JPH11130558A - Porous silicon carbide sintered product and its production - Google Patents

Porous silicon carbide sintered product and its production

Info

Publication number
JPH11130558A
JPH11130558A JP9312752A JP31275297A JPH11130558A JP H11130558 A JPH11130558 A JP H11130558A JP 9312752 A JP9312752 A JP 9312752A JP 31275297 A JP31275297 A JP 31275297A JP H11130558 A JPH11130558 A JP H11130558A
Authority
JP
Japan
Prior art keywords
silicon carbide
powder
silicon
carbon
oxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9312752A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kato
裕之 加藤
Tomio Hata
都美雄 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Tokai Konetsu Kogyo Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Tokai Konetsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd, Tokai Konetsu Kogyo Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP9312752A priority Critical patent/JPH11130558A/en
Publication of JPH11130558A publication Critical patent/JPH11130558A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5093Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with elements other than metals or carbon
    • C04B41/5096Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous silicon carbide sintered product having high porosity and excellent strength characteristics, and to provide a method for producing the same. SOLUTION: This porous silicon carbide sintered product having a porosity of 40-80% comprises a composite tissue structure in which silicon carbide granules and a fibrous silicon carbide obtained by silicifying carbon fibers are homogeneously dispersed. This method for producing the porous silicon carbide sintered product comprises mixing the mixture of silicon carbide powder, carbon powder subjected to an oxidation treatment, and silicon powder with 0.5-10 wt.% of carbon fibers whose surfaces are subjected to an oxidation treatment, molding the mixture, subjecting the molded product to a heating treatment at a temperature of 1,800-2,100 deg.C in a non-oxidizing atmosphere and subsequently removing the unreacted silicon, or mixing the mixture of silicon carbide powder and carbon powder subjected to an oxidizing treatment with 0.5-10 wt.% of carbon fibers subjected to an oxidizing treatment, molding the mixture, impregnating the molded product with melted silicon, thermally treating the impregnated product at a temperature of 1800-2100 deg.C in a non-oxidizing atmosphere, and subsequently removing the unreacted silicon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高気孔率を有する
とともに強度特性に優れた多孔質炭化珪素焼結体とその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous silicon carbide sintered body having a high porosity and excellent strength characteristics, and a method for producing the same.

【0002】[0002]

【従来の技術】炭化珪素焼結体は耐熱性や耐食性に優れ
ていることから、従来から高温用の各種構造部材として
広く利用されている。また、焼結体の組織構造を多孔質
とした多孔質炭化珪素焼結体は溶融金属用フィルター、
通気性断熱材、触媒担体、排気ガス用フィルター等の多
様な用途分野で有用されている。
2. Description of the Related Art Silicon carbide sintered bodies have been widely used as various structural members for high temperatures because of their excellent heat resistance and corrosion resistance. Further, a porous silicon carbide sintered body having a porous structure of the sintered body is a filter for molten metal,
It is useful in various application fields such as air-permeable heat insulating materials, catalyst carriers, and exhaust gas filters.

【0003】炭化珪素多孔質体を製造する方法として
は、ポリウレタンフォームのような三次元網目構造の有
機質多孔体にSiCのスラリーを含浸させて乾燥したの
ち、熱処理して有機質体を焼却除去する方法が知られて
いる(例えば、特開昭58−122016号公報)。この方法に
より製造される多孔質炭化珪素焼結体は、有機質体を焼
却除去して形成された炭化珪素の骨格体を焼結するもの
であるから気孔率が80%以上の高度の気孔性状を付与
することができる。しかしながら、材質強度が極めて低
いという欠点がある。
As a method for producing a silicon carbide porous body, a method of impregnating an organic porous body having a three-dimensional network structure such as a polyurethane foam with a slurry of SiC, drying the resultant, and then performing a heat treatment to incinerate and remove the organic body. Are known (for example, JP-A-58-122016). Since the porous silicon carbide sintered body manufactured by this method sinters a skeleton of silicon carbide formed by incineration and removal of an organic substance, it has a high porosity of 80% or more. Can be granted. However, there is a disadvantage that the material strength is extremely low.

【0004】また、多孔質炭化珪素焼結体の製造方法と
しては炭化珪素の粉末に有機質の樹脂バインダーを加え
て混合し、この混合物を所定形状に成形したのち焼成し
て炭化珪素の粉末粒子を粒成長させる方法も知られてお
り、例えば特開平3−215374号公報には平均粒径
が100〜150μm で、平均粒径の±20%以内に9
0重量%以上が存在するような粒度分布を有する炭化珪
素顆粒に成形用バインダーと可塑剤を添加して混合した
後、該顆粒の表層部分が潰れて相互に連結し、かつその
内部が未潰れの状態で成形体中に残存するような成形圧
力で成形し、次いで焼結する方法が提案されている。
Further, as a method of manufacturing a porous silicon carbide sintered body, an organic resin binder is added to silicon carbide powder and mixed, and the mixture is formed into a predetermined shape and then fired to produce silicon carbide powder particles. A method of growing grains is also known. For example, Japanese Patent Application Laid-Open No. Hei 3-215374 discloses that the average grain size is 100 to 150 μm, and that the average grain size is within ± 20% of the average grain size.
After adding and mixing a molding binder and a plasticizer to silicon carbide granules having a particle size distribution such that 0% by weight or more is present, the surface layer portions of the granules are crushed and interconnected, and the inside thereof is not crushed. In such a state, a method has been proposed in which molding is performed at a molding pressure that remains in the molded body, followed by sintering.

