JP4283358B2 - Method for producing reaction sintered silicon carbide sintered body - Google Patents

Method for producing reaction sintered silicon carbide sintered body Download PDF

Info

Publication number
JP4283358B2
JP4283358B2 JP34149398A JP34149398A JP4283358B2 JP 4283358 B2 JP4283358 B2 JP 4283358B2 JP 34149398 A JP34149398 A JP 34149398A JP 34149398 A JP34149398 A JP 34149398A JP 4283358 B2 JP4283358 B2 JP 4283358B2
Authority
JP
Japan
Prior art keywords
silicon carbide
carbon black
slurry
sintered body
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34149398A
Other languages
Japanese (ja)
Other versions
JP2000169235A (en
Inventor
幸治 三浦
啓哲 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Tokai Konetsu Kogyo Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Tokai Konetsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd, Tokai Konetsu Kogyo Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP34149398A priority Critical patent/JP4283358B2/en
Publication of JP2000169235A publication Critical patent/JP2000169235A/en
Application granted granted Critical
Publication of JP4283358B2 publication Critical patent/JP4283358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋳込み成形法により作製した成形体を反応焼結させて、高密度、高強度などの優れた材質性状を備えた炭化珪素焼結体の製造方法に関する。
【0002】
【従来の技術】
炭化珪素焼結体は耐熱性、耐熱衝撃性、高温強度特性及び耐摩耗性などに優れており、高温下で使用される各種部材として有用されている。この炭化珪素焼結体を製造する方法の1つである反応焼結法は、炭化珪素粉末と炭素粉末とを均一に混合して成形し、成形体に溶融した金属珪素を含浸して熱処理し、炭素と反応させて生成した炭化珪素の二次粒子により原料炭化珪素の一次粒子が結合されて焼結し、高強度の炭化珪素焼結体を製造する方法である。
【0003】
成形法には押出し成形法や鋳込み成形法などがあるが、押出し成形法では原料となる炭化珪素粉末と炭素粉末とが均一に混合、分布する成形体を得ることが難しく、また大型で複雑形状の成形体を得ることが困難となる欠点がある。
【0004】
これに対し、鋳込み成形法は炭化珪素粉末と炭素粉末とを適宜な分散剤を用いて水中に分散させて均一なスラリーを調製し、このスラリーを石膏型などの吸水性の材料で作成した成形型に注入し、脱水、固化して所望の成形体を得るものであるから、大型で複雑形状の均質な成形体を得ることができる利点がある。
【0005】
したがって、鋳込み成形法では均一、安定なスラリーを調製することが重要となるが、炭化珪素粉末と炭素粉末との比重差ならびに炭素粉末が疎水性で水に濡れ難くいという難点があるために均一、安定なスラリーを調整することが困難であり、特に、高濃度でかつ低粘度のスラリーを調製することが困難となる難点がある。
【0006】
この鋳込み成形用のスラリーを調製する場合の難点を解消するために、解膠剤や分散剤を用いる方法が提案されており、例えば特開平5−319931号公報には、カーボン粉末と焼結助剤を含む炭化珪素質粉末の鋳込み成形用スラリーの調製に際し、焼結助剤及び炭化珪素粉末と、フミン酸又はフミン酸塩を表面に付着したフミン酸処理カーボン粉末とを、珪酸ソーダ又はアルカリ領域で機能する分散剤を用いてアルカリ水溶液に分散させることを特徴とする鋳込み成形用炭化珪素質粉末スラリーの調製方法が開示されている。この方法は、表面が疎水性であるカーボンブラックなどのカーボン粉末の表面にフミン酸を付着させ、このフミン酸処理カーボン粉末が親水性となることにより分散性が向上し、低粘度で高濃度のスラリーを得るものである。
【0007】
また、本出願人の1人は炭素粉末の分散性を向上させることを目的として、炭化珪素原料を鋳込み成形する方法において、炭素源としての黒鉛粉末と焼結助剤とを含む炭化珪素質粉末を、分散剤にアクリル系共重合体を用い水溶液中に分散させ、そのスリップの水素指数(pH)を7から11に調製することを特徴とする炭化珪素質焼結体の製造方法(特開平9−286667号公報)を提案した。
