KR20030085371A - Method of manufacturing reaction-bonded silicon carbide - Google Patents

Method of manufacturing reaction-bonded silicon carbide Download PDF

Info

Publication number
KR20030085371A
KR20030085371A KR1020020023774A KR20020023774A KR20030085371A KR 20030085371 A KR20030085371 A KR 20030085371A KR 1020020023774 A KR1020020023774 A KR 1020020023774A KR 20020023774 A KR20020023774 A KR 20020023774A KR 20030085371 A KR20030085371 A KR 20030085371A
Authority
KR
South Korea
Prior art keywords
silicon
silicon carbide
specimen
reaction
powder
Prior art date
Application number
KR1020020023774A
Other languages
Korean (ko)
Other versions
KR100471652B1 (en
Inventor
이해원
김주선
이종호
송휴섭
신현익
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR10-2002-0023774A priority Critical patent/KR100471652B1/en
Priority to JP2004501336A priority patent/JP4192145B2/en
Priority to PCT/KR2003/000858 priority patent/WO2003093194A1/en
Priority to DE10392574T priority patent/DE10392574B4/en
Publication of KR20030085371A publication Critical patent/KR20030085371A/en
Application granted granted Critical
Publication of KR100471652B1 publication Critical patent/KR100471652B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE: Provided is a method for producing a reaction bonding silicon carbide, which supplies melted silicon effectively regardless of the form, size and thickness of the reaction bonding silicon carbide, prevents the cohesion of the melted silicon, and supplies the melted silicon uniformly. CONSTITUTION: The method comprises the steps of: preparing a silicon supplying specimen composed of a silicon powder and a thermosetting resin selected from the group consisting of a phenol resin, a furfuryl alcohol resin and an epoxy resin as a binding agent; preparing a silicon carbide/carbon filling body; contacting the silicon supplying specimen to one side of the filling body in a reaction bonding furnace; and heat treating at the temperature higher than the melting point of the silicon under vacuum or an inert atmosphere to infiltrate the melted silicon in the silicon supplying specimen into the inside of the filling body.

Description

반응결합 탄화규소 제조방법{METHOD OF MANUFACTURING REACTION-BONDED SILICON CARBIDE}METHODS OF MANUFACTURING REACTION-BONDED SILICON CARBIDE}

본 발명은 반응결합 탄화규소 제조방법에 관한 것으로, 상세하게는 반응결합 탄화규소를 제조할 때 시편 전체에 걸쳐 용융 규소를 균일하게 공급하는 방법에 관한 것이다.The present invention relates to a method for producing reaction-bonded silicon carbide, and more particularly, to a method for uniformly supplying molten silicon throughout the specimen when producing reaction-bonded silicon carbide.

반응결합(또는 반응소결) 탄화규소는 탄화규소와 탄소로 구성된 충전체(preform)에 용융 규소를 침투시켜 제조한다. 침투된 용융 규소는 충전체 내에 존재하는 탄소입자와 반응하여 탄화규소로 형성되고, 이 탄화규소가 결합제로 작용하여 충전체 내에 존재하는 탄화규소 입자들을 결합시키며, 탄화규소 입자들 사이에 존재하는 공극을 규소로 채운 미세구조를 가진다.Reaction-bonded (or sintered) silicon carbide is made by infiltrating molten silicon into a preform consisting of silicon carbide and carbon. The impregnated molten silicon is formed of silicon carbide by reaction with carbon particles present in the filler, and the silicon carbide acts as a binder to bond the silicon carbide particles present in the filler, and the voids present between the silicon carbide particles. It has a microstructure filled with silicon.

반응결합 탄화규소를 제조하기 위하여 탄화규소/탄소 충전체에 용융 규소를 공급하는 방법으로는 용융 규소가 담겨있는 도가니에 충전체를 잠기게 하고 잠겨진 충전체의 모세관을 통하여 용융 규소가 충전체 전체에 공급되도록 하는 것이 일반적이다. 그러나 이 경우, 규소의 용융을 위한 가열장치, 용융 규소를 담을 수 있는 도가니, 도가니에서 시편까지의 공급장치 등이 필요하여 제조과정이 복잡하고 제조비용이 많이 들게 된다.In order to manufacture reaction-bonded silicon carbide, molten silicon is supplied to the silicon carbide / carbon filler by immersing the filler in a crucible containing molten silicon, and the molten silicon is transferred to the entire filler through the capillary of the locked filler. It is common to be supplied. However, in this case, a heating apparatus for melting silicon, a crucible capable of containing molten silicon, a feeder from a crucible to a specimen, and the like are required, which makes the manufacturing process complicated and expensive.

또한, 간단한 형상일 경우에는 충전체 시편 상부에 규소 분말입자를 쌓아올려 놓고 규소의 용융 온도 이상으로 열처리하여 용융 규소가 시편으로 침투되도록 하는 방법이 있다. 이 방법에서는 용융 온도 이상에서 액상 규소가 형성되면서 규소 분말입자가 표면장력에 의하여 뭉치게 되며, 액상규소가 한 덩어리로 뭉쳐지면 규소가 공급되어야 할 전체면적을 다 덮지 못하며, 경우에 따라서는 뭉쳐진 덩어리의 자중에 의하여 중력강하를 하게될 가능성도 매우 커지게 된다.In addition, in the case of a simple shape, there is a method in which silicon powder particles are stacked on the filler specimen and heat-treated above the melting temperature of silicon to allow molten silicon to penetrate into the specimen. In this method, the liquid silicon is formed above the melting temperature, and the silicon powder particles are agglomerated by the surface tension. When the liquid silicon is agglomerated, the silicon does not cover the entire area to be supplied, and in some cases, the agglomerated mass It is also very likely that gravity will drop due to its own weight.