【0005】更に、特開平3−215375号公報には
炭化珪素粉末に炭素質物質を配合してなる原料組成物か
ら成形体を成形し、これを非酸化性雰囲気下にて焼成し
て炭化珪素粉末を焼結させることにより、炭素質物質が
分散含有された炭化珪素焼結体を形成し、その後、その
焼結体を酸化性雰囲気下にて加熱することにより焼結体
中の炭素質物質を燃焼して消失させ、焼結体中に気孔を
形成する方法が、また特開平4−187578号公報に
はβ型炭化珪素粉末にα型炭化珪素粉末を配合した原料
炭化珪素粉末から成形体を成形し、その成形体を焼成す
ることによりβ型炭化珪素の異常粒成長を抑制して気孔
径を制御する方法が提案されている。
Further, Japanese Patent Application Laid-Open No. Hei 3-215375 discloses that a compact is formed from a raw material composition obtained by mixing a carbonaceous substance with silicon carbide powder, and the molded body is fired in a non-oxidizing atmosphere to form a silicon carbide. By sintering the powder, a silicon carbide sintered body containing the carbonaceous material dispersed therein is formed, and then the sintered body is heated in an oxidizing atmosphere to thereby form the carbonaceous material in the sintered body. Is disclosed in Japanese Patent Application Laid-Open No. Hei 4-187578, in which a molded body is formed from raw silicon carbide powder in which α-type silicon carbide powder is blended with β-type silicon carbide powder. And a method of firing the formed body to suppress abnormal grain growth of β-type silicon carbide and control the pore diameter.

【0006】しかしながら、これらの方法により製造さ
れた多孔質炭化珪素焼結体は気孔率が50%程度のもの
が得られる反面、多孔質体を構成する炭化珪素粒子の結
合は炭化珪素微粒子の粒成長のみによるものであるから
機械的強度が小さく、気孔特性と強度特性の両立を図る
には充分でないという問題点がある。
However, while the porous silicon carbide sintered body produced by these methods has a porosity of about 50%, the bonding of the silicon carbide particles constituting the porous body is made of silicon carbide fine particles. There is a problem that the mechanical strength is small because the growth is based only on the growth, and it is not enough to achieve both the pore characteristics and the strength characteristics.

【0007】これらの問題点を解消するために、炭化珪
素ウイスカーに平均粒子径が30μm 以下の炭化珪素粉
末を30〜50重量%の割合で混合し、成形後非酸化性
雰囲気下1900〜2100℃の温度で焼結する炭化珪
素焼結体の製造方法(特開平7−300364号公報)が本出
願人の1人により開発されており、更に炭化珪素粉末と
してα型炭化珪素粉末を用いるその改良発明が提案され
ている(特開平9−52780 号公報)。
In order to solve these problems, silicon carbide whiskers are mixed with silicon carbide powder having an average particle diameter of 30 μm or less at a ratio of 30 to 50% by weight, and after molding, at a temperature of 1900 to 2100 ° C. in a non-oxidizing atmosphere. (Japanese Patent Application Laid-Open No. 7-300364) has been developed by one of the present applicants, and further improved by using α-type silicon carbide powder as silicon carbide powder. An invention has been proposed (JP-A-9-52780).

【0008】[0008]

【発明が解決しようとする課題】上記の特開平7−30
0364号公報および特開平9−52780号公報の方
法によれば、高い気孔率と高強度の多孔質炭化珪素焼結
体を製造することができる反面、炭化珪素原料に高価な
炭化珪素ウイスカーを使用する関係で安価に製造するこ
とができないという難点がある。緻密質反応焼結炭化珪
素の強度を上げる方法として、表面にグラッシーカーボ
ンを被覆した炭素繊維とSiC材質とを混合し、これら
に珪素を含浸させた後、反応焼結させる繊維強化炭化珪
素質材料の製造方法が知られている(特開昭60−246265
号公報)。反応焼結炭化珪素ではカーボンが珪化されて
炭化珪素化するため、安価なカーボン繊維を混合するの
は強度を上げる上で好ましい方法である。しかし、カー
ボン繊維はからまり易く、水との濡れ性も悪いためカー
ボン繊維の分散が問題となる。そのため、上記特開昭6
0−246265号公報の方法ではカーボン繊維を分散
させる溶媒の選択が難しく、カーボン繊維の分散が不充
分で均質な複合組織ができ難いため、多孔質構造では致
命的な強度欠陥部が生じる難点がある。
The above-mentioned JP-A-7-30
According to the methods disclosed in JP-A-0364 and JP-A-9-52780, a porous silicon carbide sintered body having high porosity and high strength can be manufactured, but expensive silicon carbide whiskers are used as a silicon carbide raw material. However, there is a disadvantage that it cannot be manufactured at a low cost because of the problem. As a method for increasing the strength of dense reaction sintered silicon carbide, a carbon fiber coated with glassy carbon on its surface is mixed with a SiC material, impregnated with silicon, and then reaction-sintered to obtain a fiber-reinforced silicon carbide material. Is known (JP-A-60-246265).
No.). In the reaction-sintered silicon carbide, carbon is silicified into silicon carbide. Therefore, mixing inexpensive carbon fibers is a preferable method for increasing strength. However, since carbon fibers are easily entangled and have poor wettability with water, dispersion of carbon fibers poses a problem. For this reason, Japanese Patent Application Laid-Open
According to the method disclosed in Japanese Patent Publication No. 0-246265, it is difficult to select a solvent for dispersing the carbon fiber, and it is difficult to form a homogeneous composite structure with insufficient dispersion of the carbon fiber. is there.

