mixed in a weight ratio of 1 to 2: 1 to 2: 7 to 8.
상기 (b)단계에서, 상기 첨가제를 이산화우라늄 분말 100 중량부에 대하여 0.05 내지 0.15 중량부를 첨가할 수 있다.In the step (b), the additive may be added 0.05 to 0.15 parts by weight based on 100 parts by weight of uranium dioxide powder.
상기 (d)단계는 1730 내지 1780℃로 수행하며, 수소가스 주입 속도를 200 내지 2,000ml/min로 유지할 수 있다.The step (d) may be performed at 1730 to 1780 ° C., and may maintain the hydrogen gas injection rate at 200 to 2,000 ml / min.
상기와 같은 본 발명에 따르면, 이산화우라늄에 La2O3-Al2O3-SiO2 소결 첨가제를 첨가함으로써, 이산화우라늄 소결체의 소결 시 생성되는 액상으로 인해 물질이동이 가속화되어 결정립 성장이 촉진될 뿐만 아니라 액상의 증기압이 낮아 소결 중 휘발이 적게 되므로 효율적인 첨가제 성능을 발휘할 수 있고, 이로 인하여 결정립계를 감싸고 있는 액상이 핵분열 기체인 세슘을 효과적으로 흡착할 수 있다. According to the present invention as described above, La 2 O 3 -Al 2 O 3 -SiO 2 in uranium dioxide By adding the sintering additive, the liquid phase produced during the sintering of the uranium dioxide sintered body accelerates the movement of grains and promotes grain growth, and the low vapor pressure of the liquid phase reduces the volatilization during sintering, thereby exhibiting an efficient additive performance. The liquid phase surrounding the grain boundary can effectively adsorb cesium, a fission gas.
또한, 이산화우라늄 소결체 소결시 PCI 파손 저감은 물론 사고 시나리오에서의 안전 여유도를 향상시킬 수 있다. In addition, the sintered uranium dioxide sintered body can reduce PCI damage as well as improve safety margin in an accident scenario.
도 1은 본 발명의 일 형태에 따른 이산화우라늄 소결체 제조방법에 대해 개략적으로 나타낸 공정 순서도이다.BRIEF DESCRIPTION OF THE DRAWINGS The process flowchart which showed schematically about the manufacturing method of the uranium dioxide sintered compact of one embodiment of this invention.
도 2는 La2O3-Al2O3-SiO2의 3 성분계 평형 상태도이다.2 is a three-component equilibrium state diagram of La 2 O 3 -Al 2 O 3 -SiO 2 .
도 3은 La2O3-Al2O3-SiO2를 5중량% 첨가한 이산화우라늄 소결체를 본 발명의 일 실시예의 소결체 제조방법에 따라 제조한 후 에너지분산형 분광분석법 (Energy Dispersive X-ray Spectroscopy, EDS)을 이용해 미세조직 내 위치한 금속 원소 분포위치를 결과를 도시한 것이다.3 is an energy dispersive X-ray method of preparing a uranium dioxide sintered body containing 5 wt% La 2 O 3 -Al 2 O 3 -SiO 2 according to the sintered body manufacturing method of an embodiment of the present invention. Spectroscopy (EDS) is used to show the distribution of metal elements located in the microstructure.
도 4는 본 발명의 일 실시예에 따라 제조된 La2O3-Al2O3-SiO2를 첨가한 이산화우라늄 소결체의 미세조직 광학현미경으로 촬영한 사진(x 1,000배율)이다.4 is a photograph taken by a microstructure optical microscope of a uranium dioxide sintered body to which La 2 O 3 -Al 2 O 3 -SiO 2 is prepared according to an embodiment of the present invention (x 1,000 magnification).
도 5는 본 발명의 비교예에 따라 제조된 Al2O3-SiO2를 첨가한 이산화우라늄 소결체의 미세조직 광학현미경으로 촬영한 사진(x 1,000배율)이다.5 is a photograph taken by a microstructured optical microscope of a uranium dioxide sintered body to which Al 2 O 3 -SiO 2 is prepared according to a comparative example of the present invention (x 1,000 magnification).