이와 같은 종래의 규소 공급 방법에서는 액상규소가 뭉치면 원래 의도한 접촉면에서 멀어지게 되어 용융 규소의 전달 거리가 매우 길어지고 침투 단면적도 상대적으로 작아지게 되는 단점이 있으며, 용융 규소 공급원의 위치를 시편에 대하여 일정한 위치에 고정하여야 한다는 단점이 있다. 또한, 용융 규소는 매우 큰 표면장력을 가지며, 점도가 낮기 때문에 쉽게 응집이 일어나 전체 표면적을 줄이려는 경향을 가지며, 응집체의 크기가 커질 수록 중력의 영향을 크게 받는다. 이러한 용융 규소의 응집은 규소가 침윤되는 전단의 면적을 감소시키는 것은 물론, 침윤되는 위치가 한정된 영역에 국한되게 한다. 반응결합 탄화규소의 제조를 위해서는 용융 규소의 공급이 필수적이나, 기존의 방법에서는 시편 전체에 걸쳐 균일하게 용융 규소를 공급하기 어려웠다.In the conventional silicon supply method, when liquid silicon agglomerates, it is far from the intended contact surface, so that the transfer distance of the molten silicon becomes very long and the penetration cross-sectional area is also relatively small, and the position of the molten silicon source relative to the specimen The disadvantage is that it must be fixed at a certain position. In addition, molten silicon has a very large surface tension, has a low viscosity, tends to easily agglomerate to reduce the total surface area, and the larger the size of the aggregate, the greater the influence of gravity. This agglomeration of the molten silicon not only reduces the area of shear in which the silicon is infiltrated, but also allows the region to be infiltrated to be confined to a limited area. Although the supply of molten silicon is essential for the production of reaction-bonded silicon carbide, it is difficult to supply molten silicon uniformly throughout the specimen in conventional methods.

따라서, 본 발명의 목적은 보다 경제적으로 반응결합 탄화규소를 제조할 수 있는 방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a process which can produce reaction bonded silicon carbide more economically.

또한, 본 발명의 다른 목적은 반응결합 탄화규소 제조시, 규소를 균일하게 용융시키고 표면 장력에 의한 용융 규소의 응집을 방지함으로써 침투 면적을 최대한으로 유지하는 것이다.In addition, another object of the present invention is to maintain the penetration area to the maximum by manufacturing the reaction bonded silicon carbide by melting the silicon uniformly and preventing the agglomeration of the molten silicon by the surface tension.

또한, 본 발명의 다른 목적은 용융 규소의 균일한 공간적인 분포를 유지하여전 침투면에 걸친 균일한 침투속도를 유지하여 공정시간을 단축시키는데 있다.In addition, another object of the present invention is to reduce the process time by maintaining a uniform spatial distribution of molten silicon to maintain a uniform penetration rate over the entire penetration surface.

기타, 본 발명의 목적 및 특징은 후술되는 상세한 설명 및 특허청구범위에서 명확히 나타날 것이다.Other objects and features of the present invention will be apparent from the detailed description and the claims that follow.

도 1a 내지 1d는 본 발명의 반응결합 탄화규소 제조방법을 개략적으로 설명하며,1a to 1d schematically illustrate a method for producing reaction-bonded silicon carbide of the present invention,

도 1a는 규소공급 시편과 탄화규소 충전체를 접촉시킨 상태를 보여주고,1a shows a state in which a silicon supply specimen is in contact with a silicon carbide filler,

도 1b는 열처리에 의하여 규소공급시편 내에 탄화 입자가 형성된 것을 보여주며,Figure 1b shows that the carbonized particles formed in the silicon feed specimen by the heat treatment,

도 1c는 열처리에 의하여 규소공급시편 내에 탄화규소 망목구조가 형성된 것을 보여주며,Figure 1c shows that the silicon carbide network structure formed in the silicon feed specimen by heat treatment,

도 1d는 용융 규소가 공급된 최종적인 반응결합 탄화규소를 보여준다Figure 1d shows the final reaction bonded silicon carbide fed molten silicon

도 2a는 탄화규소/탄소 충전체 시편의 미세구조를 보여준다.2a shows the microstructure of silicon carbide / carbon filler specimens.

도 2b는 반응결합후의 탄화규소 소결체의 미세구조를 보여준다.2b shows the microstructure of the silicon carbide sintered body after reaction bonding.

*** 도면의 주요 부분에 대한 부호의 설명 ****** Explanation of symbols for the main parts of the drawing ***

10:규소공급 시편20:탄화규소/탄소 충전체10: Silicon supply specimen 20: Silicon carbide / carbon filler

11:규소 입자12:결합제11: Silicon Particle 12: Binder

21:탄화규소 입자22:탄소 입자21: silicon carbide particles 22: carbon particles

본 발명에서는 규소분말과 열경화성 수지로 구성된 규소공급 시편을 반응결합하고자 하는 탄화규소 시편과 접촉시키고 열처리함으로써 반응결합 탄화규소의 형상, 크기, 두께에 관계없이 가장 효율적으로 용융 규소를 공급하면서도 용융 규소의 응집을 방지하고 용융 규소의 균일한 공급이 가능하다.In the present invention, the silicon feed specimen composed of silicon powder and thermosetting resin is brought into contact with and heat treated with the silicon carbide specimen to be reacted, and the molten silicon is supplied while the molten silicon is most efficiently supplied regardless of the shape, size, and thickness of the reaction bonded silicon carbide. Prevents agglomeration and enables a uniform supply of molten silicon.