【0008】
【発明が解決しようとする課題】
しかしながら、上記特開平5−319931号公報の調製方法では、カーボン粉末表面へのフミン酸吸着が物理的吸着であるため均一に吸着させることが困難であり、また化学的安定性に欠ける難点がある。したがって、炭化珪素粉末、焼結助剤及びカーボン粉末が均一、安定に分散したスラリーを調製するには充分でないという問題点がある。また、特開平9−286667号公報の方法は、アクリル系共重合体の粘度が大きいのでスラリーの粘度も高くなる問題点があり、更に鋳込み成形した成形体の密度が低くなるために焼結体の密度も低下する問題点もある。
【0009】
本発明者らは、これらの方法とは異なる観点から分散性に優れたスラリーについて研究を進めた結果、疎水性で水中への分散性が低いカーボンブラックの表面を改質して親水性に変性することにより、分散性に優れ、高濃度で低粘度のスラリーを得ることができ、このスラリーを用いて鋳込み成形し、成形体を反応焼結させると高密度、高強度の炭化珪素焼結体が得られることを見出した。
【0010】
本発明は上記の知見に基づいて開発されたもので、その目的は鋳込み成形法により作製した成形体を反応焼結させて、高密度、高強度などの優れた材質性状を備えた反応焼結炭化珪素焼結体の製造方法を提供することにある。
【0011】
【課題を解決するための手段】
上記の目的を達成するための本発明による反応焼結炭化珪素焼結体の製造方法は、炭化珪素粉末と易水分散性カーボンブラックとを水中に分散させ、分散液のpHを6〜11に調整したスラリーを成形型に注入して鋳込み成形し、離型、乾燥した成形体を珪素を介在させた状態で真空中あるいは非酸化性ガス雰囲気中2000℃以上の温度で焼成することを構成上の特徴とする。また、易水分散性カーボンブラックは、酸化処理によりカーボンブラック粒子表面に形成されたヒドロキシル基とカルボキシル基の総和量が単位表面積当たり3μeq/m2以上の表面官能基を有するものである。
【0012】
【発明の実施の形態】
原料となる炭化珪素粉末はα型、β型いずれも使用することができ、粉末の粒子径はサブミクロン級の微細粒子から200μm 程度の比較的大きな粒子径のものも用いることができる。なお望ましくは、これらの炭化珪素粉末粒子は適宜粒度配合して原料炭化珪素粉末として使用に供される。
【0013】
炭化珪素粉末に添加配合する炭素粉末には易水分散性カーボンブラックが用いられる。カーボンブラックは疎水性で水との濡れ性が低いが、これはカーボンブラック粒子表面に親水性の官能基が少ないためである。本発明で用いる易水分散性カーボンブラックは、酸化処理により表面にヒドロキシル基やカルボキシル基などの親水性の官能基が形成されて改質されたものである。
【0014】
酸化処理の方法としては特に限定されるものではないが、湿式酸化による液相酸化が好ましい。酸化剤としては、例えば塩素酸アンモニウム、塩素酸ナトリウム、塩素酸カリウムや過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウムなどの塩素酸塩あるいは過硫酸塩が用いられる。酸化処理は、これらの酸化剤の適宜濃度の水溶液中にカーボンブラックを混合分散し、攪拌しながら処理温度や処理時間等を適宜制御することにより行われる。この場合、酸化処理によりカーボンブラック粒子表面に形成される官能基量として、ヒドロキシル基とカルボキシル基の総和量が3μeq/m2以上に酸化改質することが好ましい。ヒドロキシル基とカルボキシル基の総和量が3μeq/m2未満であると、形成された親水性の官能基量が少ないので水との濡れ性が充分に向上せず、水中への分散性が低くなるためである。
【0015】
なお、カーボンブラックは窒素吸着比表面積(N2SA)が10m2/g以上の粉末が用いられる。窒素吸着比表面積(N2SA)が10m2/g未満である大粒子径のカーボンブラックでは、水中に分散させた際カーボンブラックのアグロメレートが大きくなり分散液中において時間の経過とともに沈降する現象が生じるためである。
【0016】
官能基量は下記の方法により測定した値である。
▲1▼ヒドロキシル基:
2、2′-Diphenyl-1-picrylhydrazyl(DPPH)を四塩化炭素中に溶解して濃度5×10-4mol/l の溶液を作成し、該溶液にカーボンブラックを0.1〜0.6g 添加し、60℃の恒温槽中で6時間攪拌する。その後、反応液からカーボンブラックを濾別し、濾液を紫外線吸光光度計によりヒドロキシル基を測定する。このようにして測定した値をカーボンブラックの窒素吸着比表面積(N2SA ;m2/g)で除した値を、カーボンブラックの単位表面積当たりに形成されたヒドロキシル基量(μeq/m2)とする。
【0017】
▲2▼カルボキシル基:
O.976N炭酸水素ナトリウム50ml中にカーボンブラック2〜5g を添加して6時間振盪した後、カーボンブラックを反応液から濾別し、濾液について滴定試験を行ってカルボキシル基を測定する。この測定値をカーボンブラックの窒素吸着比表面積(N2SA ;m2/g)で除した値を、カーボンブラックの単位表面積当たりに形成されたカルボキシル基量(μeq/m2)とする。
【0018】