도 6은 본 발명에서의 일 실시예와 비교예에서 사용된 혼합분말과, 실시예와 비교예로 제조된 소결체에 함유된 Si 원소를 유도 결합플라즈마 분광분석기를 이용해 정량분석한 결과를 도시한 것이다.Figure 6 shows the results of the quantitative analysis of the mixed powder used in one embodiment and Comparative Example in the present invention, and the Si element contained in the sintered body prepared in Example and Comparative Example using an inductively coupled plasma spectrometer .
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 이산화우라늄 핵연료 소결체에 있어서, 이산화우라늄; 란타넘 산화물(La2O3), 알루미늄 산화물(Al2O3), 실리콘 산화물(SiO2)로 이루어진 첨가제를 포함하고, 상기 첨가제는 이산화우라늄 100 중량부 대비 0.05 내지 0.15 중량부를 함유하고, La2O3:Al2O3:SiO2 혼합 중량비가 1~2 : 1~2 : 7~8인 것을 특징으로 하는 이산화우라늄 소결체를 제공한다. 상기 첨가제는 란타넘 산화물(La2O3), 알루미늄 산화물(Al2O3), 실리콘 산화물(SiO2)로 이루어지며, 소결 온도에서 액상을 형성하여 우라늄 원자의 물질이동을 가속화시켜 결정립 성장을 촉진시킨다. 그뿐만 아니라 결정립 계면에 피막을 형성시켜 원자력 발전소 노(furnace) 내 연소 시 생성되는 핵분열 기체를 흡착하는 역할을 한다.The present invention is a uranium dioxide nuclear fuel sintered body, uranium dioxide; It comprises an additive consisting of lanthanum oxide (La 2 O 3 ), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), the additive contains 0.05 to 0.15 parts by weight relative to 100 parts by weight of uranium dioxide, La It provides a uranium dioxide sintered body characterized in that the mixed weight ratio of 2 O 3 : Al 2 O 3 : SiO 2 is 1-2: 1-2: 7-8. The additive is composed of lanthanum oxide (La 2 O 3 ), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), forms a liquid phase at the sintering temperature to accelerate the material movement of uranium atoms to promote grain growth Promote In addition, it forms a film on the grain interface to adsorb the fission gas generated during combustion in the furnace of a nuclear power plant.
또한, 본 발명은 이산화우라늄 핵연료 소결체를 제조하는 방법에 있어서, (a) La2O3, Al2O3, SiO2를 1~2 : 1~2 : 7~8 중량비로 혼합하여 첨가제를 제조하는 단계(S11); (b) 상기 첨가제를 이산화우라늄 분말 100 중량부에 대하여 0.05 내지 0.15 중량부를 첨가 후 혼합하여 혼합분말을 제조하는 단계(S12); (c) 상기 혼합분말을 압축성형하여 성형체를 제조하는 단계(S13); 및 (d) 상기 성형체를 환원성 분위시의 소결로 내부에서 1730 내지 1780℃로 가열하여 소결하는 단계(S14)를 포함하는 이산화우라늄 소결체 제조 방법을 제공한다.In addition, the present invention is a method for producing a uranium dioxide fuel sintered body, (a) La 2 O 3 , Al 2 O 3 , SiO 2 by mixing in a weight ratio of 1-2 to 1-2: 7 to 8 to prepare an additive Step (S11); (b) adding the additive to 0.05 to 0.15 parts by weight based on 100 parts by weight of the uranium dioxide powder and mixing to prepare a mixed powder (S12); (c) compression molding the mixed powder to produce a molded product (S13); And (d) provides a method for producing a uranium dioxide sintered body comprising the step (S14) of heating the molded body at 1730 to 1780 ℃ in the sintering furnace in the reducing atmosphere.