【0009】本発明者等は、上記難点を解消するために
研究を進めた結果、高価な炭化珪素ウイスカーの代わり
に表面を酸化処理したカーボン繊維を珪化した繊維状炭
化珪素を用いることによって高気孔率と高強度特性の両
立化を図ることができることを見出した。カーボン繊維
の表面を酸化処理することにより水との濡れ性を改善す
ることができるので、均一な複合組織を形成することが
できる。本発明はこの知見に基づいて開発されたもので
あり、その目的は高い気孔率を有するとともに大きな材
質強度を備えた多孔質炭化珪素焼結体とその製造方法を
提供することにある。
The present inventors have conducted research to solve the above-mentioned difficulties, and as a result, have found that high-porosity silicon carbide whiskers are replaced with fibrous silicon carbide obtained by silicifying carbon fibers whose surfaces are oxidized. It has been found that it is possible to achieve both high modulus and high strength characteristics. By oxidizing the surface of the carbon fiber, the wettability with water can be improved, so that a uniform composite structure can be formed. The present invention has been developed based on this finding, and an object of the present invention is to provide a porous silicon carbide sintered body having high porosity and high material strength, and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による多孔質炭化珪素焼結体は、表面を酸化
処理したカーボン繊維を珪化した繊維状炭化珪素と炭化
珪素粒子とが均一に分散した複合組織構造からなり、気
孔率が40〜80%であることを構成上の特徴とする。
In order to achieve the above object, a porous silicon carbide sintered body according to the present invention is characterized in that fibrous silicon carbide obtained by silicifying carbon fibers whose surface is oxidized and silicon carbide particles are uniform. And a porosity of 40 to 80%.

【0011】また、本発明の多孔質炭化珪素焼結体の製
造方法は、炭化珪素粉末、酸化処理したカーボン粉末お
よびシリコン粉末の混合粉末に対し表面を酸化処理した
カーボン繊維を0.5〜10重量%の割合で添加混合
し、この混合粉体を所定形状に成形したのち、非酸化性
雰囲気中1800〜2100℃の温度に加熱処理してカ
ーボン粉末およびカーボン繊維を珪化するとともに焼結
し、次いで未反応のシリコンを除去することを特徴と
し、他の製造方法は、炭化珪素粉末と酸化処理したカー
ボン粉末の混合粉末に対し表面を酸化処理したカーボン
繊維を0.5〜10重量%の割合で添加混合し、この混
合粉体を所定形状に成形して溶融シリコンと接触させ成
形体中に溶融シリコンを含浸させたのち、非酸化性雰囲
気中1800〜2100℃の温度に加熱処理してカーボ
ン粉末およびカーボン繊維を珪化するとともに焼結し、
次いで未反応のシリコンを除去することを特徴とする。
Further, the method for producing a porous silicon carbide sintered body of the present invention is characterized in that a carbon powder having a surface oxidized with respect to a mixed powder of silicon carbide powder, oxidized carbon powder and silicon powder is mixed with 0.5 to 10%. After mixing and adding the mixture at a ratio of 1% by weight, the mixed powder is formed into a predetermined shape, and then heat-treated at a temperature of 1800 to 2100 ° C. in a non-oxidizing atmosphere to silicify and sinter the carbon powder and carbon fibers, Then, unreacted silicon is removed, and another manufacturing method is to use a carbon powder having a surface oxidized in a ratio of 0.5 to 10% by weight to a mixed powder of silicon carbide powder and oxidized carbon powder. The mixed powder is molded into a predetermined shape and brought into contact with molten silicon to impregnate the molded body with molten silicon. Heat treatment to a temperature of ℃ sintered while silicide carbon powder and carbon fiber,
Then, unreacted silicon is removed.

【0012】[0012]

【発明の実施の形態】本発明の多孔質炭化珪素焼結体を
構成する繊維状炭化珪素はカーボン繊維をシリコンと反
応させて生成したものであり、また炭化珪素粒子は炭化
珪素粉末とカーボン粉末がシリコンと反応して生成した
炭化珪素とが相互に結合した緻密で強固な組織構造を示
すものである。本発明の多孔質炭化珪素焼結体に使用さ
れるカーボン粉末は酸化処理され、カーボン繊維も表面
が酸化処理されている。カーボン粉末およびカーボン繊
維の酸化処理方法は、例えば硝酸溶液に浸漬する、大気
中で加熱する、オゾンと接触するなどの方法で酸化する
ことができる。酸化処理により溶媒としての水やアルコ
ール、更に有機バインダーとのなじみが良く、カーボン
粉末が局所的に固まったり、カーボン繊維が絡まずに成
形体中に均一に分散するため、材質強度の増大がもたら
される。また、カーボン繊維およびカーボン粉末が珪化
されて炭化珪素化する際に気孔が生じ、更に未反応のシ
リコンが除去される際にも気孔が生じるので気孔率を高
くすることができる。このようにして、本発明の多孔質
炭化珪素焼結体は気孔率が40〜80%の高気孔率を備
えるとともに大きな強度特性を有する多孔質体とするこ
とが可能となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The fibrous silicon carbide constituting the porous silicon carbide sintered body of the present invention is formed by reacting carbon fibers with silicon, and the silicon carbide particles are composed of silicon carbide powder and carbon powder. Shows a dense and strong tissue structure in which silicon carbide formed by reacting with silicon is mutually bonded. The carbon powder used for the porous silicon carbide sintered body of the present invention is oxidized, and the surface of the carbon fiber is also oxidized. The method of oxidizing the carbon powder and the carbon fiber can be performed by, for example, immersing in a nitric acid solution, heating in the air, or contacting with ozone. Oxidation treatment allows good compatibility with water, alcohol, and organic binders as a solvent, and carbon powder is locally hardened, and carbon fibers are uniformly dispersed in a molded body without being entangled, thereby increasing the material strength. It is. Further, pores are generated when the carbon fiber and the carbon powder are silicified into silicon carbide, and pores are generated when unreacted silicon is removed, so that the porosity can be increased. Thus, the porous silicon carbide sintered body of the present invention can be a porous body having a high porosity of 40 to 80% and a large strength characteristic.