구체적으로 본 발명은 규소분말과 결합제로서 열경화성 수지로 구성되는 소정 형태의 규소공급 시편을 준비하고, 탄화규소/탄소 충전체를 준비하고, 반응결합로 내에서 상기 충전체의 일면에 상기 규소공급 시편을 접촉시키고, 진공 또는 비활성 분위기하에서 규소의 용융온도로 열처리하여 규소공급시편 내의 용융규소를 충전체 내부로 침윤시키는 것을 포함하여 이루어지는 반응결합 탄화규소 제조방법을 제공한다.Specifically, the present invention is to prepare a silicon supply specimen of a certain type consisting of a thermosetting resin as a silicon powder and a binder, to prepare a silicon carbide / carbon filler, the silicon supply specimen on one side of the filler in a reaction furnace Contacting and heat treatment at the melting temperature of the silicon in a vacuum or inert atmosphere to infiltrate the molten silicon in the silicon feed specimen into the filler body provides a method for producing a reaction-bonded silicon carbide.

상기 규소공급 시편은 10 ~ 5000 ㎛의 규소분말 70 ~ 99 중량%와 결합제로서 열경화성수지 1 ~ 10중량%를 용매에 혼합하여 슬러리를 준비하고, 슬러리를 건조시켜 과립을 얻고, 과립을 소정 형태로 성형하여 제조한다.The silicon feed specimen was prepared by mixing 70-99 wt% of silicon powder of 10-5000 μm and 1-10 wt% of thermosetting resin as a binder in a solvent to prepare a slurry, drying the slurry to obtain granules, and preparing the granules in a predetermined form. It is manufactured by molding.

결합제로는 페놀수지와 같이 잔탄율(잔류탄소량)이 높은 열경화성 수지를 사용한다. 결합제는 시편의 열간 변형성을 부여하기 위하여 PVB(polyvinyl butyral) 같은 1 ~ 10중량%의 열가소성 수지를 더 포함할 수 있다. 결합제로서 열경화성 수지와 함께 열가소성 수지를 추가하여 규소공급시편에 열가소성을 부여하면 반응결합 충전체와 접촉되는 경계면인 침투면이 굴곡을 가질지라도 굴곡이 진 면 전체에 접촉할 수 있게 할 수 있다. 이와 더불어 열간 변형성을 더 크게 하기 위하여 1 ~ 10중량%의 가소제를 첨가하면 낮은 온도에서도 공급 시편이 침투면의 형상에 따라 쉽게 변형될 수 있게 할 수 있다.As the binder, a thermosetting resin having a high residual carbon (residual carbon content) such as a phenol resin is used. The binder may further comprise 1 to 10% by weight of a thermoplastic resin such as polyvinyl butyral (PVB) to impart hot deformation of the specimen. Adding a thermoplastic resin together with a thermosetting resin as a binder to impart thermoplasticity to the silicon feed specimen can make it possible to contact the entire curved surface even if the penetration surface, which is the interface contacting the reactive bonding filler, has a curved surface. In addition, by adding a plasticizer of 1 to 10% by weight in order to increase the hot deformation more, it is possible to easily deform the feed specimen according to the shape of the penetration surface even at low temperatures.

열경화성수지로는 페놀 수지(phenol resin) 이외에도 퍼퓨랄 알콜수지(furfuryl alcohol resin), 에폭시 수지(epoxy resin) 등이 사용될 수 있고, 열가소성수지로는 PVB(polyvinyl butyral) 이외에도 PVA(polyvinyl alcohol), PVAc(polyvinyl acetate), PMMA(polymethyl methacrylate) 등이 사용될 수 있으며, 가소제로는 DBP(di-butyl phthalate), BBP(benzyl-butyl phthalate), PEG(polyethylene glycol), DMP(di-methyl phthalate), DOP(di-octyl phthalate), glycerol 등이 사용될 수 있다.In addition to phenol resin, furfural alcohol resin and epoxy resin may be used as the thermosetting resin. In addition to polyvinyl butyral (PVB), polyvinyl alcohol (PVA) and PVAc may be used as the thermoplastic resin. (polyvinyl acetate), polymethyl methacrylate (PMMA), etc. may be used, and plasticizers include di-butyl phthalate (DBP), benzyl-butyl phthalate (BPB), polyethylene glycol (PEG), di-methyl phthalate (DMP), and DOP. (di-octyl phthalate), glycerol and the like can be used.

규소공급시편에서 결합제는 망목구조를 이루고 있으며, 반응결합 초기에 규소와 반응하여 탄화규소 망목구조를 형성하게 되고, 이 탄화규소 망목구조로 말미암아 용융 규소가 하나의 덩어리로 응집되는 것을 방지할 수 있다.In the silicon feed specimen, the binder forms a mesh structure, and reacts with silicon at the initial stage of the reaction bond to form a silicon carbide mesh structure, which prevents the agglomeration of molten silicon into a single mass. .

용융규소 공급을 위한 시편은 상온에서 120℃ 사이의 온도 범위에서 성형함으로써 공급시편의 강도를 조절할 수 있으며, 열간변형을 위한 처리는 60 ~ 120℃가 이상적이다. 규소공급시편에서 규소의 분율을 높여 성형하게 되면 규소분말의 네트워크에 의하여 가열중에 수축이 거의 일어나지 않기 때문에 탄화규소 충전체 시편에 접촉되는 규소공급시편의 초기 접촉 면적 전체가 용융 규소의 침투 면적으로 작용한다.Specimens for supplying molten silicon can be controlled in the temperature range between room temperature and 120 ℃ by controlling the strength of the supply specimen, the treatment for hot deformation is ideally 60 ~ 120 ℃. When the silicon fraction is formed by increasing the fraction of silicon in the silicon feed specimen, almost no shrinkage occurs during heating by the network of silicon powder, so the entire initial contact area of the silicon feed specimen that is in contact with the silicon carbide filler specimen acts as the penetration area of the molten silicon. do.