도 1은 본 발명에 따른 첨가제를 포함한 이산화우라늄 소결체의 제조방법을 도시한 공정도이다. 도 1을 참조하면, S11 단계는 이산화우라늄 산화물로 사용되는 첨가제를 혼합하는 단계로서, 첨가제 구성은 La2O3, Al2O3, SiO3로 이루어진다. S11 단계에서 산화물 첨가제의 비율은 도 2의 La2O3-Al2O3-SiO2 평형 3성분계 상태도와 같이, 액상 분율이 가장 높은 조성 범위로서, La2O3, Al2O3, SiO3의 비율(중량비)로 첨가한다. 혼합은 직경(Φ) 5mm의 지르코니아 볼과 함께 3축 회전혼합이 가능한 Turbula 혼합기를 이용해 균질 혼합을 수행한다. S11 단계에서 첨가제들만 혼합을 먼저 수행하는바, 이는 첨가제 시스템이 다성분계이므로 모분말인 이산화우라늄과 혼합하였을 첨가제 분말 사이의 조성 비율을 모분말에서도 유지하기 위함이다. 상기 소결 첨가제 La2O3-Al2O3-SiO2 첨가를 통해 얻는 액상을 통해 우라늄 이온을 빠르게 이동시켜 결정립 성장을 도모하며 결정립계에 도포되어 노내 연소시 생성되는 핵분열 기체인 세슘 포집 능력을 항상 시킬 수 있다.1 is a process chart showing a method for manufacturing a uranium dioxide sintered body including the additive according to the present invention. Referring to FIG. 1, step S11 is a step of mixing an additive used as uranium dioxide oxide, and the additive composition includes La 2 O 3 , Al 2 O 3 , and SiO 3 . The ratio of the oxide additive in the step S11 is the composition range with the highest liquid fraction, as La 2 O 3 -Al 2 O 3 -SiO 2 equilibrium three-component state diagram of Figure 2, La 2 O 3 , Al 2 O 3 , SiO It adds in 3 ratio (weight ratio). The mixing is performed homogeneously using a Turbula mixer capable of three-axis rotational mixing with a zirconia ball of 5 mm diameter. In the step S11, only the additives are mixed first. This is to maintain the composition ratio between the additive powder which is mixed with the uranium dioxide which is the parent powder because the additive system is multicomponent. The sintering additive La 2 O 3 -Al 2 O 3 -SiO 2 to move the uranium ions quickly through the liquid phase obtained through the liquid phase to promote grain growth and is applied to the grain boundary sessile capacitive gas produced during combustion in the furnace always You can.
S12 단계에서 첨가되는 La2O3, Al2O3, SiO3 분말을 첨가함에 있어, 첨가제 함량은 이산화우라늄 분말 100 중량부 대비 0.05 내지 0.15 중량부로 한정한다. S12 단계에서 첨가량을 0.05 중량% 이상을 첨가하는 것은 충분한 액상을 형성하기 위함이다. 반면에 0.15 중량%를 초과하지 않는 이유는 열중성자 흡수 단면적이 높은 원소들의 첨가로 인한 중성자 경제성 저하를 최소화하기 위함이다. 따라서, 평균 40 ㎛ 이상까지의 성장과 높은 핵분열 물질 흡착을 결정립에 SiO2가 포함된 액상을 도포하기 위해 이산화우라늄 분말 100 중량부 대비 첨가제 0.05 내지 0.15 중량부로 첨가량을 한정한다. 혼합은 직경(Φ) 5mm의 지르코니아 볼과 함께 Turbula 혼합기를 이용하여 4 시간 동안 3축 회전 균질 혼합을 수행한다.La 2 O 3 , Al 2 O 3 , SiO 3 added in step S12 In adding the powder, the additive content is limited to 0.05 to 0.15 parts by weight relative to 100 parts by weight of uranium dioxide powder. The addition of 0.05 wt% or more in the step S12 is to form a sufficient liquid phase. On the other hand, the reason for not exceeding 0.15% by weight is to minimize the neutron economy deterioration due to the addition of elements having a high thermal neutron absorption cross-sectional area. Therefore, the amount of the additive is limited to 0.05 to 0.15 parts by weight based on 100 parts by weight of the uranium dioxide powder in order to apply the liquid phase containing SiO 2 to the crystal grains for growth up to 40 μm or more and high fission material adsorption. The mixing is carried out for three hours using a Turbula mixer with a zirconia ball of diameter 5 mm for three hours of rotating homogeneous mixing.
S13 단계에서는 혼합된 첨가제 분말과 이산화우라늄 분말을 압분하는 단계로서, 성형몰드에 혼합된 분말을 투입하고 2.5 ton/cm2 압력으로 성형체를 제조한다.In step S13, as a step of compacting the mixed additive powder and uranium dioxide powder, a mixed powder is added to a molding mold and a molded body is manufactured at a pressure of 2.5 ton / cm 2 .