【0013】上記の多孔質炭化珪素焼結体を製造する原
料系としては、炭化珪素粉末、酸化処理したカーボン粉
末、シリコン粉末および表面を酸化処理したカーボン繊
維が用いられる。用いる炭化珪素粉末の結晶型には制限
はなくα型、β型等いずれも用いることができ、平均粒
子径は30μm 以下、好ましくは0.5〜10μm の微
粉末が使用される。カーボン粉末には黒鉛粉末、ガラス
状カーボン粉末、カーボンブラックなど適宜な炭素質粉
末が酸化処理されて用いられ、平均粒子径50μm 以下
の粉末が好ましい。またシリコン粉末には平均粒子径5
0μm 以下の金属珪素粉末が用いられる。
As a raw material system for producing the above porous silicon carbide sintered body, silicon carbide powder, oxidized carbon powder, silicon powder and carbon fiber whose surface is oxidized are used. The crystal form of the silicon carbide powder to be used is not limited, and any of α-type and β-type can be used. Fine powder having an average particle diameter of 30 μm or less, preferably 0.5 to 10 μm is used. As the carbon powder, an appropriate carbonaceous powder such as graphite powder, glassy carbon powder, and carbon black is used after being oxidized, and a powder having an average particle diameter of 50 μm or less is preferable. Silicon powder has an average particle size of 5
Metallic silicon powder of 0 μm or less is used.

【0014】使用するカーボン繊維には特に制限はな
く、ポリアクリルニトリル系、レーヨン系、ピッチ系な
ど各種のカーボン繊維が表面を酸化処理して用いられ、
前記の炭化珪素粉末、酸化処理したカーボン粉末および
シリコン粉末の混合粉末に対して0.5〜10重量%の
割合で添加混合される。カーボン繊維の添加割合が0.
5重量%未満では珪化して炭化珪素化した繊維状炭化珪
素の複合組織中での体積分率が小さく充分な強度特性が
付与されない。一方、10重量%を越えると表面が酸化
処理されているとはいえ複合組織中において絡み合って
均一に分散させることが困難となる。なお、原料の混合
粉体中におけるシリコン粉末の割合はカーボン粉末およ
びカーボン繊維を珪化する化学当量以上になるように設
定することがより好ましい。
The carbon fiber used is not particularly limited, and various carbon fibers such as polyacrylonitrile type, rayon type and pitch type are used after oxidizing the surface.
The silicon carbide powder, the oxidized carbon powder and the silicon powder are added and mixed at a ratio of 0.5 to 10% by weight with respect to the mixed powder. The addition ratio of carbon fiber is 0.
If the content is less than 5% by weight, the volume fraction in the composite structure of the fibrous silicon carbide silicified into silicon carbide is small, and sufficient strength characteristics cannot be provided. On the other hand, if it exceeds 10% by weight, it becomes difficult to uniformly entangle in the composite structure, even though the surface is oxidized. It is more preferable that the ratio of the silicon powder in the mixed powder of the raw materials is set to be equal to or more than the chemical equivalent for silicifying the carbon powder and the carbon fiber.

【0015】この混合粉体を水あるいはアルコール等の
溶媒に成形用有機バインダーとともに分散させて均一な
スラリーを作成し、必要に応じて溶媒を脱水処理したの
ち所定の形状に成形する。成形用バインダーとしてはポ
リビニルアルコール、メチルセルロース、カルボキシル
メチルセルロース等が用いられる。混合スラリーは鋳込
み成形、脱水して押し出し成形、プレス成形等の公知の
成形手段によって成形し、乾燥したのち窒素、アルゴ
ン、真空等の非酸化性雰囲気中で1800〜2100℃
の温度に加熱処理して焼結する。
The mixed powder is dispersed in a solvent such as water or alcohol together with an organic binder for molding to form a uniform slurry, and if necessary, the solvent is dehydrated and then molded into a predetermined shape. As a molding binder, polyvinyl alcohol, methylcellulose, carboxymethylcellulose and the like are used. The mixed slurry is molded by a known molding means such as casting, dewatering, extrusion molding, and press molding, dried, and then dried in a non-oxidizing atmosphere such as nitrogen, argon, or vacuum at 1800 to 2100 ° C.
And sintering.

【0016】この加熱処理過程において混合粉体中のシ
リコン粉末は溶融し、カーボン粉末およびカーボン繊維
と反応して珪化し、炭化珪素粉末および繊維状の炭化珪
素に転化される。このようにして転化した炭化珪素粉末
は混合粉体中の原料として用いた炭化珪素粉末とともに
相互に結合した炭化珪素粒子を形成し、更にカーボン繊
維が炭化珪素化した繊維状炭化珪素の複合効果により強
固な焼結体が得られる。加熱処理温度が1800℃未満
では充分な焼結体が得られず、また2100℃を越える
温度ではシリコンの昇華が生じて反応に必要なシリコン
が無くなってしまう。なお、化学当量以上に加えられた
シリコン粉末は焼結体中に残存するが、この未反応の余
剰シリコンは溶融水酸化ナトリウムやフッ化水素などに
より溶解除去するか、あるいは2100℃以上の温度で
熱処理して蒸発させて揮散除去する。
In the heat treatment process, the silicon powder in the mixed powder is melted, reacts with the carbon powder and the carbon fiber to silicide, and is converted into silicon carbide powder and fibrous silicon carbide. The silicon carbide powder converted in this manner forms silicon carbide particles mutually bonded together with the silicon carbide powder used as a raw material in the mixed powder, and furthermore, by the combined effect of the fibrous silicon carbide in which the carbon fibers are converted to silicon carbide. A strong sintered body can be obtained. If the heat treatment temperature is lower than 1800 ° C., a sufficient sintered body cannot be obtained, and if the temperature exceeds 2100 ° C., sublimation of silicon occurs and silicon required for the reaction is lost. The silicon powder added in excess of the chemical equivalent remains in the sintered body, but the unreacted excess silicon is dissolved and removed with molten sodium hydroxide or hydrogen fluoride or at a temperature of 2100 ° C. or more. Heat treatment and evaporation to remove volatiles.