これらの炭化珪素粉末と易水分散性カーボンブラックは所定の配合比で水中に混合、分散することにより鋳込み成形用のスラリーが調製される。この場合、スラリーのpHは6〜11の範囲に調整される。pHが6未満の酸性領域においてはスラリー中の炭化珪素粉末及び易水分散性カーボンブラックの分散状態が不均一化して均質組織の成形体が得難く、焼結した炭化珪素焼結体の組織構造も不均質なものとなる。一方、pHが11を越えるアルカリ性領域では成形体を作製する際に成形型である石膏型に損傷を生じ易いためである。好ましくはスラリーのpHは7〜10に調整される。
【0019】
なお、スラリーのpH調整剤としては、酸、アルカリ金属水酸化物、例えば塩酸、硝酸、硫酸、水酸化ナトリウム、水酸化カリウム、アンモニア等のほか、脂肪族の一級、二級、三級アミンなどの有機系調整剤が用いられる。
【0020】
スラリーを調製する際、バインダを添加することもできる。バインダとしては鋳込み成形で常用される、例えばポリアクリルアミド、ポリアクリルニトリル、エチルセルロースなどが用いられ、成形体として充分な強度を有する程度に適宜な割合で添加する。
【0021】
このようにして調製されたスラリーは所望形状の吸水性の成形型、例えば石膏型に注入して鋳込み成形し、石膏型の吸水により保形後、離型、乾燥することにより成形体が得られる。成形体は加熱炉に入れ、例えば金属シリコンなどの珪素と接触させた状態で加熱して金属シリコンを溶融させ、成形体の気孔中に珪素を浸透させる。次いで、真空中あるいは不活性ガスなどの非酸化性ガス雰囲気中で2000℃以上の温度で焼成することにより成形体の気孔中に浸透した珪素と成形体中のカーボンブラックとが反応して生成した炭化珪素の二次粒子により原料炭化珪素の一次粒子が結合されて焼結し、高密度、高強度の反応炭化珪素焼結体が製造される。
【0022】
【実施例】
以下、本発明の実施例を比較例と対比して具体的に説明する。
【0023】
実施例1
カーボンブラック粉末150g を2.0Nの塩素酸ナトリウム水溶液3000mlに混合し、攪拌しながら100℃の処理温度で10時間酸化処理した。次いで、水酸化ナトリウム水溶液を添加して中和したのち、酸化処理されたカーボンブラックを濾過分離し、蒸留水で充分に洗浄後、乾燥して易水分散性カーボンブラックを得た。得られた易水分散性カーボンブラックのヒドロキシル基とカルボキシル基を測定した。
【0024】
平均粒径2μm のα型炭化珪素粉末〔大平洋ランダム(株)製、GMF-6S〕40重量部、平均粒径180μm のα型炭化珪素粉末〔昭和電工(株)製、GC-#180 〕40重量部に、上記の易水分散性カーボンブラック20重量部及びバインダ〔三井東圧(株)製、WA-310〕1重量部を蒸留水25重量部に加え、pH調整剤として水酸化ナトリウムを添加してポットミルで24時間混合してスラリーを調製した。スラリーのpH及び粘度を測定したのち石膏型に流し込み、放置して脱水後、離型、乾燥して80×80×5mmの成形体を作製した。成形体の密度を測定したのち窒素ガス雰囲気中で2000℃の温度で金属シリコンと反応させて焼成し、反応焼結炭化珪素焼結体を製造した。得られた焼結体の密度及び3点曲げ強度を測定した。得られた結果を表1に示した。
【0025】
実施例2〜3、比較例1〜2
塩素酸ナトリウム水溶液の濃度を変えたほかは、実施例1と同じ方法、条件でカーボンブラックを酸化処理したのちヒドロキシル基とカルボキシル基を測定した。次いで、スラリーのpH調整剤としての水酸化ナトリウム添加量を変えて、pHの異なるスラリーを調製し、このスラリーを用いて実施例1と同一の方法、条件により成形体及び反応焼結炭化珪素焼結体を製造した。なお、実施例1と同様にスラリーのpH、粘度、成形体及び炭化珪素焼結体の密度、3点曲げ強度を測定し、その結果を表1に併載した。
【0026】
比較例3
実施例1の易水分散性カーボンブラックに代えて、酸化処理を施さない未処理のカーボンブラックを用いたほかは、実施例1と同一の方法、条件によりスラリーの調製、成形体の作製、炭化珪素焼結体の製造を行い、また実施例1と同様にスラリーのpH、粘度、成形体及び炭化珪素焼結体の密度及び3点曲げ強度を測定した。その結果を表1に併載した。
【0027】
【表1】

Figure 0004283358
【0028】
表1においてスラリーの成分、組成は全て同一であるが、酸化処理して易水分散性カーボンブラックを用い、スラリーのpHを6〜11の範囲に調整した実施例1〜3のスラリーでは、pHが6を下回る比較例1のスラリーに比べて粘度が低く均一に分散していることが判る。また、比較例2においてはスラリーの粘度や成形体の密度、及び焼結体の密度、曲げ強度など実施例と同等の結果を示したが、石膏型の耐用寿命が著しく短く、製造工程上問題であった。また酸化処理を施さないカーボンブラックを用いた比較例3ではスラリー粘度の増大化が認められた。また、これらのスラリーを使用して鋳込み成形した結果は、実施例では高い密度の成形体が得られ、この成形体を焼成することにより高密度、高強度の炭化珪素焼結体を製造することができる。これに対して、比較例1、3のスラリーを用いて得られた成形体及び炭化珪素焼結体はいずれも密度が低く、強度特性なども劣ることが判る。
【0029】
【発明の効果】