S14 단계에서는 제조된 성형체를 소결하는 단계로서, 1700 내지 1780℃ 범위 온도에서 100% 수소가스를 200 ml/min 내지 2,000 ml/min으로 주입하며 3 내지 5 시간 동안 소결을 진행한다. S14 단계에서 100% 수소가스를 200 ml/min 속도 이상으로 주입하여 이산화우라늄 또는 내화재에서 방출되는 미량 산소에 의한 산소포텐셜 상승을 억제하여 환원성 소결 분위기를 유지하기 위함이다. 반면, 2,000 ml/min을 초과하지 않는 이유는 소결 시 배출되는 미량의 수증기의 의하여 가스 배출구에 생성되는 응결수의 관막음 현상에 의해 내부에 부하되는 압력을 낮춰주기 위함이다. 상술한 공정을 통해 40 ㎛ 이상의 평균 결정립 크기를 갖는 큰결정립 소결체를 제조할 수 있다.In the step S14, as a step of sintering the manufactured molded body, 100% hydrogen gas is injected at 200 ml / min to 2,000 ml / min at a temperature in the range of 1700 to 1780 ° C, and the sintering is performed for 3 to 5 hours. In order to maintain a reducing sintering atmosphere by injecting 100% hydrogen gas at a rate of 200 ml / min or more in step S14 by inhibiting the increase of oxygen potential by trace oxygen released from uranium dioxide or refractory materials. On the other hand, the reason for not exceeding 2,000 ml / min is to lower the pressure loaded inside by the clogging phenomenon of condensed water generated in the gas outlet by a small amount of steam discharged during sintering. Through the above-described process, a large grain sintered body having an average grain size of 40 µm or more can be produced.
도 2에서의 La2O3-Al2O3-SiO2 평형 3성분계 상태도를 통해 알 수 있듯이, 본 소결 공정에서 액상을 형성할 수 있다. 일례로서, 도 3을 참조하면, 첨가제를 함유하여 얻은 액상(liquid phase) 상태인 2차 상(phase)을 구성하고 있는 원소를 확인하였다. 이를 위하여, 이산화우라늄 분말 100 중량부 대비 La2O3-Al2O3-SiO2 첨가제를 5 중량부로 첨가제가 과량 함유시키고, 첨가제가 과량함유된 소결체에서의 이산화우라늄 결정립을 둘러싸고 있는 란타넘(La), 알루미늄(Al), 실리콘(Si) 원소로 구성된 영역으로부터 나오는 신호를 확인하였다. 란타넘(La), 알루미늄(Al), 실리콘(Si) 원소로 구성된 영역의 신호로부터 실제 비정질 액상이 형성되었음을 확인할 수 있다. 이를 통하여 첨가제를 함유함으로써 얻은 액상이 이산화우라늄 결정립계를 둘러싸고 있음을 명확히 알 수 있고, 이는 이산화우라늄의 큰 결정립을 형성함에 기여함을 확인할 수 있다.La 2 O 3 -Al 2 O 3 -SiO 2 in FIG. As can be seen from the equilibrium three-component state diagram, the liquid phase can be formed in the present sintering process. As an example, referring to FIG. 3, the elements constituting the secondary phase in the liquid phase state obtained by containing the additive were identified. To this end, the lanthanum surrounding the uranium dioxide grains in the sintered compact containing 5 parts by weight of the La 2 O 3 -Al 2 O 3 -SiO 2 additive in an amount of 5 parts by weight relative to 100 parts by weight of the uranium dioxide powder The signal from the area | region consisting of La), aluminum (Al), and silicon (Si) element was confirmed. From the signal of the region consisting of lanthanum (La), aluminum (Al), and silicon (Si), it can be seen that the actual amorphous liquid phase is formed. Through this, it can be clearly seen that the liquid phase obtained by containing the additive surrounds the uranium dioxide grain boundary, which can be confirmed to contribute to the formation of large grains of uranium dioxide.