【0017】このようにして製造された多孔質炭化珪素
焼結体は、酸化処理されたカーボン粉末と表面を酸化処
理されたカーボン繊維が成形体中に均一に分散している
ため繊維状炭化珪素と炭化珪素粒子とが強固に結合した
複合組織構造から構成されるので材質強度が向上し、ま
た、カーボン繊維およびカーボン粉末が珪化されて炭化
珪素化する際に生じた気孔および未反応のシリコンが除
去される際に生じた気孔により気孔率が増大する。この
ようにして、気孔率が40〜80%の高気孔率を備える
とともに大きな強度特性を有する多孔質炭化珪素焼結体
を製造することが可能となる。
In the porous silicon carbide sintered body thus manufactured, the fibrous silicon carbide is obtained because the oxidized carbon powder and the carbon fibers whose surface is oxidized are uniformly dispersed in the molded body. And silicon carbide particles are firmly bonded to form a composite structure, so that the material strength is improved, and the pores and unreacted silicon generated when the carbon fibers and carbon powder are silicified into silicon carbide are reduced. The porosity is increased by the porosity generated during the removal. Thus, it is possible to manufacture a porous silicon carbide sintered body having a high porosity of 40 to 80% and a large strength characteristic.

【0018】多孔質炭化珪素焼結体を製造する本発明の
他の製造方法は、炭化珪素粉末と酸化処理したカーボン
粉末の混合粉末に対し表面を酸化処理したカーボン繊維
を0.5〜10重量%の割合で添加混合した混合粉体を
原料として上記の方法により所定形状の成形体を作成
し、この成形体を窒素、アルゴンや真空等の非酸化性雰
囲気中で1800〜2100℃の温度に加熱処理して、
溶融したシリコン融液に接触させて成形体中にシリコン
融液を含浸させ、含浸したシリコン融液によりカーボン
粉末およびカーボン繊維を珪化して炭化珪素粉末および
繊維状炭化珪素に転化するとともに焼結するものであ
る。混合粉体原料中のカーボン繊維の添加割合が0.5
重量%未満では珪化して炭化珪素化した繊維状炭化珪素
の複合組織中での体積分率が小さく充分な強度特性が付
与されず、10重量%を越えると表面が酸化処理されて
いるとはいえ複合組織中において絡み合って均一に分散
させることが困難となる。
According to another method of the present invention for producing a porous silicon carbide sintered body, a carbon powder having a surface oxidized by 0.5 to 10 wt. %, A molded body having a predetermined shape is prepared by using the mixed powder as a raw material, and the molded body is heated to a temperature of 1800 to 2100 ° C. in a non-oxidizing atmosphere such as nitrogen, argon or vacuum. Heat treatment,
The molded body is impregnated with the silicon melt by being brought into contact with the molten silicon melt, and carbon powder and carbon fibers are silicified by the impregnated silicon melt to be converted into silicon carbide powder and fibrous silicon carbide and sintered. Things. The addition ratio of carbon fiber in the mixed powder raw material is 0.5
If the content is less than 10% by weight, the volume fraction in the composite structure of the fibrous silicon carbide silicified to silicon carbide is small, and sufficient strength characteristics are not provided. If the content exceeds 10% by weight, the surface is oxidized. However, it becomes difficult to entangle in the composite structure and uniformly disperse it.

【0019】成形体中に含浸したシリコン融液は加熱処
理時にカーボン粉末およびカーボン繊維を炭化珪素粒子
および繊維状炭化珪素に転化する。転化した炭化珪素は
混合粉体中の炭化珪素粉末とともに加熱処理時に相互に
結合して強固に結合し、転化した繊維状炭化珪素と複合
されて強固な焼結体が製造される。なお、加熱処理温度
が1800℃未満では焼結が充分に進行せず、また21
00℃を越える温度ではシリコンの昇華が生じて反応に
必要なシリコンが揮散消失する。
The silicon melt impregnated in the compact converts carbon powder and carbon fibers into silicon carbide particles and fibrous silicon carbide during heat treatment. The converted silicon carbide and the silicon carbide powder in the mixed powder are mutually bonded during the heat treatment to form a strong bond, and are combined with the converted fibrous silicon carbide to produce a strong sintered body. If the heat treatment temperature is lower than 1800 ° C., sintering does not proceed sufficiently,
At a temperature exceeding 00 ° C., sublimation of silicon occurs and silicon required for the reaction volatilizes and disappears.

【0020】含浸した溶融シリコンのうち未反応の余剰
シリコンは溶融水酸化ナトリウムやフッ化水素等により
溶解除去するか、あるいは2100℃以上の温度で熱処
理して蒸発させて揮散除去される。このようにして繊維
状炭化珪素と炭化珪素粒子とが強固に結合し、均一に分
散した複合組織構造からなる強度特性に優れた多孔質炭
化珪素焼結体が製造される。また、カーボン繊維および
カーボン粉末が珪化されて炭化珪素化する際に生じた気
孔および未反応の余剰シリコンが除去される際に生じた
気孔により気孔率が増大し、大きな強度と気孔率が40
〜80%の高気孔率を備える多孔質炭化珪素焼結体を製
造することが可能となる。
Unreacted surplus silicon among the impregnated molten silicon is dissolved and removed with molten sodium hydroxide, hydrogen fluoride, or the like, or is evaporated and removed by heat treatment at a temperature of 2100 ° C. or more. In this way, a porous silicon carbide sintered body having excellent strength characteristics and having a composite structure structure in which fibrous silicon carbide and silicon carbide particles are firmly bonded and uniformly dispersed is produced. Further, the porosity is increased by the porosity generated when the carbon fiber and the carbon powder are silicified into silicon carbide and the porosity generated when the unreacted excess silicon is removed, and the large strength and porosity are increased by 40%.
It is possible to manufacture a porous silicon carbide sintered body having a high porosity of up to 80%.

【0021】[0021]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0022】実施例1 平均粒子径2μm の炭化珪素粉末50重量部、平均粒子
径15μm のオゾン酸化処理した黒鉛粉末12重量部、
平均粒子径20μm のシリコン粉末38重量部の割合で
混合した混合粉末に対し0.5重量%の割合で表面をオ
ゾン酸化処理したカーボン繊維を添加して混合した。こ
の混合粉体を8重量%のメチルセルロースを含む水・エ
タノール混合溶液(水:エタノール=8:2の比率)中
に入れて撹拌し、混合スラリーを調製した。混合スラリ
ーからフィルタープレスで余分な水・エタノールを除去
後、押し出し成形で縦横47mm、厚さ1mmの板状に成形
した。成形体を窒素雰囲気中で1900℃の温度に1時
間保持して焼結したのち、焼結体を400℃の温度で加
熱溶融した水酸化ナトリウム中に浸漬して未反応のシリ
コンを溶解除去した。得られた多孔質炭化珪素焼結体の
気孔率および3点曲げ強度を測定して、カーボン繊維の
添加量とともに表1に示した。なお、気孔率はアルキメ
デス法で測定した。
Example 1 50 parts by weight of silicon carbide powder having an average particle diameter of 2 μm, 12 parts by weight of ozone-oxidized graphite powder having an average particle diameter of 15 μm,
Carbon fiber whose surface was subjected to ozone oxidation treatment was added at a ratio of 0.5% by weight to a mixed powder mixed at a ratio of 38 parts by weight of a silicon powder having an average particle diameter of 20 μm and mixed. This mixed powder was put into a water / ethanol mixed solution containing 8% by weight of methylcellulose (water: ethanol = 8: 2 ratio) and stirred to prepare a mixed slurry. After removing excess water and ethanol from the mixed slurry by a filter press, the mixture was extruded to form a plate having a length and width of 47 mm and a thickness of 1 mm. After the compact was sintered at a temperature of 1900 ° C. for 1 hour in a nitrogen atmosphere, the sintered body was immersed in sodium hydroxide heated and melted at a temperature of 400 ° C. to dissolve and remove unreacted silicon. . The porosity and three-point bending strength of the obtained porous silicon carbide sintered body were measured and are shown in Table 1 together with the amount of carbon fiber added. The porosity was measured by the Archimedes method.

【0023】実施例2〜4、比較例1〜3 黒鉛粉末とカーボン繊維およびシリコン粉末の添加混合
割合を変えたほかは、実施例1と同一の方法により多孔
質炭化珪素焼結体を製造し、気孔率および3点曲げ強度
を測定した。得られた結果を表1に併載した。
Examples 2 to 4 and Comparative Examples 1 to 3 A porous silicon carbide sintered body was manufactured in the same manner as in Example 1 except that the mixing ratio of graphite powder, carbon fiber and silicon powder was changed. , Porosity and three-point bending strength were measured. The obtained results are shown in Table 1.

【0024】比較例4 酸化処理を施さない黒鉛粉末を使用したほかは、実施例
2と同じ混合割合で混合粉末を作製し、実施例1と同一
の方法により多孔質炭化珪素焼結体を製造して気孔率お
よび3点曲げ強度を測定した。得られた結果を表1に併
載した。
Comparative Example 4 A mixed powder was prepared in the same mixing ratio as in Example 2 except that graphite powder not subjected to oxidation treatment was used, and a porous silicon carbide sintered body was manufactured by the same method as in Example 1. Then, the porosity and the three-point bending strength were measured. The obtained results are shown in Table 1.

【0025】比較例5 酸化処理を施さないカーボン繊維を使用したほかは、実
施例2と同じ混合割合で混合粉末を作製し、実施例1と
同一の方法により多孔質炭化珪素焼結体を製造して気孔
率および3点曲げ強度を測定した。得られた結果を表1
に併載した。
Comparative Example 5 A mixed powder was prepared in the same mixing ratio as in Example 2 except that carbon fiber not subjected to oxidation treatment was used, and a porous silicon carbide sintered body was manufactured by the same method as in Example 1. Then, the porosity and the three-point bending strength were measured. Table 1 shows the obtained results.
It was also attached to.

【0026】比較例6 酸化処理を施さない黒鉛粉末およびカーボン繊維を使用
したほかは、実施例2と同じ混合割合で混合粉末を作製
し、実施例1と同一の方法により多孔質炭化珪素焼結体
を製造して気孔率および3点曲げ強度を測定した。得ら
れた結果を表1に併載した。
Comparative Example 6 A mixed powder was prepared in the same mixing ratio as in Example 2 except that graphite powder and carbon fiber which were not subjected to oxidation treatment were used, and porous silicon carbide was sintered in the same manner as in Example 1. The body was manufactured and its porosity and three-point bending strength were measured. The obtained results are shown in Table 1.

【0027】実施例5 平均粒子径2μm の炭化珪素粉末80重量部、平均粒子
径15μm のオゾン酸化処理した黒鉛粉末20重量部の
割合の混合粉末に対し0.5重量%の割合で表面を酸化
処理したカーボン繊維を添加した。この混合粉体を8重
量%のメチルセルロースを含む水・エタノール混合溶液
(水:エタノール=8:2の比率)中に入れて撹拌し、
混合スラリーを調製した。混合スラリーからフィルター
プレスで余分な水・エタノールを除去後、押し出し成形
で縦横47mm、厚さ1mmの板状に成形した。 成形体の
一端を珪化に充分必要な金属シリコンが入れられた黒鉛
ルツボ中に接触させ、窒素雰囲気中で2100℃の温度
に1時間保持して含浸、焼結したのち焼結体を400℃
の温度で加熱溶融した水酸化ナトリウム中に浸漬して未
反応のシリコンを溶解除去した。得られた多孔質炭化珪
素焼結体の気孔率および3点曲げ強度を測定して、カー
ボン繊維の添加量とともに表1に示した。なお、気孔率
はアルキメデス法で測定した。
Example 5 The surface was oxidized at a ratio of 0.5% by weight with respect to a mixture of 80 parts by weight of silicon carbide powder having an average particle diameter of 2 μm and 20 parts by weight of ozone-oxidized graphite powder having an average particle diameter of 15 μm. The treated carbon fibers were added. This mixed powder is put into a water / ethanol mixed solution containing 8% by weight of methylcellulose (water: ethanol = 8: 2 ratio) and stirred,
A mixed slurry was prepared. After removing excess water and ethanol from the mixed slurry by a filter press, the mixture was extruded to form a plate having a length and width of 47 mm and a thickness of 1 mm. One end of the molded body was brought into contact with a graphite crucible filled with metallic silicon sufficient for silicidation, kept at a temperature of 2100 ° C. for 1 hour in a nitrogen atmosphere, impregnated and sintered, and then sintered at 400 ° C.
The unreacted silicon was dissolved and removed by immersion in sodium hydroxide heated and melted at a temperature of. The porosity and three-point bending strength of the obtained porous silicon carbide sintered body were measured and are shown in Table 1 together with the amount of carbon fiber added. The porosity was measured by the Archimedes method.

【0028】[0028]

【表1】 [Table 1]

【0029】表1の結果から、実施例の多孔質炭化珪素
焼結体は、比較例の多孔質炭化珪素焼結体に比べて曲げ
強度が大きく、また気孔率も高いことが判る。特に実施
例の多孔質炭化珪素焼結体によれば40%以上の気孔率
を有し、曲げ強度も50 MPa以上の材質強度を備えてお
り、気孔性状と強度特性の両立化が図られていることが
認められる。
From the results shown in Table 1, it can be seen that the porous silicon carbide sintered body of the example has higher bending strength and higher porosity than the porous silicon carbide sintered body of the comparative example. In particular, according to the porous silicon carbide sintered body of the example, it has a porosity of 40% or more and a bending strength of 50 MPa or more, and achieves both porosity and strength characteristics. Is admitted.

【0030】[0030]

【発明の効果】以上のとおり、本発明の多孔質炭化珪素
焼結体は、カーボン繊維が珪化した繊維状炭化珪素と炭
化珪素粒子とが均一に分散した強固な複合組織構造を備
えており、高い気孔率と優れた強度特性を併有してい
る。また、その製造方法によれば酸化処理したカーボン
粉末と特定割合の表面を酸化処理したカーボン繊維を原
料粉体中に添加混合して加熱処理することにより、容易
に製造することが可能である。したがって、排気ガス用
フィルター、溶融金属用フィルター、通気性断熱材、触
媒担体などに用いる多孔質炭化珪素焼結体およびその製
造方法として極めて有用である。
As described above, the porous silicon carbide sintered body of the present invention has a strong composite structure in which fibrous silicon carbide in which carbon fibers are silicified and silicon carbide particles are uniformly dispersed. It has both high porosity and excellent strength characteristics. Further, according to the production method, it is possible to easily produce by adding and mixing the oxidized carbon powder and the carbon fiber whose surface is oxidized at a specific ratio to the raw material powder and subjecting to heat treatment. Therefore, the present invention is extremely useful as a porous silicon carbide sintered body used for an exhaust gas filter, a molten metal filter, a gas permeable heat insulating material, a catalyst carrier, and the like, and a method for producing the same.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 表面を酸化処理したカーボン繊維を珪化
した繊維状炭化珪素と炭化珪素粒子とが均一に分散した
複合組織構造からなり、気孔率が40〜80%であるこ
とを特徴とする多孔質炭化珪素焼結体。
1. A porous material having a composite structure structure in which fibrous silicon carbide obtained by silicifying carbon fibers whose surfaces are oxidized and silicon carbide particles are uniformly dispersed, and having a porosity of 40 to 80%. Silicon carbide sintered body.
【請求項2】 炭化珪素粉末、酸化処理したカーボン粉
末およびシリコン粉末の混合粉末に対し表面を酸化処理
したカーボン繊維を0.5〜10重量%の割合で添加混
合し、この混合粉体を所定形状に成形したのち、非酸化
性雰囲気中1800〜2100℃の温度に加熱処理して
カーボン粉末およびカーボン繊維を珪化するとともに焼
結し、次いで未反応のシリコンを除去することを特徴と
する請求項1記載の多孔質炭化珪素焼結体の製造方法。
2. A mixed powder of silicon carbide powder, oxidized carbon powder and silicon powder is mixed with 0.5 to 10% by weight of carbon fiber whose surface is oxidized, and the mixed powder is subjected to a predetermined process. After forming into a shape, carbon powder and carbon fibers are silicified and sintered by heating at a temperature of 1800 to 2100 ° C. in a non-oxidizing atmosphere, and then unreacted silicon is removed. 2. The method for producing a porous silicon carbide sintered body according to 1.
【請求項3】 炭化珪素粉末と酸化処理したカーボン粉
末の混合粉末に対し表面を酸化処理したカーボン繊維を
0.5〜10重量%の割合で添加混合し、この混合粉体
を所定形状に成形して溶融シリコンと接触させ成形体中
に溶融シリコンを含浸させたのち、非酸化性雰囲気中1
800〜2100℃の温度に加熱処理してカーボン粉末
およびカーボン繊維を珪化するとともに焼結し、次いで
未反応のシリコンを除去することを特徴とする請求項1
記載の多孔質炭化珪素焼結体の製造方法。
3. A mixed powder of silicon carbide powder and oxidized carbon powder is mixed with carbon fibers whose surface is oxidized at a ratio of 0.5 to 10% by weight, and the mixed powder is formed into a predetermined shape. And contact with the molten silicon to impregnate the molded body with the molten silicon, and then in a non-oxidizing atmosphere
2. A carbon powder and carbon fibers are silicified and sintered by heating at a temperature of 800 to 2100 [deg.] C., and then unreacted silicon is removed.
A method for producing a porous silicon carbide sintered body according to the above.
JP9312752A 1997-10-29 1997-10-29 Porous silicon carbide sintered product and its production Withdrawn JPH11130558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9312752A JPH11130558A (en) 1997-10-29 1997-10-29 Porous silicon carbide sintered product and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9312752A JPH11130558A (en) 1997-10-29 1997-10-29 Porous silicon carbide sintered product and its production

Publications (1)

Publication Number Publication Date
JPH11130558A true JPH11130558A (en) 1999-05-18

Family

ID=18033001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9312752A Withdrawn JPH11130558A (en) 1997-10-29 1997-10-29 Porous silicon carbide sintered product and its production

Country Status (1)

Country Link
JP (1) JPH11130558A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351672A (en) * 1999-02-09 2000-12-19 Ngk Insulators Ltd Sic-c/c composite material, its use, and production thereof
JP2001146473A (en) * 1999-11-12 2001-05-29 Bridgestone Corp Method for producing silicon carbide porous body
JP2007320838A (en) * 2006-06-05 2007-12-13 F C C:Kk Method for producing metal carbide sintered compact
JP2009179509A (en) * 2008-01-30 2009-08-13 Ngk Insulators Ltd Porous silicon carbide and heat insulating material using the same
JP2010516621A (en) * 2007-01-31 2010-05-20 ジーイーオー2 テクノロジーズ,インク. Extruded fibrous silicon carbide substrate and method for producing the same
JP2010234445A (en) * 2002-05-31 2010-10-21 Sued-Chemie Hi-Tech Ceramics Inc Fiber reinforced filter for molten metal filtration and method for producing such filter
KR101106898B1 (en) 2009-01-22 2012-01-25 명 근 김 Manufacturing methods of carbon for using a metal silicon
WO2012063923A1 (en) * 2010-11-11 2012-05-18 国立大学法人京都大学 Sic ceramic material and sic ceramic structure, and production method for same
CN113999046A (en) * 2021-12-02 2022-02-01 浙江理工大学 Preparation method of low-temperature reaction sintered silicon carbide ceramic membrane

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351672A (en) * 1999-02-09 2000-12-19 Ngk Insulators Ltd Sic-c/c composite material, its use, and production thereof
JP2001146473A (en) * 1999-11-12 2001-05-29 Bridgestone Corp Method for producing silicon carbide porous body
JP4782416B2 (en) * 2002-05-31 2011-09-28 ズード−ケミー ハイ−テック セラミックス インコーポレイティド Fiber reinforced filter for filtering molten metal and method for producing such a filter
JP2010234445A (en) * 2002-05-31 2010-10-21 Sued-Chemie Hi-Tech Ceramics Inc Fiber reinforced filter for molten metal filtration and method for producing such filter
JP2007320838A (en) * 2006-06-05 2007-12-13 F C C:Kk Method for producing metal carbide sintered compact
JP2010516621A (en) * 2007-01-31 2010-05-20 ジーイーオー2 テクノロジーズ,インク. Extruded fibrous silicon carbide substrate and method for producing the same
JP2009179509A (en) * 2008-01-30 2009-08-13 Ngk Insulators Ltd Porous silicon carbide and heat insulating material using the same
KR101106898B1 (en) 2009-01-22 2012-01-25 명 근 김 Manufacturing methods of carbon for using a metal silicon
WO2012063923A1 (en) * 2010-11-11 2012-05-18 国立大学法人京都大学 Sic ceramic material and sic ceramic structure, and production method for same
JPWO2012063923A1 (en) * 2010-11-11 2014-05-12 国立大学法人京都大学 SiC ceramic material, SiC ceramic structure and manufacturing method thereof
US9353013B2 (en) 2010-11-11 2016-05-31 Kyoto University SiC ceramic material, SiC ceramic structure, and their fabrication methods
CN113999046A (en) * 2021-12-02 2022-02-01 浙江理工大学 Preparation method of low-temperature reaction sintered silicon carbide ceramic membrane
CN113999046B (en) * 2021-12-02 2023-03-10 浙江理工大学 Preparation method of low-temperature reaction sintered silicon carbide ceramic membrane

Similar Documents

Publication Publication Date Title
US20070032371A1 (en) Silicon carbide based, porous structural material being heat-resistant and super-lightweight
JP3096716B1 (en) Method for producing fiber-reinforced silicon carbide composite
US7648932B2 (en) Molded porous ceramic article containing beta-SiC and process for the production thereof
US20020011683A1 (en) Silicon carbide body honeycomb bodies and method of producing the same
EP1741687B1 (en) Porous ß-SiC containing shaped ceramic body and method of making it.
JPH05186266A (en) Production of carbon fiber-reinforced silicon carbide composite ceramic
JPH11130558A (en) Porous silicon carbide sintered product and its production
JPH0251863B2 (en)
EP1284251A1 (en) Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor
JP4273195B2 (en) Method for producing silicon carbide heat-resistant lightweight porous structure
EP1296889A1 (en) Plasticizable mixture and method of using
JPH089504B2 (en) Method for producing high-density silicon carbide sintered body
KR100321295B1 (en) Ceramics-aluminum composite and its preparation method
JPH0355430B2 (en)
US5273941A (en) Fiber reinforced silicon carbide ceramics and method of producing the same
JP2000185979A (en) Production of porous molded article of silicon carbide
JPS6212663A (en) Method of sintering b4c base fine body
JP3543529B2 (en) Method for producing silicon carbide ceramics
JP3443634B2 (en) High temperature composite material and method for producing the same
JP3570676B2 (en) Porous ceramic body and method for producing the same
JP2000026177A (en) Production of silicon-silicon carbide ceramics
JPS5915112B2 (en) Method for manufacturing high-density silicon carbide sintered body
JP3468426B2 (en) Method for producing porous silicon carbide body
JPH0571541B2 (en)
JP2004189551A (en) Method of producing porous silicon carbide sintered compact

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104