규소공급 시편은 필요에 따라 반응결합 탄화규소 충전체에 상용 접착제를 사용하여 완전히 결합시켜 사용할 수도 있다.Silicon feed specimens may be used as necessary, fully bonded to reactive bonded silicon carbide fillers using commercially available adhesives.

규소공급 시편과 반응결합 탄화규소 충전체 시편의 면접촉 상태에서 규소의 용융 온도 이상, 예를 들면 1410 ~ 1550℃의 범위로 가열하면 용융 규소가 반응결합 탄화규소 충전체로 침투하면서 반응결합 탄화규소 부품을 제조하게 된다.Reaction-bonded silicon carbide components as the molten silicon penetrates into the reaction-bonded silicon carbide filler when it is heated above the melting temperature of silicon, for example, in the range of 1410-1550 ° C, in the surface contact state of the silicon-supplied specimen and the reaction-bonded silicon carbide filler It will be prepared.

한편, 규소공급시편의 규소분말은 일반적으로 반응결합 충전체의 탄화규소 분말 보다 입자가 크다. 본 발명에서는 규소분말과 탄화규소분말의 입자크기 차이를 가능한 크게 함으로써 용융규소의 침투속도를 증가시키고, 이에 따라 반응시간을 크게 감소시킨다. 본 발명에서는 규소분말과 탄화규소분말의 크기 비율이 5:1 ~ 25:1이 적당하다.On the other hand, the silicon powder of the silicon feed specimen is generally larger in particle than the silicon carbide powder of the reaction bond filler. In the present invention, by increasing the particle size difference between the silicon powder and the silicon carbide powder as large as possible, the penetration rate of the molten silicon is increased, thereby greatly reducing the reaction time. In the present invention, the size ratio of silicon powder and silicon carbide powder is 5: 1 to 25: 1.

이하, 도면을 참조하여 본 발명의 제조방법 및 특징을 더욱 구체적으로 설명하면 다음과 같다.Hereinafter, the manufacturing method and features of the present invention with reference to the drawings in more detail.

규소분말과 잔탄량이 큰 페놀수지와 같은 열경화성 수지를 혼합하여 과립을 제조하고, 이를 사용하여 필요한 크기와 형상으로 성형하여 규소공급시편을 제조한다. 규소공급시편을 반응결합시키고자 하는 탄화규소/탄소 충전체의 원하는 위치에 도 1a와 같이 접촉시킨다. 도 1a에서 상부는 규소공급시편(10)을 나타내고, 하부는 탄화규소/탄소 충전체(20)을 나타낸다. 규소공급시편은 규소입자(11)와 열경화성 수지(12)로 구성되어 있으며, 충전체는 탄화규소입자(21)와 탄소입자(22)로 구성되어 있다.Granules are prepared by mixing a silicon powder and a thermosetting resin such as a phenolic resin having a large residual carbon amount, and by using the same, forming a granule into a required size and shape to produce a silicon feed specimen. The silicon feed specimen is brought into contact with the desired position of the silicon carbide / carbon filler to be reacted as shown in FIG. 1A. In FIG. 1A, the upper portion shows a silicon supply specimen 10, and the lower portion shows a silicon carbide / carbon filler 20. In FIG. The silicon feed specimen is composed of silicon particles 11 and thermosetting resins 12, and the filler is composed of silicon carbide particles 21 and carbon particles 22.

다음 단계로, 규소공급시편과 탄화규소/탄소 충전체의 적어도 한 면이 접촉된 상태로 반응소결로 내에서 진공이나 비활성 분위기에서 열처리한다. 열처리 과정중에 열경화성 수지는 약 400 ~ 500℃에서 열분해하여, 도 1b와 같이 규소공급시편 내에 잔류 탄소(23)를 남기게 된다. 열처리 온도를 더욱 증가시키면, 잔류 탄소는 소성이 되면서 국부적인 치밀화를 거쳐서 규소의 용융 온도에 이르면 용융된 일부의 규소입자들과 반응하여 탄화규소 망목구조(도 1c의 13 참조)를 형성하게 된다.In the next step, heat treatment is carried out in a vacuum or inert atmosphere in a reaction furnace with at least one side of the silicon feed specimen and the silicon carbide / carbon filler in contact. During the heat treatment, the thermosetting resin is pyrolyzed at about 400 to 500 ° C., leaving residual carbon 23 in the silicon feed specimen as shown in FIG. 1B. As the heat treatment temperature is further increased, the residual carbon is calcined, and then subjected to local densification to reach the melting temperature of silicon to react with some of the molten silicon particles to form a silicon carbide network structure (see 13 in FIG. 1C).