본 발명의 첨가제 및 공정으로 제조된 효율적인 액상 형성에 따른 입자성장 촉진 및 핵분열 물질 흡착성분 결정립계 도포를 통해 PCI 파손 저감 및 사고 안전성이 뛰어난 소결체를 제조할 수 있다. Through the particle growth promotion and the application of the nuclear fission material adsorption component grain boundary according to the formation of an efficient liquid phase prepared by the additive and the process of the present invention, it is possible to manufacture a sintered compact having excellent PCI damage reduction and accident safety.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
실시예.Example.
La2O3, Al2O3, SiO2 첨가제를 1:1:8의 중량비로 직경(Φ) 5mm 지르코니아볼과 함께 Turbula mexer를 이용하여 4시간 동안 3차원 균질 혼합하였다. 상기 혼합된 첨가체를 이산화우라늄 분말 100 중량부에 대하여 0.1 중량부 첨가하고 Turbula mixer를 이용하여 4시간 동안 혼합한 후, 3.5 ton/cm2 압력으로 압분하여 성형체를 제조하였다. 상기 성형체를 5℃/min 속도로 1730℃까지 승온하고, 1730℃에서 4시간 동안 소결하였다. 소결 분위기는 250 ml/min 속도의 100% 수소가스를 주입하여 조절하였다.La 2 O 3 , Al 2 O 3 , SiO 2 additives were mixed in three dimensions homogeneously for 4 hours using a Turbula mexer with a 5 mm zirconia ball diameter (Φ) at a weight ratio of 1: 1: 8. 0.1 parts by weight of the mixed additive was added to 100 parts by weight of uranium dioxide powder, mixed for 4 hours using a Turbula mixer, and then pressed at 3.5 ton / cm 2 to prepare a molded product. The molded body was heated to 1730 ° C. at a rate of 5 ° C./min, and sintered at 1730 ° C. for 4 hours. The sintering atmosphere was controlled by injecting 100% hydrogen gas at a rate of 250 ml / min.
비교예.Comparative example.
Al2O3, SiO2 1:8의 중량비로 혼합한 첨가제를 이산화우라늄 분말 100 중량부 대비 0.09 중량부 첨가한 이산화우라늄 소결체를 상기 실시예와 동일한 방법으로 제조하였다.Al 2 O 3 , SiO 2 A uranium dioxide sintered body in which 0.09 parts by weight of an additive mixed with a weight ratio of 1: 8 was added to 100 parts by weight of uranium dioxide powder was prepared in the same manner as in the above example.
측정예. 미세조직 관찰Measurement example. Microstructure Observation
상기 실시예 및 비교예에서 제조된 소결체의 소결 후 미세조직 관찰을 위해 원통형 소결체의 원주방향 1/2 지점을 절단 및 단면을 연마하고 열 에칭을 수행하였으며, 광학현미경을 이용하여 미세조직 사진을 촬영하여 도 4(실시예) 및 도 5(비교예)에 도시하였다.In order to observe the microstructure after sintering the sintered bodies prepared in Examples and Comparative Examples, the circumferential half of the cylindrical sintered body was cut and polished and thermally etched, and the microstructured image was taken using an optical microscope. 4 (Example) and FIG. 5 (Comparative Example).
도 4를 참조하면, 결정립 크기 측정을 위해 직선 교차법을 이용하였으며, 일반적인 이산화우라늄 소결체의 약 9 ㎛보다 4배 이상 큰 평균 45.5 ㎛ 크기의 결정립 크기로 측정되었다. 또한, 도 5를 참조하면, 결정립 크기가 평균 21.5 ㎛ 결정립 크기로 측정되었다. 실시예는 비교예의 Al2O3-SiO2 첨가제를 0.09 중량부 첨가한 소결체에 비하여 약 2 배가량 큰 결정립 크기를 보인다.Referring to FIG. 4, the linear cross-section method was used to measure the grain size, and the grain size was measured as an average size of 45.5 μm larger than about 9 μm of a typical uranium dioxide sintered body. In addition, referring to FIG. 5, the grain size was measured with an average grain size of 21.5 μm. The Example shows a grain size about twice as large as that of the sintered compact to which 0.09 parts by weight of Al 2 O 3 -SiO 2 additive of the Comparative Example was added.