以上のとおり、本発明の反応焼結炭化珪素焼結体の製造方法によれば、炭素粉末として易水分散性カーボンブラックを用い、分散液のpHを特定の範囲に設定することにより炭化珪素粉末の分散性を損なうことなく、均一、微細な状態で、高濃度に安定分散したスラリーの調製が可能となる。したがって、このスラリーを用いて鋳込み成形することにより均質組織を有し、大型で複雑形状の成形体を得ることができ、その結果、高密度、高強度の反応焼結炭化珪素焼結体を製造することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a silicon carbide sintered body provided with excellent material properties such as high density and high strength by reactive sintering of a molded body produced by a casting molding method.
[0002]
[Prior art]
Silicon carbide sintered bodies are excellent in heat resistance, thermal shock resistance, high-temperature strength characteristics, wear resistance, and the like, and are useful as various members used at high temperatures. The reactive sintering method, which is one of the methods for producing this silicon carbide sintered body, is a method in which silicon carbide powder and carbon powder are uniformly mixed and molded, and the molded body is impregnated with molten metal silicon and heat-treated. In this method, primary particles of raw material silicon carbide are bonded and sintered by secondary particles of silicon carbide produced by reacting with carbon to produce a high-strength silicon carbide sintered body.
[0003]
Molding methods include extrusion molding and casting molding, but it is difficult to obtain a compact in which silicon carbide powder and carbon powder as raw materials are uniformly mixed and distributed, and large and complex shapes. There is a drawback that it is difficult to obtain a molded article.
[0004]
On the other hand, the casting molding method prepares a uniform slurry by dispersing silicon carbide powder and carbon powder in water using an appropriate dispersant, and molding this slurry with a water-absorbing material such as a plaster mold. Since a desired molded body is obtained by pouring into a mold, dehydrating and solidifying, there is an advantage that a homogeneous molded body having a large and complex shape can be obtained.
[0005]
Therefore, it is important to prepare a uniform and stable slurry in the casting method. However, there is a problem that the specific gravity difference between the silicon carbide powder and the carbon powder and the disadvantage that the carbon powder is hydrophobic and difficult to wet with water. It is difficult to prepare a stable slurry, and in particular, it is difficult to prepare a slurry having a high concentration and a low viscosity.
[0006]
In order to eliminate the difficulty in preparing this casting slurry, a method using a deflocculant or a dispersant has been proposed. For example, Japanese Patent Application Laid-Open No. 5-319931 discloses carbon powder and a sintering aid. When preparing a slurry for casting molding of silicon carbide powder containing an agent, a sintering aid and silicon carbide powder, and humic acid or humic acid-treated carbon powder with humic acid or humic acid attached to the surface thereof, sodium silicate or alkali region Disclosed is a method for preparing a silicon carbide powder slurry for casting, which is characterized in that it is dispersed in an alkaline aqueous solution using a dispersant that functions in (1). In this method, humic acid is attached to the surface of a carbon powder such as carbon black having a hydrophobic surface, and this humic acid-treated carbon powder becomes hydrophilic, so that dispersibility is improved, and low viscosity and high concentration are obtained. A slurry is obtained.
[0007]
Further, one of the applicants of the present application is a silicon carbide powder containing graphite powder as a carbon source and a sintering aid in a method of casting a silicon carbide raw material for the purpose of improving the dispersibility of the carbon powder. Is dispersed in an aqueous solution using an acrylic copolymer as a dispersant, and the hydrogen index (pH) of the slip is adjusted from 7 to 11. 9-286667).
[0008]
[Problems to be solved by the invention]
However, in the preparation method of the above-mentioned JP-A-5-319931, humic acid adsorption to the surface of the carbon powder is physical adsorption, so that it is difficult to uniformly adsorb and there is a difficulty in lacking chemical stability. . Therefore, there is a problem that it is not sufficient to prepare a slurry in which silicon carbide powder, sintering aid and carbon powder are uniformly and stably dispersed. Further, the method of JP-A-9-286667 has a problem that the viscosity of the slurry is increased because the viscosity of the acrylic copolymer is large, and further, the density of the molded body formed by casting is lowered, so that the sintered body is reduced. There is also a problem in that the density of the resin also decreases.
[0009]
As a result of research on slurries excellent in dispersibility from a viewpoint different from these methods, the present inventors modified the surface of carbon black, which is hydrophobic and has low dispersibility in water, to make it hydrophilic. As a result, it is possible to obtain a slurry having excellent dispersibility, high concentration and low viscosity, and casting and molding the slurry, and then reacting and sintering the formed body, a high-density, high-strength silicon carbide sintered body It was found that can be obtained.
[0010]
The present invention was developed on the basis of the above knowledge, and its purpose is to react and sinter a molded body produced by a casting method, and to provide a reaction sintering having excellent material properties such as high density and high strength. It is providing the manufacturing method of a silicon carbide sintered compact.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a reaction sintered silicon carbide sintered body according to the present invention comprises dispersing silicon carbide powder and easily water dispersible carbon black in water, and adjusting the pH of the dispersion to 6-11. The prepared slurry is poured into a mold, cast and molded, and the molded body which has been released and dried is fired at a temperature of 2000 ° C. or higher in a vacuum or in a non-oxidizing gas atmosphere with silicon interposed. It is characterized by. The readily water dispersible carbon black has surface functional groups in which the total amount of hydroxyl groups and carboxyl groups formed on the surface of the carbon black particles by oxidation treatment is 3 μeq / m 2 or more per unit surface area.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
As the raw material silicon carbide powder, both α-type and β-type can be used, and those having a particle size of a submicron-class fine particle to a relatively large particle size of about 200 μm can be used. Desirably, these silicon carbide powder particles are appropriately mixed and used for raw silicon carbide powder.
[0013]
Easily water dispersible carbon black is used for the carbon powder added to the silicon carbide powder. Carbon black is hydrophobic and has low wettability with water, because there are few hydrophilic functional groups on the surface of the carbon black particles. The readily water dispersible carbon black used in the present invention is modified by forming a hydrophilic functional group such as a hydroxyl group or a carboxyl group on the surface by oxidation treatment.