이 망목구조는 규소공급시편 내의 용융 규소를 전체적으로 연결하며, 용융 규소가 한 덩어리로 뭉치거나 한 쪽으로 치우치는 것을 방지하면서 충전체와 규소공급시편이 접촉된 전단면(15)에 고르게 용융 규소를 공급되도록 하는 역할을 한다. 이에 따라 규소공급시편 내의 용융 규소가 탄화규소 충전체 내부로 균일하게 침투된다. 규소공급시편은 도 1c에서 보는 바와 같이 최종적으로 탄화규소 망목구조(13) 만을 남기게 된다. 탄화구소 충전체 내부에서는 규소공급시편으로부터 침투된 용융 규소가 탄소 입자들과 반응하여 새로운 탄화규소입자(25)들을 형성하고, 침투된 용융 규소는 또한 이미 존재하는 탄화규소(21) 입자들 사이의 공극(24)을 채우게 된다.This mesh structure connects the molten silicon in the silicon supply specimen as a whole and prevents the molten silicon from agglomerating or skewing to one side, so that the molten silicon is evenly supplied to the shear surface 15 in contact with the filler and the silicon supply specimen. It plays a role. As a result, molten silicon in the silicon feed specimen is uniformly infiltrated into the silicon carbide filler. The silicon feed specimen finally leaves only the silicon carbide network 13 as shown in FIG. 1C. Inside the silicon carbide filler, the molten silicon penetrated from the silicon feed specimen reacts with the carbon particles to form new silicon carbide particles 25, and the infiltrated molten silicon is also interposed between the already existing silicon carbide 21 particles. Fill the voids 24.

한편, 상기 탄화규소 망목구조(13)는 강도가 매우 낮기 때문에 쉽게 반응결합 시편에서 분리할 수 있고, 간단한 가공에 의하여 도 1d와 같이 반응결합 탄화규소시편(20)을 얻을 수 있다.On the other hand, since the silicon carbide network 13 is very low in strength it can be easily separated from the reaction bonding specimens, it is possible to obtain a reaction-bonded silicon carbide specimen 20 as shown in Figure 1d by a simple process.

이와 같이 본 발명의 규소공급 시편을 사용하여 반응결합 탄화규소를 제조하게 되면, 규소공급 시편 내에서 결합제로부터 얻게 되는 탄소와 규소 분말의 반응이 발열반응이기 때문에 규소의 균일한 용융을 유도할 수 있고, 표면 장력에 의한 용융 규소의 응집을 방지함으로써 용융 규소가 탄화규소 충전체 내로 침투되는 면적을 최대한으로 유지할 수 있다.As described above, when the reaction-bonded silicon carbide is manufactured using the silicon supply specimen of the present invention, the reaction of carbon and silicon powder obtained from the binder in the silicon supply specimen is exothermic, which leads to uniform melting of silicon. By preventing aggregation of the molten silicon due to the surface tension, the area where the molten silicon penetrates into the silicon carbide filler can be maintained to the maximum.

또한, 용융 규소의 균일한 공간적인 분포가 유지되어 전 침투면에 걸친 균일한 침투속도를 유지할 수 있으며, 따라서 전체적인 침투시간, 즉 공정시간을 최소화할 수 있다. 뿐만 아니라, 독립된 용융 규소의 공급장치가 필요없기 때문에 공정 장비 및 공정치구(kiln furniture) 비용을 절약할 수 있다.In addition, a uniform spatial distribution of molten silicon can be maintained to maintain a uniform penetration rate over the entire penetration surface, thus minimizing the overall penetration time, that is, the process time. In addition, there is no need for an independent molten silicon feeder, which saves on process equipment and kiln furniture costs.

실시예Example

1 ~ 10 ㎛ 크기의 탄화규소와 10 ~ 30 ㎚ 크기의 카본 블랙을 원료분말로 사용하여 0 ~ 30 부피%의 카본블랙이 포함되도록 혼합하고, 페놀수지를 결합제로 첨가하여 탄화규소/탄소 충전체를 제조하였다.Silicon carbide / carbon filler by mixing 1 ~ 10 ㎛ size silicon carbide and 10 ~ 30 nm size carbon black as raw material powder to contain 0 ~ 30% by volume carbon black, and adding phenol resin as binder Was prepared.

용융 규소 공급 시편은 70 ~ 2000 ㎛의 규소분말과 페놀수지 결합제를 사용하여 제조하였다.Molten silicon feed specimens were prepared using a silicon powder of 70-2000 μm and a phenolic resin binder.

우선 페놀수지를 용해할 수 있는 알코올에 원료 분말의 무게 기준으로 1 ~ 15중량%의 페놀수지와 0 ~ 15%의 DBP(di-butyl phthalate)를 용해시켰다. 이 용액에 규소 분말을 첨가하여 슬러리를 준비하였다. 규소분말을 첨가한 후에는 강한 교반이나, 밀링 또는 초음파 처리를 통하여 균일하게 혼합시키고 응집체를 분리시키는 것이 바람직하다. 준비된 슬러리를 약 50 ~ 80℃로 가열된 증류수에 적하하면 급격한 용매치환이 일어나면서 적하된 슬러리는 그대로 고화 상태로 변하게 된다.계속적인 교반을 통하여 과립내의 잔류용매를 최소화한 다음 적하 과립을 용액으로부터 분리하여 건조하면 필요한 과립을 얻을 수 있다.First, 1 to 15% by weight of phenolic resin and 0 to 15% of DBP (di-butyl phthalate) were dissolved in an alcohol capable of dissolving phenolic resin. Silicon slurry was added to this solution to prepare a slurry. After the addition of the silicon powder, it is preferable to mix uniformly and to separate the agglomerates by vigorous stirring, milling or ultrasonication. When the prepared slurry is added to distilled water heated to about 50-80 ° C., drastic solvent replacement occurs, and the dropped slurry is solidified as it is. Separation and drying can give the required granules.