측정예. 금속원소 정량분석Measurement example. Quantitative Analysis of Metal Elements
상기 실시예 및 비교예에서 사용한 첨가제가 혼합된 이산화우라늄 분말과, 상기 실시예 및 비교예로 제조된 소결체에 포함된 금속원소 정량을 분석하기 위하여 유도 결합플라즈마 분광분석기(Inductively Coupled Plasma Spectrometer, ICP)를 이용하였다.Inductively Coupled Plasma Spectrometer (ICP) in order to analyze the quantitative determination of metal elements contained in the uranium dioxide powder mixed with the additives used in the above Examples and Comparative Examples and the sintered bodies prepared in Examples and Comparative Examples Was used.
본 분석을 통해 소결 전 첨가한 핵분열 기체 포집능이 우수한 실리콘 산화물이 소결 중 휘발된 양과 소결체에 잔존하는 양을 측정할 수 있다. 산화물 형태로 첨가한 실리콘산화물(SiO2)의 정량분석을 위해 금속 실리콘(Si) 정량을 측정하였다.Through this analysis, it is possible to measure the amount of volatilized silicon oxide added in the sintered body and the amount remaining in the sintered body. Metal silicon (Si) quantification was measured for quantitative analysis of silicon oxide (SiO 2 ) added in the form of oxide.
도 6은 실시예와 비교예에서 사용된 분말과, 실시예와 비교예로 제조된 이산화우라늄 소결체에 존재하는 실리콘 금속원소의 함량 측정결과를 나타낸다. 800ppm 첨가한 SiO2 중 Si양은 46.6%인 372.8ppm이며, 실시예 및 비교예 모두 370ppm에 가까운 Si 함량을 보인다. 하지만 소결체에서는 각각 320.7, 130.7ppm으로 측정되어 소결시 약 50ppm, 240ppm씩 Si이 휘발된 것으로 나타났다. 따라서, 실시예의 소결체가 비교예의 소결체에 비해 약 4.8배 정도 휘발 저항성이 우수하다. Figure 6 shows the results of measuring the content of the silicon metal element present in the powder used in the Examples and Comparative Examples and the sintered uranium dioxide prepared in Examples and Comparative Examples. Si content in SiO 2 added at 800 ppm was 372.8 ppm, which is 46.6%, and both Examples and Comparative Examples showed Si content close to 370 ppm. However, in the sintered body, it was measured as 320.7 and 130.7ppm, respectively, and it was found that Si was volatilized by about 50ppm and 240ppm. Therefore, the sintered compact of the Example is excellent in volatilization resistance about 4.8 times compared with the sintered compact of the comparative example.
이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다. As mentioned above, specific parts of the present invention have been described in detail, and it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (8)

  1. 이산화우라늄 핵연료 소결체에 있어서,In the uranium dioxide fuel sintered body,
    이산화우라늄; 및Uranium dioxide; And
    La2O3, Al2O3, SiO2로 이루어진 첨가제를 포함하는 이산화우라늄 소결체.Sintered uranium dioxide containing an additive consisting of La 2 O 3 , Al 2 O 3 , SiO 2 .
  2. 제 1 항에 있어서,The method of claim 1,
    상기 첨가제는 이산화우라늄 100 중량부 대비 0.05 내지 0.15 중량부를 함유하는 것을 특징으로 하는 이산화우라늄 소결체.The additive is a uranium dioxide sintered body, characterized in that it contains 0.05 to 0.15 parts by weight relative to 100 parts by weight of uranium dioxide.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 첨가제는 La2O3:Al2O3:SiO2 혼합 중량비가 1~2 : 1~2 : 7~8인 것을 특징으로 하는 이산화우라늄 소결체.The additive is a sintered uranium dioxide, characterized in that the La 2 O 3 : Al 2 O 3 : SiO 2 mixed weight ratio of 1-2: 1-2: 7-8.
  4. 이산화우라늄 핵연료 소결체를 제조하는 방법에 있어서,In the method for producing a uranium dioxide fuel sintered body,
    (a) La2O3, Al2O3, SiO2를 혼합하여 첨가제를 제조하는 단계;(a) mixing La 2 O 3 , Al 2 O 3 , SiO 2 to prepare an additive;
    (b) 상기 첨가제를 이산화우라늄 분말에 첨가 후 혼합하여 혼합분말을 제조하는 단계;(b) adding the additive to uranium dioxide powder and mixing the same to prepare a mixed powder;
    (c) 상기 혼합분말을 압축성형하여 성형체를 제조하는 단계; 및(c) compression molding the mixed powder to produce a molded body; And
    (d) 상기 성형체를 환원성 분위시의 소결로 내부에서 가열하여 소결하는 단계;를 포함하는 이산화우라늄 소결체 제조 방법.(d) heating the sintered compact in the sintering furnace during the reducing atmosphere; and sintering the uranium dioxide sintered compact manufacturing method comprising a.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 (a)단계에서, La2O3, Al2O3, SiO2를 1~2 : 1~2 : 7~8 중량비로 혼합하는 것을 특징으로 하는 이산화우라늄 소결체 제조 방법.In the step (a), La 2 O 3 , Al 2 O 3 , SiO 2 The uranium dioxide sintered body manufacturing method characterized by mixing in a weight ratio of 1-2: 1: 1-2: 7-8.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 (b)단계에서, 상기 첨가제를 이산화우라늄 분말 100 중량부에 대하여 0.05 내지 0.15 중량부를 첨가하는 것을 특징으로 하는 이산화우라늄 소결체 제조방법.In the step (b), the uranium dioxide sintered body manufacturing method characterized in that the addition of 0.05 to 0.15 parts by weight based on 100 parts by weight of the uranium dioxide powder.
  7. 제 4 항에 있어서,The method of claim 4, wherein
    상기 (d)단계는 1730 내지 1780℃로 수행하는 것을 특징으로 하는 이산화우라늄 소결체 제조 방법.Step (d) is a method for producing sintered uranium dioxide, characterized in that carried out at 1730 to 1780 ℃.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 (d) 단계는, 수소가스 주입 속도를 200 내지 2,000ml/min로 유지하는 것을 특징으로 하는 이산화우라늄 소결체 제조방법.Step (d), the uranium dioxide sintered body manufacturing method characterized in that the hydrogen gas injection rate is maintained at 200 to 2,000ml / min.
PCT/KR2018/009386 2018-05-29 2018-08-16 Uranium dioxide pellets having excellent fission gas adsorbing property and manufacturing method therefor WO2019231046A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0061268 2018-05-29
KR20180061268 2018-05-29

Publications (1)

Publication Number Publication Date
WO2019231046A1 true WO2019231046A1 (en) 2019-12-05

Family

ID=68697587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009386 WO2019231046A1 (en) 2018-05-29 2018-08-16 Uranium dioxide pellets having excellent fission gas adsorbing property and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2019231046A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114509464A (en) * 2020-11-17 2022-05-17 中核建中核燃料元件有限公司 Nondestructive detection method for average grain size of uranium dioxide core block
EP3843108A4 (en) * 2019-09-25 2022-06-01 Kepco Nuclear Fuel Co., Ltd. Nuclear fuel uranium dioxide pellets having improved fission gas capturing capability, and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527069A (en) * 1991-07-18 1993-02-05 Nippon Nuclear Fuel Dev Co Ltd Nuclear fuel pellet and manufacture therefor
KR100521638B1 (en) * 2002-10-02 2005-10-13 한국원자력연구소 Uranium dioxide fuel containing SiO2-CaO-Cr2O3 and thereof method
KR20110059231A (en) * 2009-11-27 2011-06-02 한국원자력연구원 Uranium dioxide nuclear fuel containing ti and mg-compounds as additives and method of manufacturing the same
KR20170101083A (en) * 2016-02-25 2017-09-05 한전원자력연료 주식회사 The composition and manufacturing method of large grain UO pellet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527069A (en) * 1991-07-18 1993-02-05 Nippon Nuclear Fuel Dev Co Ltd Nuclear fuel pellet and manufacture therefor
KR100521638B1 (en) * 2002-10-02 2005-10-13 한국원자력연구소 Uranium dioxide fuel containing SiO2-CaO-Cr2O3 and thereof method
KR20110059231A (en) * 2009-11-27 2011-06-02 한국원자력연구원 Uranium dioxide nuclear fuel containing ti and mg-compounds as additives and method of manufacturing the same