[0014]
The method for the oxidation treatment is not particularly limited, but liquid phase oxidation by wet oxidation is preferable. Examples of the oxidizing agent include chlorates or persulfates such as ammonium chlorate, sodium chlorate, potassium chlorate, ammonium persulfate, sodium persulfate, and potassium persulfate. The oxidation treatment is performed by mixing and dispersing carbon black in an aqueous solution having an appropriate concentration of these oxidizing agents, and appropriately controlling the treatment temperature, treatment time and the like while stirring. In this case, the amount of functional groups formed on the surface of the carbon black particles by the oxidation treatment is preferably oxidized and modified so that the total amount of hydroxyl groups and carboxyl groups is 3 μeq / m 2 or more. When the total amount of hydroxyl groups and carboxyl groups is less than 3 μeq / m 2 , the amount of hydrophilic functional groups formed is small, so that the wettability with water is not sufficiently improved and the dispersibility in water becomes low. Because.
[0015]
Carbon black is a powder having a nitrogen adsorption specific surface area (N 2 SA) of 10 m 2 / g or more. In the case of carbon black with a large particle diameter having a nitrogen adsorption specific surface area (N 2 SA) of less than 10 m 2 / g, the carbon black agglomerate becomes large when dispersed in water, and the phenomenon of sedimentation with time in the dispersion occurs. This is because it occurs.
[0016]
The functional group amount is a value measured by the following method.
(1) Hydroxyl group:
2,2′-Diphenyl-1-picrylhydrazyl (DPPH) was dissolved in carbon tetrachloride to prepare a solution having a concentration of 5 × 10 −4 mol / l, and 0.1 to 0.6 g of carbon black was added to the solution. Add and stir in a constant temperature bath at 60 ° C. for 6 hours. Thereafter, carbon black is filtered off from the reaction solution, and the hydroxyl group of the filtrate is measured with an ultraviolet absorptiometer. The value obtained by dividing the value measured in this way by the nitrogen adsorption specific surface area (N 2 SA; m 2 / g) of carbon black is the amount of hydroxyl groups formed per unit surface area of carbon black (μeq / m 2 ). And
[0017]
(2) Carboxyl group:
O. After adding 2 to 5 g of carbon black in 50 ml of 976 N sodium hydrogen carbonate and shaking for 6 hours, the carbon black is filtered off from the reaction solution, and a titration test is performed on the filtrate to measure carboxyl groups. A value obtained by dividing the measured value by the nitrogen adsorption specific surface area (N 2 SA; m 2 / g) of carbon black is defined as the amount of carboxyl groups (μeq / m 2 ) formed per unit surface area of carbon black.
[0018]
These silicon carbide powder and easily water dispersible carbon black are mixed and dispersed in water at a predetermined blending ratio to prepare a slurry for casting. In this case, the pH of the slurry is adjusted to a range of 6-11. In the acidic region where the pH is less than 6, the dispersion state of the silicon carbide powder and the readily water-dispersible carbon black in the slurry becomes non-uniform so that it is difficult to obtain a compact having a homogeneous structure. Is also heterogeneous. On the other hand, in an alkaline region where the pH exceeds 11, the gypsum mold, which is a mold, is likely to be damaged when a molded body is produced. Preferably, the pH of the slurry is adjusted to 7-10.
[0019]
Examples of the pH adjuster for the slurry include acids, alkali metal hydroxides such as hydrochloric acid, nitric acid, sulfuric acid, sodium hydroxide, potassium hydroxide, ammonia, and aliphatic primary, secondary, and tertiary amines. These organic regulators are used.
[0020]
When preparing the slurry, a binder can also be added. As the binder, for example, polyacrylamide, polyacrylonitrile, ethyl cellulose and the like commonly used in casting are used, and added at an appropriate ratio so as to have a sufficient strength as a molded body.
[0021]
The slurry thus prepared is poured into a water-absorbing mold having a desired shape, for example, a gypsum mold, cast and molded, and after being shaped by water absorption by the gypsum mold, the molded product is obtained by releasing and drying. . The formed body is put into a heating furnace, heated in a state where it is in contact with silicon such as metal silicon, for example, to melt the metal silicon, and to infiltrate silicon into the pores of the formed body. Subsequently, the silicon which penetrated into the pores of the molded body and the carbon black in the molded body reacted and formed by firing at a temperature of 2000 ° C. or higher in a non-oxidizing gas atmosphere such as an inert gas. The primary particles of raw material silicon carbide are bonded and sintered by the secondary particles of silicon carbide to produce a high-density, high-strength reactive silicon carbide sintered body.
[0022]
【Example】
Examples of the present invention will be specifically described below in comparison with comparative examples.
[0023]
Example 1
150 g of carbon black powder was mixed with 3000 ml of a 2.0N sodium chlorate aqueous solution and oxidized at a treatment temperature of 100 ° C. for 10 hours while stirring. Next, after neutralizing by adding an aqueous sodium hydroxide solution, the oxidized carbon black was separated by filtration, washed thoroughly with distilled water, and dried to obtain an easily water dispersible carbon black. The hydroxyl group and carboxyl group of the obtained easily water dispersible carbon black were measured.
[0024]
Α-type silicon carbide powder with an average particle size of 2 μm (manufactured by Taiyo Random Co., Ltd., GMF-6S), α-type silicon carbide powder with an average particle size of 180 μm (Showa Denko Co., Ltd., GC- # 180) To 40 parts by weight, 20 parts by weight of the above easily dispersible carbon black and 1 part by weight of a binder (manufactured by Mitsui Toatsu Co., Ltd., WA-310) are added to 25 parts by weight of distilled water, and sodium hydroxide as a pH adjuster. Was added and mixed in a pot mill for 24 hours to prepare a slurry. After measuring the pH and viscosity of the slurry, it was poured into a gypsum mold, allowed to stand for dehydration, then released from the mold and dried to prepare a molded body of 80 × 80 × 5 mm. After measuring the density of the compact, it was reacted with metal silicon at a temperature of 2000 ° C. in a nitrogen gas atmosphere and fired to produce a reaction sintered silicon carbide sintered body. The density and three-point bending strength of the obtained sintered body were measured. The obtained results are shown in Table 1.
[0025]
Examples 2-3 and Comparative Examples 1-2
Except for changing the concentration of the aqueous sodium chlorate solution, the hydroxyl group and the carboxyl group were measured after oxidizing the carbon black by the same method and conditions as in Example 1. Next, the amount of sodium hydroxide added as the pH adjuster of the slurry was changed to prepare slurries with different pHs, and using this slurry, the compact and the reaction sintered silicon carbide baked product were subjected to the same method and conditions as in Example 1. A ligation was produced. Note that the pH, viscosity, density of the molded body and silicon carbide sintered body, and 3-point bending strength were measured in the same manner as in Example 1, and the results are also shown in Table 1.
[0026]
Comparative Example 3
In place of the easily dispersible carbon black of Example 1, untreated carbon black that was not subjected to oxidation treatment was used, except that slurry preparation, molding production, and carbonization were performed according to the same methods and conditions as in Example 1. A silicon sintered body was produced, and the pH, viscosity, density of the molded body and silicon carbide sintered body, and three-point bending strength were measured in the same manner as in Example 1. The results are shown in Table 1.
[0027]
[Table 1]
Figure 0004283358
[0028]
In Table 1, the components and compositions of the slurry are all the same, but in the slurries of Examples 1 to 3 in which the pH of the slurry was adjusted to the range of 6 to 11 by oxidation treatment using easily water dispersible carbon black, It can be seen that the viscosity is lower than that of the slurry of Comparative Example 1, which is less than 6, and is uniformly dispersed. In Comparative Example 2, the same results as in the examples such as the viscosity of the slurry, the density of the molded body, the density of the sintered body, and the bending strength were shown, but the service life of the gypsum mold was remarkably short, and there was a problem in the manufacturing process Met. Further, in Comparative Example 3 using carbon black not subjected to oxidation treatment, an increase in slurry viscosity was observed. In addition, as a result of cast molding using these slurries, a high-density molded body is obtained in the examples, and a high-density, high-strength silicon carbide sintered body is manufactured by firing this molded body. Can do. On the other hand, it can be seen that the molded body and the silicon carbide sintered body obtained using the slurries of Comparative Examples 1 and 3 have low density and inferior strength characteristics.
[0029]
【The invention's effect】
As described above, according to the method for producing a reaction-sintered silicon carbide sintered body of the present invention, silicon carbide powder is obtained by using easily dispersible carbon black as the carbon powder and setting the pH of the dispersion to a specific range. It is possible to prepare a slurry that is stably dispersed at a high concentration in a uniform and fine state without impairing the dispersibility. Therefore, by casting using this slurry, it is possible to obtain a large and complex shaped body having a homogeneous structure, and as a result, producing a high-density, high-strength reactive sintered silicon carbide sintered body. It becomes possible to do.

Claims (2)

炭化珪素粉末と易水分散性カーボンブラックとを水中に分散させ、分散液のpHを6〜11に調整したスラリーを成形型に注入して鋳込み成形し、離型、乾燥した成形体を珪素を介在させた状態で真空中あるいは非酸化性ガス雰囲気中2000℃以上の温度で焼成することを特徴とする反応焼結炭化珪素焼結体の製造方法。Disperse silicon carbide powder and easily dispersible carbon black in water, inject slurry into which the pH of the dispersion is adjusted to 6 to 11 and cast it into a mold, and mold the mold after releasing and drying silicon. A method for producing a reaction-sintered silicon carbide sintered body characterized by firing in a vacuum or in a non-oxidizing gas atmosphere at a temperature of 2000 ° C. or higher in an interposed state. 易水分散性カーボンブラックは、酸化処理によりカーボンブラック粒子表面に形成されたヒドロキシル基とカルボキシル基の総和量が単位表面積当たり3μeq/m2以上の表面官能基を有するものである、請求項1記載の反応焼結炭化珪素焼結体の製造方法。The easily water-dispersible carbon black has surface functional groups in which the total amount of hydroxyl groups and carboxyl groups formed on the surface of the carbon black particles by oxidation treatment is 3 µeq / m 2 or more per unit surface area. The reaction sintered silicon carbide sintered body manufacturing method.
JP34149398A 1998-12-01 1998-12-01 Method for producing reaction sintered silicon carbide sintered body Expired - Fee Related JP4283358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34149398A JP4283358B2 (en) 1998-12-01 1998-12-01 Method for producing reaction sintered silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34149398A JP4283358B2 (en) 1998-12-01 1998-12-01 Method for producing reaction sintered silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JP2000169235A JP2000169235A (en) 2000-06-20
JP4283358B2 true JP4283358B2 (en) 2009-06-24

Family

ID=18346492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34149398A Expired - Fee Related JP4283358B2 (en) 1998-12-01 1998-12-01 Method for producing reaction sintered silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JP4283358B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100471652B1 (en) * 2002-04-30 2005-03-08 한국과학기술연구원 Method of manufacturing reaction-bonded silicon carbide
JP5260133B2 (en) * 2008-05-09 2013-08-14 東京窯業株式会社 Manufacturing method of SiC ceramics
KR20100086527A (en) * 2009-01-23 2010-08-02 한국과학기술연구원 Ceramic body coated with diamond layer and preparation method thereof using two-phase composite
FR2950804B1 (en) * 2009-10-01 2011-12-23 Oreal COMPOSITION, USE AND METHOD OF CONSERVATION
CN117645466B (en) * 2024-01-30 2024-03-29 河北国亮新材料股份有限公司 Magnesium carbonaceous castable and preparation method thereof

Also Published As

Publication number Publication date
JP2000169235A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
JP2012502191A5 (en)
Parsi et al. The effect of gelcasting parameters on microstructural optimization of porous Si3N4 ceramics
US6632761B1 (en) Silicon carbide powder, method of producing a green body, and method of producing a sintered silicon carbide
CN107963890B (en) Preparation method of titanium nitride porous conductive ceramic
JP4283358B2 (en) Method for producing reaction sintered silicon carbide sintered body
JP2008150263A (en) Method of manufacturing silicon carbide powder
JPH0362643B2 (en)
JP3094148B2 (en) Manufacturing method of lightweight refractory
JPH11130558A (en) Porous silicon carbide sintered product and its production
JP2000016872A (en) Porous silicon carbide sintered body and its production
JP4364951B2 (en) Silicon carbide powder slurry for casting and method for preparing the same
JPH089504B2 (en) Method for producing high-density silicon carbide sintered body
JPH0569765B2 (en)
JPH11335172A (en) Production of porous silicon carbide sintered compact
JP2001247367A (en) Silicon carbide sintered compact and method for producing the same
JPS605550B2 (en) Manufacturing method of silicon carbide sintered body
JPH03261611A (en) Production of silicon nitride composite powder
JP2851100B2 (en) Method for producing low-density silicon carbide porous body
KR20000040417A (en) Method for producing silica sleeve for hearth roll
JPH02271919A (en) Production of fine powder of titanium carbide
JP3094147B2 (en) Firing jig
JP3094149B2 (en) Manufacturing method of lightweight refractory
JP2017178660A (en) Method for producing carbon particle
JP2000185979A (en) Production of porous molded article of silicon carbide
JP2001163670A (en) Silicon carbide sintered compact and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350