또, 다른 방법으로는 원하는 양의 규소 분말과 페놀수지를 건식으로 혼합한 다음, 볼 밀에서 1 ~ 8 시간동안 건식 밀링을 하게 되면 비교적 균일한 혼합 상태의 과립을 얻을 수 있다. 그러나, 가장 이상적인 혼합상태는 전자의 습식혼합법에 의한 과립에서 얻을 수 있다.In another method, dry mixing the desired amount of silicon powder and phenolic resin and then dry milling for 1 to 8 hours in a ball mill can obtain granules of a relatively uniform mixed state. However, the most ideal mixed state can be obtained from the granules by the former wet mixing method.

제조된 과립을 상온에서 120℃ 사이의 온도에서 5 ~ 400 MPa의 압력을 가하여 용융규소공급 시편을 제조하였다.The prepared granules were subjected to a pressure of 5 to 400 MPa at a temperature between 120 ° C. and a molten silicon feed specimen.

반응결합로 내에서, 0 ~ 30.3 부피%의 카본 블랙을 함유하고 있는 50 mm × 50 mm 크기의 반응결합 탄화규소 충전체 시편에 동일한 크기의 용융규소공급 시편을 면접촉시킨 후, 진공분위기하에서 1410 ~ 1460℃의 범위로 열처리하여 용융규소를 탄화규소 충전체에 침윤시켜 반응결합 탄화규소를 얻었다.In a reaction bond furnace, the same size molten silicon feed specimens were brought into surface contact with a 50 mm × 50 mm sized reactive silicon carbide filler specimen containing 0 to 30.3% by volume of carbon black, and then, in a vacuum atmosphere, 1410 Heat treatment was performed in the range of ˜1460 ° C. to infiltrate the molten silicon into the silicon carbide filler to obtain reaction bonded silicon carbide.

표 1은 본 실시예에 의한 반응결합 탄화규소의 성형밀도 및 소결밀도를 나타낸 것이다.Table 1 shows the molding density and sintered density of the reaction-bonded silicon carbide according to the present embodiment.

반응결합 탄화규소의 성형밀도 및 소결밀도Molding Density and Sintering Density of Reaction Bonded Silicon Carbide 분말조성(vol%)Powder composition (vol%) 성형밀도(%)Molding density (%) 소결밀도(%)Sintered Density (%) SiCSiC Carbon BlackCarbon black 100100 00 53.953.9 96.796.7 91.691.6 8.48.4 57.057.0 97.097.0 83.883.8 16.216.2 58.258.2 97.497.4 76.676.6 23.423.4 60.360.3 97.597.5 69.769.7 30.330.3 62.862.8 97.897.8

도 2a 및 2b는 카본 블랙의 함량이 30.3 부피%인 탄화규소/탄소 충전체 시편의 미세구조(도 2a)와 반응결합후의 탄화규소 소결체의 미세구조(도 2b)를 보여준다.2A and 2B show the microstructure of the silicon carbide / carbon filler specimen having a carbon black content of 30.3% by volume (FIG. 2A) and the microstructure of the silicon carbide sintered body after reaction bonding (FIG. 2B).

본 발명에 의하면 반응결합 탄화규소의 제조에 있어서 종래기술과는 달리 규소의 용융을 위한 가열장치, 용융 규소를 담을 수 있는 도가니, 도가니에서 시편까지의 공급장치 등 반응결합 탄화규소를 제조하기 위하여 필요한 대부분의 장비가 필요없고, 규소를 용융시키는 온도까지 가열할 수 있는 반응소결로만을 필요로 하므로 매우 경제적으로 반응결합 탄화규소를 제조할 수 있다.According to the present invention, unlike in the prior art, in the production of reaction-bonded silicon carbide, a heating device for melting silicon, a crucible capable of containing molten silicon, a feeder from a crucible to a specimen, and the like are necessary for producing reaction-bonded silicon carbide. Most of the equipment is not required, and only a reaction sintering furnace capable of heating up to the temperature at which the silicon is melted can be produced so that reaction-bonded silicon carbide can be produced very economically.

또한, 본 발명에 의하면 규소공급 시편 내에 존재하는 규소 분말과 결합제로부터 얻은 탄소와의 반응이 발열반응이기 때문에 규소의 균일한 용융을 유도할 수 있다. 뿐만 아니라, 규소공급시편내에 형성되는 탄화규소 망목구조에 의하여 표면 장력에 의한 용융 규소의 응집을 방지함으로써 용융규소의 침투 면적을 최대한으로 유지할 수 있으며, 용융 규소의 균일한 공간적인 분포를 유지하여 전 침투면에 걸친 균일한 침투속도를 유지하여, 전체적인 침투시간, 즉 공정시간을 최소화할 수 있다.In addition, according to the present invention, since the reaction between the silicon powder present in the silicon feed specimen and the carbon obtained from the binder is an exothermic reaction, it is possible to induce uniform melting of the silicon. In addition, the silicon carbide mesh structure formed in the silicon supply specimen prevents agglomeration of molten silicon due to surface tension, thereby maintaining the maximum penetration area of molten silicon and maintaining a uniform spatial distribution of molten silicon. By maintaining a uniform penetration rate over the penetration surface, it is possible to minimize the overall penetration time, that is, the process time.