KR20170101083A (en) * 2016-02-25 2017-09-05 한전원자력연료 주식회사 The composition and manufacturing method of large grain UO pellet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALI R. MASSIH, EFFECTS OF ADDITIVES ON URANIUM DIOXIDE FUEL BEHAVIOR, REPORT NUMBER: 2014:21, January 2014 (2014-01-01), ISSN: 2000-0456, Retrieved from the Internet <URL:https://www.stralsakerhetsmyndigheten.se/en/publications/reports/safety-at-nuclear-power-plants/2014/201421> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3843108A4 (en) * 2019-09-25 2022-06-01 Kepco Nuclear Fuel Co., Ltd. Nuclear fuel uranium dioxide pellets having improved fission gas capturing capability, and manufacturing method therefor
US11742097B2 (en) 2019-09-25 2023-08-29 Kepco Nuclear Fuel Co., Ltd. Uranium-dioxide pellet for nuclear fuel having improved nuclear-fission-gas adsorption property, and method of manufacturing same
CN114509464A (en) * 2020-11-17 2022-05-17 中核建中核燃料元件有限公司 Nondestructive detection method for average grain size of uranium dioxide core block

Similar Documents

Publication Publication Date Title
RU2723561C2 (en) Method of producing completely ceramic microencapsulated nuclear fuel
RU2735243C2 (en) Completely ceramic microencapsulated fuel, made with burnable absorber as a sintering intensifier
US3826754A (en) Chemical immobilization of fission products reactive with nuclear reactor components
TW201838952A (en) A sintered nuclear fuel pellet, a fuel rod, a fuel assembly, and a method of manufacturing a sintered nuclear fuel pellet
KR102338164B1 (en) Improving the toughness of microencapsulated nuclear fuel
KR20130140752A (en) Fully ceramic nuclear fuel and related methods
KR20120123098A (en) Nuclear fuel, nuclear fuel element, nuclear fuel assembly and a method manufacturing nuclear fuel
TWI731219B (en) A nuclear fuel pellet, a fuel rod, and a fuel assembly
US9754687B2 (en) ALD coating of nuclear fuel actinides materials
CN108885908A (en) The method of rapid processing for SiC and graphite matrix TRISO formula briquette fuel
WO2019231046A1 (en) Uranium dioxide pellets having excellent fission gas adsorbing property and manufacturing method therefor
KR102102977B1 (en) Method of manufacturing nuclear fuel pellet consisting of duplex grains
Mistarihi et al. Fabrication of oxide pellets containing lumped Gd2O3 using Y2O3‐stabilized ZrO2 for burnable absorber fuel applications
KR102161676B1 (en) Uranium dioxide pellets for nuclear fuel having improved capability to capture fission gas and manufacturing method thereof
WO2019107655A1 (en) Sintered nuclear fuel pellets having excellent oxidation resistance, and manufacturing method therefor
Somers et al. Fabrication Routes for Yttria‐Stabilized Zirconia Suitable for the Production of Minor Actinide Transmutation Targets
Dole et al. Radiation shielding using depleted uranium oxide in nonmetallic matrices
WO2021060607A1 (en) Sintering additive for forming film capable of improving oxidation resistance of nuclear fuel pellets, and preparation method therefor
RU2578680C1 (en) Nuclear reactor pebble
Ploetz Ceramic materials for nuclear reactor controls and poison
JP4080199B2 (en) Manufacturing method of nuclear fuel pellet, fuel element using the nuclear fuel pellet, and fuel assembly
Kim et al. Development Status of Metallic and Ceramic Microcell UO 2 Pellet for ATF
Yanagisawa et al. A study on density, melting point, thermal expansion, creep, thermal diffusivity and thermal conductivity of the simulated rock-like oxide (ROX) fuels
Nelson Thulium oxide fuel characterization study: Part 2, Environmental behavior and mechanical, thermal and chemical stability enhancement
Feinroth et al. Silicon Carbide TRIPLEX Cladding; Recent Advances in Manufacturing and Testing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920500

Country of ref document: EP

Kind code of ref document: A1