Claims (10)

규소분말과 결합제로서 페놀 수지(phenol resin), 퍼퓨랄 알콜수지(furfuryl alcohol resin), 에폭시 수지(epoxy resin) 중에서 선택되는 열경화성 수지로 구성되는 소정 형태의 규소공급 시편을 준비하고,Prepare a silicon feed specimen of a certain type consisting of a thermosetting resin selected from silicon powder and a phenol resin, furfuryl alcohol resin, epoxy resin as a binder, 탄화규소/탄소 충전체를 준비하고,Prepare a silicon carbide / carbon filler, 반응결합로 내에서 상기 충전체의 일면에 상기 규소공급 시편을 접촉시키고,Contacting the silicon supply specimen to one surface of the filler in a reaction furnace, 진공 또는 비활성 분위기하에서 규소의 용융온도 이상으로 열처리하여 규소공급시편 내의 용융규소를 충전체 내부로 침윤시키는 것을 포함하여 이루어지는Heat treatment above the melting temperature of silicon in a vacuum or inert atmosphere to infiltrate the molten silicon in the silicon feed specimen into the charge body. 반응결합 탄화규소 제조방법.Reaction-bonded silicon carbide production method. 제1항에 있어서, 규소공급 시편은 규소분말 70 ~ 99 중량%와 결합제로서 열경화성수지 1 ~ 10중량%를 용매에 혼합하여 슬러리를 준비하고,The method of claim 1, wherein the silicon feed specimen is a slurry by mixing 70 to 99% by weight of silicon powder and 1 to 10% by weight of the thermosetting resin as a binder in a solvent, 슬러리를 건조시켜 과립을 얻고,Drying the slurry to obtain granules, 과립을 소정 형태로 성형하여 제조되는Produced by molding the granules into a predetermined form 반응결합 탄화규소 제조방법.Reaction-bonded silicon carbide production method. 제2항에 있어서, 규소분말의 크기는 10 ~ 5000 ㎛인 반응결합 탄화규소 제조방법.The method of claim 2, wherein the silicon powder has a size of 10 to 5000 μm. 제2항에 있어서, 성형온도는 상온 ~ 120℃의 범위인 반응결합 탄화규소 제조방법.The method of claim 2, wherein the molding temperature ranges from room temperature to 120 ° C. 제2항에 있어서, 결합제는 추가로 PVB(polyvinyl butyral), PVA(polyvinyl alcohol), PVAc(polyvinyl acetate), PMMA(polymethyl methacrylate) 중에서 선택되는 열가소성 수지 1 ~ 10중량%를 포함하는 반응결합 탄화규소 제조방법.The method of claim 2, wherein the binder further comprises 1-10% by weight of a thermoplastic resin selected from polyvinyl butyral (PVB), polyvinyl alcohol (PVA), polyvinyl acetate (PVAc), and polymethyl methacrylate (PMMA). Manufacturing method. 제2항에 있어서, 결합제는 추가로 DBP(di-butyl phthalate), BBP(benzyl-butyl phthalate), PEG(polyethylene glycol), DMP(di-methyl phthalate), DOP(di-octyl phthalate), glycerol 중에서 선택되는 가소제 1 ~ 10중량%를 포함하는 반응결합 탄화규소 제조방법.The method of claim 2, wherein the binder is further selected from di-butyl phthalate (DBP), benzyl-butyl phthalate (BBP), polyethylene glycol (PEG), di-methyl phthalate (DMP), di-octyl phthalate (DOP), and glycerol. Reaction-bonded silicon carbide production method comprising 1 to 10% by weight of the selected plasticizer. 제5항 또는 제6항 중 어느 한 항에 있어서, 성형온도는 60 ~ 120℃의 범위인 반응결합 탄화규소 제조방법.The method of claim 5, wherein the forming temperature is in the range of 60-120 ° C. 7. 제1항에 있어서, 열처리에 의하여 규소공급시편내부에는 규소입자와 결합제가 반응하여 탄화규소 망목구조가 형성되는 것을 특징으로 하는 반응결합 탄화규소 제조방법.The method of claim 1, wherein the silicon carbide mesh structure is formed by reacting the silicon particles with the binder inside the silicon supply specimen by heat treatment. 제1항에 있어서, 열처리 온도는 1410 ~ 1550℃의 범위인 반응결합 탄화규소제조방법.The method of claim 1, wherein the heat treatment temperature is in the range of 1410 ~ 1550 ℃. 제1항에 있어서, 규소분말과 탄화규소분말의 크기의 비율은 5:1 ~ 25:1의 범위인 반응결합 탄화규소 제조방법.The method of claim 1, wherein the ratio of the size of the silicon powder and the silicon carbide powder is in the range of 5: 1 to 25: 1.
KR10-2002-0023774A 2002-04-30 2002-04-30 Method of manufacturing reaction-bonded silicon carbide KR100471652B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-2002-0023774A KR100471652B1 (en) 2002-04-30 2002-04-30 Method of manufacturing reaction-bonded silicon carbide
JP2004501336A JP4192145B2 (en) 2002-04-30 2003-04-28 Process for producing reaction bonded silicon carbide
PCT/KR2003/000858 WO2003093194A1 (en) 2002-04-30 2003-04-28 Method of manufacturing reaction-bonded silicon carbide
DE10392574T DE10392574B4 (en) 2002-04-30 2003-04-28 Manufacturing of reaction-bonded silicon carbide by contacting silicon supplying body to preform, and heat processing contacted body at temperature higher than silicon melting temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0023774A KR100471652B1 (en) 2002-04-30 2002-04-30 Method of manufacturing reaction-bonded silicon carbide

Publications (2)

Publication Number Publication Date
KR20030085371A true KR20030085371A (en) 2003-11-05
KR100471652B1 KR100471652B1 (en) 2005-03-08

Family

ID=29398446

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0023774A KR100471652B1 (en) 2002-04-30 2002-04-30 Method of manufacturing reaction-bonded silicon carbide

Country Status (3)

Country Link
JP (1) JP4192145B2 (en)
KR (1) KR100471652B1 (en)
WO (1) WO2003093194A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154808B1 (en) * 2010-07-26 2012-06-18 엘지이노텍 주식회사 Silicon carbide and method for manufacturing the same
KR20160033614A (en) * 2014-09-18 2016-03-28 토토 가부시키가이샤 Process for producing reaction bonded silicon carbide member

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005002633A1 (en) * 2005-01-13 2006-07-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Process and apparatus for carbide-forming infiltration of a porous carbonaceous precursor
KR101009373B1 (en) 2009-06-04 2011-01-19 한국에너지기술연구원 Preparation method of silicon carbide thick film and silicon carbide thick film prepared using the method
DE102015223236A1 (en) * 2015-11-24 2017-05-24 Sgl Carbon Se Ceramic component
WO2023171502A1 (en) * 2022-03-10 2023-09-14 ローム株式会社 Sintered body, semiconductor substrate, and semiconductor device, and production methods therefor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4154787A (en) * 1977-07-25 1979-05-15 Coors Porcelain Company Method for manufacturing silicon carbide bodies
CA1092793A (en) * 1978-07-03 1981-01-06 Wendel G. Brown Method for manufacturing silicone carbide bodies
CA1158259A (en) * 1980-07-17 1983-12-06 Francis J. Frechette Composite material of silicon carbide and silicon and methods of producing
DE3361333D1 (en) * 1982-04-30 1986-01-09 Atomic Energy Authority Uk Production of reaction-bonded silicon carbide bodies
DE3367764D1 (en) * 1983-07-29 1987-01-08 Hoechst Ceram Tec Ag Method of making silicon-infiltrated reaction-bonded silicom carbide bodies
JPH02129071A (en) * 1988-11-07 1990-05-17 Tone Boring Co Production of silicon carbide ceramics
JPH0784344B2 (en) * 1991-11-20 1995-09-13 工業技術院長 Method for producing carbon fiber reinforced silicon carbide composite ceramics
JPH08175871A (en) * 1994-12-27 1996-07-09 Kyocera Corp Silicon carbide-based sintered body and its production
JP4283358B2 (en) * 1998-12-01 2009-06-24 東海高熱工業株式会社 Method for producing reaction sintered silicon carbide sintered body
KR100355349B1 (en) * 2000-02-11 2002-10-11 한국과학기술연구원 Manufacturing method of reaction-bonded silicon carbide
KR100355350B1 (en) * 2000-02-11 2002-10-11 한국과학기술연구원 Manufacturing method of near-net-shaped reaction-bonded silicon carbide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154808B1 (en) * 2010-07-26 2012-06-18 엘지이노텍 주식회사 Silicon carbide and method for manufacturing the same
KR20160033614A (en) * 2014-09-18 2016-03-28 토토 가부시키가이샤 Process for producing reaction bonded silicon carbide member
US9994487B2 (en) 2014-09-18 2018-06-12 Toto Ltd. Process for producing reaction bonded silicon carbide member

Also Published As

Publication number Publication date
KR100471652B1 (en) 2005-03-08
JP4192145B2 (en) 2008-12-03
JP2005523872A (en) 2005-08-11
WO2003093194A1 (en) 2003-11-13

Similar Documents

Publication Publication Date Title
JP4261130B2 (en) Silicon / silicon carbide composite material
CN110143817B (en) Special powder injection molding material for bismuth stearate coated lead lanthanum zirconate titanate and preparation method thereof
CN101734923A (en) Aluminum nitride porous ceramic and preparation method thereof
KR100471652B1 (en) Method of manufacturing reaction-bonded silicon carbide
CN115286408A (en) Method for preparing silicon carbide composite material part through laser 3D printing based on particle grading composite technology
KR100491022B1 (en) Microporous Ceramics materials and The producing method the same
JP5643328B2 (en) Method for producing porous article
KR101136106B1 (en) Fabrication Process for the Carbon Source Coated Silicon Carbide Composite Powder and Reaction Bonded Silicon Carbide Sintered Body
EP2703523B1 (en) Improved carbon electrode manufacturing
JPH089504B2 (en) Method for producing high-density silicon carbide sintered body
KR100434830B1 (en) Method for Manufacturing Homogeneous Green Bodies from the Powders of Multimodal Particle Size Distribution Using Centrifugal Casting
KR101273398B1 (en) Nonfiring Insulation Having Electric Insulation and Heat Resistance and Method for Manufacturing the Same
JP2001130963A (en) Method for producing isotropic high-density carbon material
KR100439738B1 (en) Preperation of powder granules by liquid condensation process and manufacture of powder compacts thereof
JP4612608B2 (en) Method for producing silicon / silicon carbide composite material
JPS5935011A (en) Molded article of porous carbon and its preparation
KR102611627B1 (en) Manufacturing method of reactant nested intermediate for joining silicon carbide, method of silicon carbide joint using therof, and silicon carbide conjugate manufactured by using same
JP5093639B2 (en) Method for producing carbon / ceramic composite material
KR102281102B1 (en) Fabrication method of sintered SiC and sintered SiC using thereof
JPS63967A (en) Manufacture of electrode base plate for fuel cell
KR100355350B1 (en) Manufacturing method of near-net-shaped reaction-bonded silicon carbide
KR20220156759A (en) Porous carbon-based material and method for manufacturing porous carbon-based material
JP3543529B2 (en) Method for producing silicon carbide ceramics
DE10392574B4 (en) Manufacturing of reaction-bonded silicon carbide by contacting silicon supplying body to preform, and heat processing contacted body at temperature higher than silicon melting temperature
CN117088690A (en) Preparation method of high-heat-conductivity diamond-silicon carbide composite ceramic and heat dissipation substrate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120131

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130204

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee