KR20030052207A - Manufacturing Method for Non-Oriented Electrical Steel Sheet having Superior Punchability and Low Core Loss after Stress Relief Annealing - Google Patents

Manufacturing Method for Non-Oriented Electrical Steel Sheet having Superior Punchability and Low Core Loss after Stress Relief Annealing Download PDF

Info

Publication number
KR20030052207A
KR20030052207A KR1020010082121A KR20010082121A KR20030052207A KR 20030052207 A KR20030052207 A KR 20030052207A KR 1020010082121 A KR1020010082121 A KR 1020010082121A KR 20010082121 A KR20010082121 A KR 20010082121A KR 20030052207 A KR20030052207 A KR 20030052207A
Authority
KR
South Korea
Prior art keywords
temperature
steel sheet
content
annealing
reheating
Prior art date
Application number
KR1020010082121A
Other languages
Korean (ko)
Other versions
KR100544738B1 (en
Inventor
이청산
김재관
봉원석
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010082121A priority Critical patent/KR100544738B1/en
Publication of KR20030052207A publication Critical patent/KR20030052207A/en
Application granted granted Critical
Publication of KR100544738B1 publication Critical patent/KR100544738B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE: A manufacturing method of non-oriented electrical steel sheet having superior punchability and low core loss after stress relief annealing even without performing hot rolled strip annealing and skin-pass processes is provided. CONSTITUTION: The method comprises a process of hot rolling the steel slab to a thickness of 1.8 to 3.0 mm by reheating a steel slab comprising 0.005 wt.% or less of C, 0.0005 to 0.005 wt.% of S, 0.0005 to 0.005 wt.% of N, 0.1 to 1.5 wt.% of Si, 0.1 to 1.0 wt.% of acid soluble Al, 0.1 to 1.0 wt.% of Mn and a balance of Fe and other impurities at a reheating temperature (T1) represented as in the following relational expression 1 determined by contents of S and N in the temperature range of 1,050 to 1,250 deg.C:£Relational Expression 1|, T1=1,650+1,200/log(X1+X2)±5 deg.C, where T1 is proper reheating temperature, X1 is content of S (wt.%), and X2 is content of N (wt.%); coiling the hot rolled steel sheet at a coiling temperature (T2) represented as in the following relational expression 2 determined by addition quantities of acid soluble Al and Mn in the temperature range of 600 to 800 deg.C:£Relational Expression 2|T2=1,200+1,200/log£(Y1+Y2)/200|±5 deg.C, where T2 is proper coiling temperature, Y1 is content of acid soluble Al (wt.%), and Y2 is content of Mn (wt.%); cold rolling the pickled hot rolled steel sheet to a thickness of 0.2 to 0.65 mm one time after pickling the coiled non-annealed hot rolled steel sheet; and annealing the cold rolled steel sheet at a temperature of 600 to 800 deg.C for 30 to 300 seconds, machining the resulting steel sheet to a required sizes, and stress relief annealing the steel sheet machined to required sizes at a temperature of 700 to 850 deg.C.

Description

수요가 가공시 타발성이 우수하며 응력제거소둔후 철손이 낮은 무방향성 전기강판의 제조방법{Manufacturing Method for Non-Oriented Electrical Steel Sheet having Superior Punchability and Low Core Loss after Stress Relief Annealing}Manufacturing Method for Non-Oriented Electrical Steel Sheet having Superior Punchability and Low Core Loss after Stress Relief Annealing}

본 발명은 응력제거소둔 후 철손이 낮고 타발성이 우수한 무방향성 전기강판의 제조방법에 관한 것으로, 더욱 상세하게는 열간압연판소둔과 경압연(Skin-Pass) 과정을 거치지 않고서도 응력제거소둔 후 철손이 낮고 타발성이 우수한 무방향성 전기강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a non-oriented electrical steel sheet having low iron loss and excellent punchability after stress relief annealing, and more specifically, after stress relief annealing without undergoing hot rolling and annealing (Skin-Pass). It relates to a method for producing a non-oriented electrical steel sheet having a low iron loss and excellent punchability.

무방향성 전기강판은 뛰어난 자기특성을 가지고 있으므로 각종 모터, 소형변압기, 안정기 등의 전기기기의 철심재료로 널리 사용되고 있으며, 크게 2종류로 구분된다. 수요가가 가공후에 응력제거소둔을 반드시 실시해야만 하는 세미프로세스(Semi-Process) 제품과 수요가가 응력제거소둔을 할 필요가 없는 풀리프로세스(Fully-process) 제품이 그것이다. 상기 세미프로세스 제품은 통상 제강 →연속주조 → 슬라브 재가열 →열간압연 →권취 →열연판소둔 → 냉간압연 → 소둔 → 경(Skin-Pass)압연 → 절연코팅의 제조공정으로 변형을 받은 상태로 출하되므로 수요가는 제품을 구입하여 원하는 형상으로 제품을 가공한 후에는 그 제품에 맞는 자기특성을 얻기 위하여 응력제거소둔을 실시해야한다. 한편, 풀리프로세스 제품은 제강 →연속주조 →슬라브 재가열 →열간압연 →권취 →열연판소둔 → 냉간압연 → 최종소둔 → 절연코팅의 제조공정을 통하여 변형이 해소된 상태로 출하되므로 수요가가 응력제거소둔을 하지 않고 사용할 수 있는 장점을 갖는다.Since non-oriented electrical steel has excellent magnetic properties, it is widely used as an iron core material for electric machines such as various motors, small transformers, and ballasts, and is classified into two types. These include semi-process products, which must be subjected to stress relief annealing after demand processing, and fully-process products, which do not require stress relief annealing. The semi-process products are usually shipped in a modified state in the manufacturing process of steelmaking → continuous casting → slab reheating → hot rolling → winding → hot rolled sheet annealing → cold rolling → annealing → skin-pass rolling → insulation coating After purchasing a thin product and processing the product into the desired shape, stress relief annealing must be performed to obtain magnetic properties suitable for the product. On the other hand, pulley process products are shipped from the steelmaking process → continuous casting → slab reheating → hot rolling → winding → hot rolled sheet annealing → cold rolling → final annealing → insulation coating. It has the advantage that it can be used without.

최근 에너지절약의 차원에서 전기기기의 효율을 높이고 소형화하려는 추세 및 수요가 가공비용의 절감 욕구의 증가에 따라 철심재료인 전기강판에 있어서도 철손이 낮음과 동시에 타발성이 우수한 제품에 대한 욕구가 점차 증가되고 있는 실정이다. 일반적으로 철손은 철심의 무게(㎏)당 전기적 손실(Watt), 즉, 특정 자속밀도 및 주파수에서 발열 등으로 나타나는 전기에너지 손실로서 W/㎏으로 표시한다. 따라서, 철손이 낮은 철심 소재일수록 고효율 전기기기를 제작하는 데 바람직하다.In recent years, the trend of increasing the efficiency and miniaturization of electrical equipment and increasing the desire to reduce the processing cost has increased the desire for products with low iron loss and excellent punchability in electrical steel sheets, which are core materials. It's happening. In general, the iron loss is expressed in W / kg as electrical loss (Watt) per weight (kg) of the iron core, that is, electrical energy loss caused by heat generation at a specific magnetic flux density and frequency. Therefore, the iron core material having a low iron loss is more preferable for manufacturing high-efficiency electric equipment.

본 발명자 등은 저철손을 갖는 무방향성 전기강판을 제공하고자 한국특허출원 2000-82818호에 Si, Al, Mn, Ni 등을 함유한 응력제거소둔 후 우수한 철손특성을 갖는 무방향성 전기강판의 제조방법을 제안한 바 있다. 그러나, 이 선행기술에서는 고가인 Ni을 첨가하는 것을 필수로 하고 Si을 다량으로 첨가해야 하므로 제조원가가 상승하게 되며, 아울러 강판의 강도 및 취성의 증가로 인해 타발성이 열화되는 단점이 있다. 타발성이 좋지 않으면 수요가 가공시 금형의 마모 및 파손율이 증가하여 가공비용이 급증하게 되는 문제점을 유발하게 된다.The present inventors have proposed a method for producing a non-oriented electrical steel sheet having excellent iron loss characteristics after stress relief annealing containing Si, Al, Mn, Ni, etc. in Korea Patent Application No. 2000-82818 to provide a non-oriented electrical steel sheet having a low iron loss Has been proposed. However, in this prior art, it is necessary to add expensive Ni and a large amount of Si must be added, thereby increasing the manufacturing cost and deteriorating punchability due to an increase in strength and brittleness of the steel sheet. If the punchability is not good, the demand increases the wear and breakage rate of the mold during processing, which causes a problem that the processing cost increases rapidly.

본 발명은 앞서 설명한 바와 같은 응력제거소둔 후 철손이 낮은 무방향성 전기강판을 더욱 간소화된 방법에 따라 제조하고자 하는 것으로, 제강시 고가 원소이면서 타발성 열화원인이 되는 Ni 및 Si을 각각 미첨가 또는 첨가량을 저감하고, 풀리프로세스재 무방향성 전기강판의 경우 열간압연판 소둔과정을 생략하거나, 세미프로세스재 무방향성 전기강판의 경우 열간압연판 소둔 및 경압연 과정을 생략하고도 수요가 가공시 타발성이 우수함과 동시에, 응력제거소둔 후 철손이 대폭 개선된 무방향성 전기강판을 제조하는 방법을 제공하는 데, 그 목적이 있다.The present invention is to manufacture a non-oriented electrical steel sheet having a low iron loss after the stress relief annealing as described above according to a more simplified method, the addition or addition of Ni and Si, respectively, which is an expensive element during the steelmaking and the cause of the secondary deterioration In the case of pulley process non-oriented electrical steel sheet, the hot rolled sheet annealing process is omitted, or in the case of semi-process non-oriented electrical steel sheet, the hot rolled plate annealing and light rolling process are omitted. At the same time, to provide a method for producing a non-oriented electrical steel sheet with a significant improvement in iron loss after stress relief annealing, an object thereof.

상기한 목적을 달성하기 위한 본 발명에 따른 철손이 낮고 타발성이 우수한 무방향성 전기강판의 제조방법은, 무방향성 전기강판의 제조방법에 있어서,In the method for producing a non-oriented electrical steel sheet having a low iron loss and excellent punchability according to the present invention for achieving the above object, in the manufacturing method of a non-oriented electrical steel sheet,

중량%로 C: 0.005%이하, S:0.0005~0.005%, N:0.0005~0.005%, Si:0.1∼1.5%, 산가용성 Al:0.1~1.0%, Mn:0.1~1.0%, 나머지Fe 및 기타 불순물로 조성된 강 슬라브를 1050∼1250℃온도범위에서 S 및 N함량에 의 아래 관계식 1에 의해 결정되는 재가열온도(T1)에서 재가열하여 1.8~3.0mm두께로 열간압연하는 단계,By weight% C: 0.005% or less, S: 0.0005 ~ 0.005%, N: 0.0005 ~ 0.005%, Si: 0.1 ~ 1.5%, acid soluble Al: 0.1 ~ 1.0%, Mn: 0.1 ~ 1.0%, remaining Fe and others Reheating the steel slab composed of impurity at a reheating temperature (T1) determined by the following relation 1 according to the S and N content in the temperature range of 1050 to 1250 ° C. and hot rolling to a thickness of 1.8 to 3.0 mm,

[관계식 1][Relationship 1]

T1=1650+1200/log(X1+X2) ±5℃T1 = 1650 + 1200 / log (X1 + X2) ± 5 ° C

여기서 T1:적정 재가열온도, X1:S함량(중량%), X2:N함량(중량%)Where T1: Proper reheating temperature, X1: S content (% by weight), X2: N content (% by weight)

이 열간압연판을 600∼800℃온도범위에서 산가용성 Al 및 Mn첨가량에 의해 아래 관계식 2에 의해 결정되는 권취온도(T2)에서 권취하는 단계,Winding the hot rolled sheet at a winding temperature (T2) determined by the following equation 2 by the amount of acid-soluble Al and Mn added in a temperature range of 600 to 800 ° C.,

[관계식 2][Relationship 2]

T2=1200+1200/log[(Y1+Y2)/200] ±5℃T2 = 1200 + 1200 / log [(Y1 + Y2) / 200] ± 5 ℃

여기서 T2:적정 권취온도, Y1:산가용성 Al함량(중량%), Y2:Mn함량(중량%)Where T2: appropriate winding temperature, Y1: acid-soluble Al content (% by weight), Y2: Mn content (% by weight)

상기 권취한 미소둔 열간압연판을 산세척 행한 후 0.2~0.65mm두께로 1회 냉간압연하는 단계,After the pickled micro-rolled hot rolled plate is pickled and cold rolled to a thickness of 0.2 to 0.65 mm,

냉간압연판을 600∼800℃온도에서 30∼300초동안 소둔한 다음, 수요가 가공 후 700∼850℃온도에서 응력제거소둔하는 단계를 포함하여 구성된다.The cold rolled sheet is annealed at a temperature of 600 to 800 ° C. for 30 to 300 seconds and then subjected to stress relief annealing at a temperature of 700 to 850 ° C. after processing.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자는 상기한 선행기술의 문제점을 해결하기 위하여 그 동안의 연구결과, 제강시 Ni을 첨가하지 않음과 동시에 Si함량을 대폭 저감하여 타발성을 개선하고, Ni미첨가 및 Si첨가량 저감에 따른 자기특성의 열화를 S 및 N함량에 따라 제어된 온도에서 슬라브 재가열을 행하고 동시에, Al 및 Mn함량에 따라 제어된 온도에서 열간압연판 권취를 행하면서 열간압연판 소둔을 행하지 않는 방식에 의해 수요가 가공후의 응력제거 소둔시 자기특성에 유리한 집합조직이 발달한다는사실을 확인하고 본 발명을 완성한 것이다. 그 결과, 제조원가를 낮춤과 동시에 제조공정을 단축시키고서도 응력제거소둔 후 저철손 특성을 갖는 무방향성 전기강판을 얻을 수있다.In order to solve the above problems of the prior art, the present inventors have found that the addition of Ni during steelmaking greatly improves the punchability by significantly reducing the Si content, and improves the magnetic properties due to the addition of Ni and the addition of Si. The deterioration of the characteristics is processed by the method of reheating the slab at a temperature controlled according to the S and N contents, and at the same time by performing a hot rolled sheet winding at a temperature controlled by the Al and Mn contents, without performing hot roll annealing. The present invention was completed by confirming the fact that an aggregate structure favorable to magnetic properties is developed during the subsequent stress relief annealing. As a result, it is possible to obtain a non-oriented electrical steel sheet having low iron loss characteristics after stress removal annealing while reducing the manufacturing cost and shortening the manufacturing process.

본 발명은 크게 강 슬라브의 성분조성단계, 슬라브 재가열 단계, 열간압연단계, 열간압연판 권취단계, 냉간압연단계, 소둔단계 및 응력제거소둔단계로 분류된다. 이러한 공정에서 본 발명에서는 강 성분조정단계에서는 Ni을 미첨가하고 Si을 기존에 비해 적은 양으로 첨가하면서, S 및 N함량에 따라 제어된 온도에서 슬라브 재가열하고, Al 및 Mn함량에 따라 제어된 온도에서 열간압연판 권취를 행함으로써 열간압연판 소둔을 행하지 않더라도 수요가 가공시 타발성이 향상될 뿐만 아니라 응력제거소둔후 결정립 성장이 용이하도록 하는데, 특징이 있다. 이하에는 각 공정단계별로 본 발명의 작용 효과를 상세히 설명한다.The present invention is largely divided into steel slab composition step, slab reheating step, hot rolling step, hot rolling plate winding step, cold rolling step, annealing step and stress relief annealing step. In this process, in the present invention, in the steel component adjustment step, the slab is reheated at a temperature controlled according to the S and N contents, without adding Ni and adding Si in a smaller amount than the conventional one, and the temperature controlled according to the Al and Mn contents. By hot rolled sheet winding at, it is characterized in that even if the hot rolled sheet annealing is not performed, the punchability is improved not only when the demand is processed but also the grain growth is easy after stress relief annealing. Hereinafter, the operation and effect of the present invention for each process step will be described in detail.

[강슬라브 성분조성 단계][Steel slab composition stage]

강 슬라브의 성분조성단계는 통상적으로 제강, 용강 및 조괴 또는 연속주조공정이 선행된다. 먼저 제강단계에서 용강내에 C, N, S의 함유량을 낮게 제어하고 Si, Al, Mn등을 적정량 부가한다. 이어 용강을 조괴 또는 연속주조공정을 행함으로써 적정량의 성분을 함유한 강 슬라브를 제조한다. 본 발명의 슬라브강에는 C, Mn, S, N, Si, Al, 나머지 Fe와 기타 불순물이 함유되어 있는데, 상기 구성성분 중 C, N, S는 결정립 성장을 방해하는 원소이고, Si, 산가용성 Al, 및 Mn은 철손을 낮추기 위한 용도로 강내에 첨가한다. 더욱 상세히 조성범위 한정이유를 설명한다.The composition step of the steel slab is usually preceded by steelmaking, molten steel and ingot or continuous casting process. First, in the steelmaking step, the content of C, N, S in the molten steel is controlled low, and an appropriate amount of Si, Al, Mn, etc. is added. Subsequently, the steel slab containing an appropriate amount of components is manufactured by performing a molten steel in the ingot or continuous casting process. The slab steel of the present invention contains C, Mn, S, N, Si, Al, the remaining Fe and other impurities. Among the components, C, N, and S are elements that inhibit grain growth, and Si, acid solubility. Al and Mn are added into the steel for the purpose of lowering iron loss. The reason for composition range limitation is explained in more detail.

·C:0.005%이하 · C: 0.005% or less

C는 과량 함유될 경우 본 발명의 전기강판 제조과정중에 탄화물(Carbide)을 형성하여 결정립 성장을 방해하며, 또한 전기기기의 철심으로 사용하는 중 자기시효를 일으켜서 자기적 특성을 저하시키는 경향이 있으므로 슬라브강내에 0.005% 이하의 조성을 갖도록 함유하는 것이 바람직하다.When C is excessively contained, slabs are formed during the manufacturing of the electrical steel sheet of the present invention, thereby inhibiting grain growth, and also causing magnetic aging during use as an iron core of an electric device. It is preferable to contain in a steel so that it may have a composition of 0.005% or less.

·N:0.0005~0.005% · N: 0.0005 ~ 0.005%

N은 본 발명의 강판 제조과정중에 Al과 반응하여 AlN 석출물을 형성하여 입자성장을 억제시키는 경향이 있어 가능한한 최소량을 갖도록 제어하는 것이 바람직하다. 그러나 본 발명의 경우 0.0005%미만으로 제어하기 위해서는 제강시 탈질소 비용이 상승하므로 이를 고려하여 N 은 0.0005~0.005%함유하는 것이 바람직하다.N tends to react with Al to form AlN precipitates during the steel sheet manufacturing process of the present invention to suppress grain growth, so that N is controlled to have a minimum amount as much as possible. However, in the case of the present invention, in order to control less than 0.0005%, the denitrification cost increases during steelmaking, so that N is preferably 0.0005 to 0.005% in consideration of this.

·S:0.0005~0.005% · S: 0.0005 ~ 0.005%

상기 N과 더불어, S는 Mn과 반응하여 미세한 석출물인 MnS를 형성하여 결정립 성장을 억제시키는 경향이 있어 가능한한 최소량을 갖도록 하는 것이 중요하다. 그러나 N의 경우와 마찬가지 이유로 본 발명의 경우 S는 0.0005~0.005%함유하는 것이 바람직하다.In addition to N, S tends to react with Mn to form MnS, which is a fine precipitate, to suppress grain growth, so that it has a minimum amount as much as possible. However, for the same reason as in the case of N, in the present invention, S is preferably 0.0005 to 0.005%.

·Si:0.1~1.5% · Si: 0.1 ~ 1.5%

본 발명강에서 Si의 함량이 0.1% 미만인 경우에는 강의 비저항이 작게 되어 철손특성이 열화되어 바람직하지 않으며, 1.5% 초과인 경우에는 우수한 자속밀도가 열화되고 또한 취성의 증가로 인해 타발성이 열화되므로 좋지 않다.In the present invention, when the Si content is less than 0.1%, the specific resistance of the steel is small, which is not preferable because the iron loss characteristics are deteriorated. When the Si content is more than 1.5%, the excellent magnetic flux density is deteriorated and the punchability is deteriorated due to the increase in brittleness. Not good.

·산가용성 Al:0.1~1.0% , Acid-soluble Al: 0.1 ~ 1.0%

산가용성 Al은 0.1% 미만인 경우에는 강의 비저항이 작게 되어 철손특성이 열화되어 바람직하지 않으며, 1.0% 초과인 경우에는 냉간압연성을 해치게 되어 나쁘다.When the acid-soluble Al is less than 0.1%, the specific resistance of the steel is small, the iron loss characteristics are deteriorated, and when it is more than 1.0%, the cold rolling property is deteriorated.

·Mn:0.1~1.0 · Mn: 0.1 ~ 1.0

Mn의 경우도 0.1% 미만인 경우에는 강의 비저항이 작게 되어 철손특성이 열화되어 바람직하지 않으며, 1.0% 초과인 경우에는 롤 하중이 증가하여 냉간압연성이 열화되므로 바람직하지 않다.In the case of Mn, less than 0.1% is not preferable because the specific resistance of the steel is small and the iron loss characteristics are deteriorated, and if it is more than 1.0%, the roll load increases and the cold rolling property is deteriorated.

이외, 강내에는 Fe 및 기타 불가피한 불순물들이 함유되어 있다.In addition, the steel contains Fe and other unavoidable impurities.

[슬라브 재가열 단계][Slave reheating stage]

상기 성분조성단계 이후 행하여지는 열간압연단계의 전처리과정으로서 상기 강 슬라브 재가열 단계에서는 슬라브를 가열로에 장입하여 재가열하게 되는데, 이때 열간압연 작업성을 고려하여 열간압연시 롤 부하의 저감을 위해서는 강 슬라브의 재가열온도를 1050℃ 이상으로 하여야 한다. 반면 재가열온도가 1250℃를 넘으면 AlN, MnS 등과 같은 철손특성에 해로운 석출물이 재용해되어 열간압연 후 미세한 석출물이 과도하게 발생하는 경향이 있다. 이러한 미세한 석출물은 결정립 성장을 방해하여 철손특성을 열화시키므로 바람직하지 않다. 또한 재가열온도가 1250℃를 초과하는 경우에는 재가열시 산화스케일의 증가로 인해 실수율이 감소할 뿐만 아니라 후속공정에서 미제거될 때 표면결함을 유발하게 되는 문제점도 발생한다.따라서, 본 발명의 경우 슬라브 재가열의 적정온도 범위는 1050∼1250℃가 바람직하다.The steel slab reheating step is a pretreatment step of the hot rolling step performed after the component composition step. In the slab reheating step, the slab is charged into a heating furnace and reheated. In this case, in order to reduce the roll load during hot rolling in consideration of hot rolling workability, The reheating temperature of should be at least 1050 ℃. On the other hand, when the reheating temperature exceeds 1250 ° C, precipitates harmful to iron loss characteristics, such as AlN and MnS, are re-dissolved and tend to cause excessive generation of fine precipitates after hot rolling. Such fine precipitates are undesirable because they hinder grain growth and deteriorate iron loss characteristics. In addition, when the reheating temperature exceeds 1250 ° C, not only the error rate decreases due to an increase in the oxidation scale during reheating but also a problem that causes surface defects when not removed in a subsequent process. As for the suitable temperature range of reheating, 1050-1250 degreeC is preferable.

한편, 본 발명자 등의 다수의 실험결과 재가열 온도는 집합조직에도 영향을 미치게 됨을 발견하였는데, 재가열온도가 높을수록 자기특성에 유리한 (100),(110)면 등의 면강도가 상승하게 되는 것을 발견하였다. 따라서 상기의 AlN, MnS등의 재고용을 억제하는 범위내에서는 재가열온도를 높게 제어할수록 자기특성이 향상됨을 알 수 있었고, 이에 근거하여 적정한 재가열온도는 S 및 N함량에 의해 아래 관계식 1에 의해 구하고 그 온도에서 재가열하는 것이 바람직하다는 결론을 실험을 통해서 얻었다.On the other hand, a number of experiments, such as the inventors found that the reheating temperature also affects the aggregate structure, the higher the reheating temperature is found to increase the surface strength of the (100), (110) plane, etc., which is advantageous for the magnetic properties It was. Therefore, within the range of suppressing the re-use of AlN, MnS, etc., it was found that the higher the reheating temperature was controlled, the better the magnetic properties. Based on this, the appropriate reheating temperature was obtained by the following Equation 1 by the S and N content. Experiments have concluded that reheating at temperature is desirable.

[관계식 1][Relationship 1]

T1=1650+1200/log(X1+X2) ±5℃T1 = 1650 + 1200 / log (X1 + X2) ± 5 ° C

여기서 T1:적정 재가열온도, X1:S함량(중량%), X2:N함량(중량%)Where T1: Proper reheating temperature, X1: S content (% by weight), X2: N content (% by weight)

이는 S 및 N함량이 많은 경우에는 AlN, MnS등의 재고용으로 인한 폐해를 방지하는 차원에서 재가열온도를 낮추는 것이 바람직하나, 반면에 즉 S 및 N함량이 적은 경우에는 재가열온도를 높이더라도 AlN, MnS등의 재고용으로 인한 폐해가 나타나지 않으므로 집합조직의 개선을 위해 적정 재가열온도를 상한으로 하여 가급적 재가열온도를 높이는 것이 바람직하다는 것을 나타내고 있다.If the S and N content is high, it is desirable to lower the reheating temperature in order to prevent the damage caused by re-use of AlN, MnS, etc. On the other hand, if the S and N content is low, even if the reheating temperature is increased, AlN, MnS Since there is no harmful effect due to re-use, it is indicated that it is desirable to raise the reheating temperature as much as possible by increasing the appropriate reheating temperature in order to improve the texture.

[열간압연단계][Hot Rolling Step]

열간압연 단계는 통상의 방법에 따라 행해지며, 이때 마무리압연온도는 슬라브 재가열온도의 영향을 받기는 하나 열간압연판의 산화층이 과다하게 발생하지 않도록 하기 위해서는 800∼950℃로 조절하는 것이 바람직하다. 열간압연판 두께는 1.8mm 미만인 경우는 열간압연판 형상이 불량해지므로 바람직하지 않으며, 3.0mm를 초과하는 경우는 양호한 집합조직을 얻을 수 없어 자속밀도가 열화되므로 좋지 않다.The hot rolling step is performed according to a conventional method, in which the finish rolling temperature is affected by the slab reheating temperature, but in order to prevent excessive generation of an oxide layer of the hot rolled sheet, it is preferable to adjust the temperature to 800 to 950 ° C. If the thickness of the hot rolled sheet is less than 1.8 mm, the shape of the hot rolled sheet becomes poor, which is not preferable. If the thickness of the hot rolled sheet exceeds 3.0 mm, a good texture cannot be obtained, and the magnetic flux density deteriorates.

[열간압연판 권취단계][Hot rolled sheet winding step]

이어, 열간압연판 권취는 결정립 성장을 위해 높은 온도에서 행하는 것이 유리하나 너무 높게 되면 열간압연판에 산화층이 과도하게 발생하여 산세척이 불량하게 되어 표면결함을 유발하므로 바람직하지 않다. 따라서 본 발명의 경우 적정 권취온도 범위는 600∼800℃이다. 한편, 본 발명자 등은 다수의 실험결과 권취온도는 집합조직에도 영향을 미치게 됨을 발견하였는데, 권취온도가 높을수록 자기특성에 불리한 (111)면의 강도가 감소하게 되는 것을 발견하였다. 따라서 산화층이 과도하게 생성되는 것을 억제할 수 있는 한도내에서는 권취온도를 높게 제어할수록 자기특성이 향상됨을 알 수 있었고, 이에 근거하여 적정한 권취온도는 산가용성 Al 및 Mn첨가량에 의해 아래 관계식 2에 의해 제어된 온도에서 권취하는 것이 바람직하다는 결론을 얻었다.Subsequently, the hot rolled sheet winding is advantageously performed at a high temperature for grain growth, but if it is too high, an excessively oxidized layer is generated in the hot rolled sheet, resulting in poor pickling and causing surface defects. Therefore, in the case of the present invention, the appropriate winding temperature range is 600 ~ 800 ℃. On the other hand, the inventors have found that the coiling temperature also affects the aggregate structure as a result of a number of experiments, the higher the coiling temperature was found to decrease the strength of the (111) plane adverse to the magnetic properties. Therefore, within the limit that the excessive formation of the oxide layer can be suppressed, the higher the coiling temperature is controlled, the better the magnetic properties. Based on this, the appropriate coiling temperature is determined by the following equation (2) by the addition of acid-soluble Al and Mn. It was concluded that winding at a controlled temperature is desirable.

[관계식 2][Relationship 2]

T2=1200+1200/log[(Y1+Y2)/200] ±5℃T2 = 1200 + 1200 / log [(Y1 + Y2) / 200] ± 5 ℃

여기서 T2:적정 권취온도, Y1:산가용성 Al함량(중량%), Y2:Mn함량(중량%)Where T2: appropriate winding temperature, Y1: acid-soluble Al content (% by weight), Y2: Mn content (% by weight)

적정 권취온도가 산가용성 Al 및 Mn함량에 따라 달라지는 점을 설명하면 다음과 같다. 산가용성 Al 및 Mn함량이 많은 경우에는 Al2O3 및 MnO등과 같은 산세척시 제거하기 어려운 산화층이 과도하게 생성되어 강판에 표면결함을 유발하는 폐단이 있다. 이로 인한 폐해를 방지하는 차원에서 권취온도를 낮추는 것이 바람직하나, 반면에 즉 산가용성 Al 및 Mn함량이 적은 경우에는 권취온도를 높이더라도 Al2O3 및 MnO등의 과도한 생성으로 인한 폐해가 나타나지 않고 집합조직이 개선되므로, 상기 적정 권취온도를 상한으로 하여 권취온도를 가급적 상승시키느 것이 바람직하기 때문이다.Explain that the proper winding temperature depends on the acid-soluble Al and Mn content as follows. If the acid-soluble Al and Mn content is large, there is a closed end causing excessive surface oxides on the steel sheet due to excessive generation of an oxide layer that is difficult to remove during pickling such as Al 2 O 3 and MnO. It is desirable to lower the coiling temperature in order to prevent the harmful effects. On the other hand, in the case where the acid-soluble Al and Mn contents are low, the coiling temperature may be increased even when the coiling temperature is increased, and no damage may occur due to excessive generation of Al2O3 and MnO. This is because it is preferable to raise the coiling temperature as much as possible by making the appropriate coiling temperature the upper limit.

이후 공기중에서 코일상태로 냉각하거나, 보다 바람직하게는 로냉한다.After cooling in air in a coil state, or more preferably furnace cooling.

[냉간압연단계][Cold rolling stage]

·산세 · Pickling

열간압연판은 열간압연판소둔을 행하지 않고 산세만 하는 것이 필수적이다. 열연판 소둔을 행하게 되면 미세한 탄화물의 석출로 후속되는 응력제거소둔시 결정립 성장이 억제되어 철손이 열화되므로 바람직하지 않다. 따라서 본 발명에 있어서 열간압연판소둔을 미실시 하는 것은 공정 단축의 잇점 뿐만 아니라 자기특성의 개선을 위해서 필수적이다.It is essential that the hot rolled sheet is only pickled without performing hot rolled sheet annealing. The hot-rolled sheet annealing is not preferable because grain growth is suppressed during stress relief annealing subsequent to the precipitation of fine carbides and the iron loss is degraded. Therefore, in the present invention, not performing the hot rolled sheet annealing is essential for improving the magnetic properties as well as the advantages of the process shortening.

이어 열간압연판 소둔은 행하지 않고, 강판표면의 산화피막만 산세척한 후 행하는 냉간압연단계에서는 압연생산성 향상을 위해 1회 압연하여 0.20~0.65mm두께의 냉연판을 얻는다.Subsequently, in the cold rolling step in which the hot rolled sheet is not annealed, but after pickling only the oxide film on the surface of the steel sheet, a cold rolled sheet having a thickness of 0.20 to 0.65 mm is obtained by rolling once to improve rolling productivity.

상기 단계들에 이어 행하게 되는 소둔단계에서는 상기 냉간압연 강판을 600∼800℃온도에서 30∼300초동안 연속소둔한다.In the annealing step performed after the above steps, the cold rolled steel sheet is continuously annealed at a temperature of 600 to 800 ° C. for 30 to 300 seconds.

·냉간압연 · Cold rolling

이어 산세척된 강판은 냉간압연 단계를 거친다. 이때 64% 미만의 압하율로 압연하는 경우 압연 생산성이 감소하므로 64%이상의 압하율로 1회 압연하는 것이 바람직하다. 이 때, 냉간압연 두께는 0.20mm미만인 경우 소둔후 자성에 불리한 집합조직인 (111)면 강도가 증가하여 자속밀도가 감소하므로 바람직하지 않으며, 0.65mm를 초과하는 경우에는 판두께의 증가에 따라 와류손이 증가하여 철손이 열화되므로 좋지 않다.The pickled steel plate is then cold rolled. In this case, when rolling at a reduction ratio of less than 64%, rolling productivity is reduced, so it is preferable to roll once at a reduction ratio of 64% or more. At this time, if the cold rolling thickness is less than 0.20 mm, the strength of the (111) plane, which is an unfavorable texture after annealing, is not preferable because the magnetic flux density decreases, and when the thickness exceeds 0.65 mm, the vortex loss increases as the plate thickness increases. This is not good because the iron loss is increased by increasing.

[소둔단계][Annealing Step]

상기 방법에 따라 제조된 냉연판은 이어 행하여지는 소둔단계에서, 소둔온도가 600℃보다 낮으면 재료내에 압연조직이 과도하게 잔류하여 수요가 가공시 가공이 어렵고, 800℃보다 높으면 재료내의 잔류응력이 없어져서 수요가가 응력제거소둔 후 강판의 철손특성 개선율이 낮게 되는 단점이 있으므로, 600∼800℃온도에서 소둔하는 것이 바람직하다.In the annealing step performed according to the above method, in the subsequent annealing step, if the annealing temperature is lower than 600 ° C, the rolled structure remains excessively in the material, so that the demand is difficult to process during processing, and if it is higher than 800 ° C, residual stress in the material It is preferable to anneal at 600-800 ° C. because the disadvantage is that the demand is reduced and the iron loss characteristic improvement rate of the steel sheet is low after the stress relief annealing.

[응력제거소둔단계][Stress Removal Annealing Step]

상기 소둔단계에서 소둔한 강판은 경(Skin-Pass) 압연 단계를 거치지 않고 바로 유기질, 무기질 및 유무기복합피막으로 처리하거나 기타 절연가능한 피막제를 입혀 절연피막처리후 수요가로 출하되며, 수요가는 원하는 형상으로 타발한다. 이후 잔류응력을 제거하기 위한 수요가 열처리과정인 응력제거소둔단계는, 온도가 700℃보다 낮으면 강판내 잔류응력이 잔존할 수 있으며, 850℃보다 높으면 절연피막이 손상될 수 있으므로 본 발명의 경우 700∼850℃온도로 조절하는 것이 바람직하다. 응력제거소둔은 이러한 온도하에서 30분 이상 비산화성 분위기로 실시한다.The steel sheet annealed in the annealing step is processed immediately with organic, inorganic and organic / inorganic composite coatings or coated with other insulating coatings without going through the skin-pass rolling step. Punch into shape. After the stress removal annealing step in which the demand for removing the residual stress is a heat treatment process, the residual stress in the steel sheet may remain when the temperature is lower than 700 ℃, if the temperature higher than 850 ℃ may damage the insulating film 700 in the present invention It is preferable to adjust to -850 degreeC temperature. Stress relief annealing is performed under such a temperature for at least 30 minutes in a non-oxidizing atmosphere.

이어 상기 소둔단계를 거친 강판을 수요가 가공 후 최종적으로 행하게 되는 응력제거소둔단계에서는 700∼850℃ 온도에서 응력제거소둔한다.Subsequently, the steel sheet subjected to the annealing step is subjected to stress relief annealing at a temperature of 700 to 850 ° C. in the stress relief annealing step in which demand is finally performed after processing.

이하 실시예 통하여 본 발명을 보다 구체적으로 설명하지만 본 발명이 이들 예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the present invention is not limited only to these examples.

[실시예 1]Example 1

하기 표1과 같은 성분을 갖는 250mm두께의 강슬라브를 제조하고, 이 강슬라브를 하기표2에 나타낸 바와 같은 재가열온도에서 3시간 가열하고 850℃의 마무리압연 온도조건으로 열간압연하여 2.5mm두께로 열간압연판을 만든 후, 이 열간압연판을 하기표1에 나타낸 바와 같은 권취온도에서 권취한 후 공기중에서 냉각하였다. 냉각권취된 열간압연판은 일부 비교재의 경우만 850℃에서 3분 열간압연판소둔을 행하였으며, 대부분 열간압연판소둔은 행하지 않고 산세척만하여 산화층을 제거한 후 0.5mm두께로 냉간압연한 다음, 소둔하였다. 냉연판 소둔은 760℃에서 2분, 수소 20%와 질소80%의 분위기중에서 행하였다. 소둔판은 유무기복합의 절연피막을 입힌후 절단후 770℃의 온도에서 1시간30분간 질소분위기로 응력제거소둔을 실시한 다음, 자기특성, 결정립도 및 (200),(110),(111)면강도를 조사하고 그 결과를 하기 표 2에 나타내었다.A steel slab having a thickness of 250 mm having the components shown in Table 1 was prepared, and the steel slab was heated for 3 hours at a reheating temperature as shown in Table 2, and hot-rolled at a finish rolling temperature of 850 ° C. to 2.5 mm. After the hot rolled sheet was made, the hot rolled sheet was wound at a coiling temperature as shown in Table 1 and then cooled in air. The cold rolled hot rolled sheet was subjected to 3 minute hot rolled sheet annealing at 850 ° C only for some comparative materials. Most of the hot rolled sheet was not annealed, but only pickled and removed from the oxide layer, followed by cold rolling to 0.5 mm thickness. Annealed. Cold-rolled sheet annealing was performed at 760 degreeC for 2 minutes in 20% of hydrogen and 80% of nitrogen. The annealing plate is coated with an insulating film of organic / inorganic composite, and then subjected to stress relief annealing under nitrogen atmosphere for 1 hour and 30 minutes at a temperature of 770 ° C. Then, the magnetic properties, grain size and (200), (110), (111) planes The strength was investigated and the results are shown in Table 2 below.

이때, 타발성은 수요가 가공시 금형교체를 요하는 타발횟수가100만타 미만이면 열등, 150~250만타이면 양호, 300만타이상이면 우수로 판정하였으며, 철손, W15/50은 50Hz의 교류에서 철심에 1.5Tesla의 자속밀도를 유도하였을 때 열 등으로 소모되는 에너지 손실량이며, 자속밀도, B50은 5000A/m의 여자력에서 유기되는 값이며, 결정립도는 응력제거소둔한 시편의 단면을 연마한 후 3% 나이탈(Nital)로 에칭하여 이미지 어넬라이저(Image Analyzer)로 측정하였다. 면강도는 호르타(Horta)식에 의한 집합조직강도로 그 정도를 나타내었는데, (200),(110)면강도는 증가할수록 (111)면강도는 감소할수록 자기특성이 개선된다. 표면결함은 냉간압연 후 강판 표면을 육안으로 관찰하여 유무를 판별하였다.At this time, the punchability was judged to be inferior when the number of punches required for mold replacement during processing was less than 1 million and good if it was 1.5 to 2.5 million , and excellent when more than 3 million . The energy loss consumed by heat when the magnetic flux density of 1.5 Tesla is induced to the iron core. The magnetic flux density, B 50, is induced at an excitation force of 5000 A / m, and the grain size is obtained by grinding the cross section of the stress-annealed specimen. It was then etched with 3% Nital and measured with an Image Analyzer. The surface strength was represented by the aggregate structure strength according to the Horta equation, and as the (200) and (110) surface strengths increased, the (111) surface strength decreased and the magnetic properties improved. Surface defects were determined by visual observation of the surface of the steel sheet after cold rolling.

강종Steel grade 성분(중량%)Ingredient (% by weight) CC SiSi 산가용성AlAcid Soluble Al MnMn SS NN 발명강Invention steel AA 0.0040.004 0.10.1 1.01.0 0.50.5 0.0030.003 0.0020.002 BB 0.0050.005 1.51.5 0.10.1 0.60.6 0.0030.003 0.0030.003 CC 0.0020.002 0.80.8 0.30.3 1.01.0 0.0050.005 0.0020.002 DD 0.0020.002 0.70.7 0.90.9 0.10.1 0.0040.004 0.0040.004 EE 0.0030.003 0.60.6 0.60.6 0.80.8 0.0030.003 0.0050.005 FF 0.0050.005 0.70.7 0.50.5 0.70.7 0.0030.003 0.0030.003 GG 0.0030.003 0.50.5 0.80.8 0.70.7 0.0020.002 0.0020.002 HH 0.0030.003 0.50.5 0.80.8 0.70.7 0.00050.0005 0.0020.002 II 0.0030.003 0.50.5 0.80.8 0.70.7 0.0020.002 0.00050.0005 JJ 0.0030.003 0.50.5 0.80.8 0.70.7 0.00050.0005 0.00050.0005 KK 0.0030.003 0.50.5 0.80.8 0.70.7 0.0050.005 0.0050.005 LL 0.0030.003 0.80.8 0.10.1 0.10.1 0.0020.002 0.0020.002 MM 0.0030.003 0.80.8 0.30.3 0.20.2 0.0020.002 0.0020.002 NN 0.0030.003 0.40.4 1.01.0 1.01.0 0.0020.002 0.0020.002 비교강Comparative steel AA 0.0030.003 0.05*0.05 * 0.70.7 0.60.6 0.0030.003 0.0020.002 BB 0.0030.003 2.0*2.0 * 0.70.7 0.60.6 0.0030.003 0.0020.002 *: 본 발명범위를 벗어난 조건임*: Conditions outside the scope of the present invention

상기 표 1 및 표 2에 나타난 바와 같이, 발명재(1-14)가 비교재(1-15)에 비해 타발성이 우수하며, 철손 및 자속밀도 특성이 우수하고, 강판 표면결함이 미발생됨을 알 수 있었다. 구체적으로 설명하면, 비교재1,3,5는 성분은 본 발명범위내에 있으나 슬라브 재가열시 적정온도 이상으로 재가열한 결과 AlN 및 MnS의 미세석출로 인하여 응력제거소둔시 입성장이 억제되기 때문에 열등한 철손특성이 얻어졌다. 비교재2,4,6은 적정온도에 못미쳐서 재가열된 결과 자기특성에 유리한 (200),(110)면강도가 낮아 우수한 철손특성을 얻을 수 없었다. 비교재(7-12)의 경우는 성분과 재가열온도는 본 발명범위에 드나 열간압연판 권취온도가 본 발명범위를 벗어난 예이다. 이중 비교재 7,9,11은 권취온도가 적정온도에 못미쳐서 권취된 경우로 자기특성에 불리한 (110)면강도가 높아 우수한 철손 및 자속밀도가 얻어지지 않았으며, 비교재8,10,12는 권취온도가 적정온도를 초과하는 경우로 자기특성은 우수하나 열간압연판 표면에 과도한 산화층이 생성되어 산세척시 산화층 제거가 불량한 결과 냉연판 표면에 결함이 발생하였다. 비교재13은 Si함량이 본 발명범위 미만인 경우로 우수한 철손특성이 얻어지지 않았다. 비교재14는 Si함량이 과다한 경우로 타발성이 열등하였으며, 자속밀도도 열화되었다. 비교재15는 열간압연판소둔을 행한 경우로 열간압연판소둔시 미세탄화물이 생성되어 결정립성장을 억제하게 되는 결과 열등한 철손특성이 얻어졌다.As shown in Table 1 and Table 2, the invention material (1-14) is superior to the punchability compared to the comparative material (1-15), excellent iron loss and magnetic flux density characteristics, and no steel plate surface defects Could know. Specifically, the comparative materials 1, 3, 5 are inferior iron loss characteristics because the components are within the scope of the present invention, but the grain growth is suppressed during stress removal annealing due to the microprecipitation of AlN and MnS as a result of reheating above the proper temperature when reheating the slab Was obtained. Comparative materials 2, 4, and 6 were reheated below the proper temperature, and as a result, they had low (200) and (110) surface strengths, which were favorable for magnetic properties, and thus, excellent iron loss characteristics could not be obtained. In the case of the comparative material (7-12), the component and reheating temperature are within the scope of the present invention, but the hot rolled sheet winding temperature is an example outside the scope of the present invention. Among the comparative materials 7,9 and 11, when the winding temperature was less than the proper temperature, the coils were wound due to the (110) surface strength, which is detrimental to the magnetic properties, and thus excellent iron loss and magnetic flux density were not obtained. In the case where the coiling temperature exceeds the proper temperature, the magnetic properties are excellent, but the excessive oxide layer is formed on the surface of the hot rolled sheet, so that the oxide layer is poorly removed during pickling. Comparative material 13 was not obtained excellent iron loss characteristics when the Si content is less than the scope of the present invention. Comparative Material 14 was inferior in punchability due to excessive Si content and deteriorated magnetic flux density. In Comparative Material 15, when hot-rolled sheet annealing was performed, fine carbides were formed during hot-rolled sheet annealing to suppress grain growth, resulting in inferior iron loss characteristics.

[실시예 2]Example 2

중량%로 C:0.003%, Si:0.8%, 산가용성Al:0.3%, Mn:0.2%, S:0.002%, N:0.002%이고,나머지 Fe 및 기타 불순물로 조성되는 슬라브를 하기표3에 나타낸 바와 같은 재가열온도에서 3시간 재가열한 후 2.0mm의 두께로 열간압연하고, 하기 표 3에 나타낸 바와 같은 권취온도에서 권취한 후 밀페된 소둔로에서 로냉하였다. 로냉된 열간압연판은 열간압연판소둔 없이 산세만 한후 0.5㎜의 두께로 냉간압연하였다. 냉연판은 수소 20%와 질소 80%의 분위기에서 740℃, 2분간 소둔하였다. 소둔후 연속하여 유무기혼합의 절연피막을 입힌 후 절단하고, 1차 철손특성을 조사하고 그 결과를 하기표 3에 나타내었다. 그리고, 상기와 같이 절단한 시편을 770℃의 온도에서 1.5시간동안 질소 100%의 분위기로 응력제거소둔한 후 최종 철손특성을 조사하고 그 결과 또한 표 3에 나타내었다.Slab composed of C: 0.003%, Si: 0.8%, acid soluble Al: 0.3%, Mn: 0.2%, S: 0.002%, N: 0.002% by weight and the remaining Fe and other impurities are shown in Table 3 below. After reheating for 3 hours at the reheating temperature as shown, it was hot rolled to a thickness of 2.0 mm, wound at a coiling temperature as shown in Table 3, and then cooled in a sealed annealing furnace. The furnace-cooled hot rolled plate was cold pickled to a thickness of 0.5 mm after pickling only without annealing the hot rolled plate. The cold rolled sheet was annealed at 740 ° C. for 2 minutes in an atmosphere of 20% hydrogen and 80% nitrogen. After annealing, the insulation coating of the organic-inorganic mixture was successively coated and then cut. The primary iron loss characteristics were investigated and the results are shown in Table 3 below. In addition, the specimens cut as described above were stress-annealed in an atmosphere of 100% nitrogen for 1.5 hours at a temperature of 770 ° C., and then the final iron loss characteristics were investigated. The results are also shown in Table 3.

시료번호Sample Number 재가열온도(℃)Reheating Temperature (℃) 권취온도(℃)Winding temperature (℃) 응력제거소둔전 철손,W15/50(W/kg)Iron loss before stress relief annealing, W15 / 50 (W / kg) 응력제거소둔후 철손,W15/50(W/kg)Iron loss after stress relief annealing, W15 / 50 (W / kg) 철손개선율(%)Iron loss improvement rate (%) 발명재15Invention Material 15 11501150 740740 5.185.18 2.802.80 4646 비교재16Comparative Material 16 1200*1200 * 740740 5.755.75 4.54*4.54 * 21*21 * 비교재17Comparative Material17 1050*1050 * 600*600 * 5.465.46 4.01*4.01 * 27*27 *

상기 표3에 나타난 바와 같이, 본 발명범위의 강조성을 가지며, 적정 재가열온도에서 재가열하고 적정 권취온도에서 권취를 행한 발명재15의 경우는 온도응력제거소둔후의 철손이 응력제거소둔전에 비해 약 46%이상 개선된 우수한 철손특성을 보인 반면에, 재가열온도가 발명범위를 초과하는 경우(비교재16)나 재가열온도가 너무 낮고, 권취온도가 적정온도에 못미치는 경우(비교재17)는 응력제거소둔후 우수한 철손 및 철손개선율이 얻어지지 않았다.As shown in Table 3, in the case of Inventive Material 15, which has the emphasis of the present invention and reheated at an appropriate reheating temperature and wound at an appropriate winding temperature, iron loss after the temperature stress removal annealing was about 46 compared to that before the stress relief annealing. While excellent iron loss characteristics were improved by more than%, stress was removed when the reheating temperature exceeded the invention range (Comparative Material 16) or when the reheating temperature was too low and the winding temperature was below the proper temperature (Comparative Material 17). After annealing, excellent iron loss and iron loss improvement rate were not obtained.

상술한 바와 같이, 본 발명에서는 Si을 통상에 비해 적게 첨가하고 Ni을 첨가하지 않음으로써 소재의 취성과 강도를 제어하여 수요가 가공시 우수한 타발성을 확보할 수 있게 되며, S및 N함량에 따라 제어된 온도에서 슬라브 재가열을 행하고 동시에 산가용성Al및 Mn함량에 따라 제어된 온도에서 열간압연판 권취를 행하고 열간압연판소둔을 미실시함으로써 응력제거소둔후 철손이 낮고 또한 철손개선율이 높은 무방향성 전기강판을 제공할 수 있는 효과가 있다. 또한, 본 발명에 의하면 제강시 고가원소인 Ni을 첨가할 필요가 없어서 제조원가를 낮출 수 있으며, 아울러 열간압연판소둔 및 경압연을 거치지 않고도 우수한 자기특성을 확보할 수 있어 제조공정이 단축되는 효과가 있는 것이다.As described above, in the present invention, by adding less Si than usual and not adding Ni, the brittleness and strength of the material can be controlled to ensure excellent punchability during demand processing, depending on the S and N content. Non-oriented electrical steel sheet with low iron loss and high iron loss improvement after stress relief annealing by slab reheating at a controlled temperature and hot rolled sheet winding at a controlled temperature according to the acid-soluble Al and Mn content and no hot rolled sheet annealing. There is an effect that can provide. In addition, according to the present invention, there is no need to add Ni, which is a high-cost element during steelmaking, to reduce manufacturing costs, and to secure excellent magnetic properties without undergoing hot rolling annealing and light rolling, thereby shortening the manufacturing process. It is.

Claims (1)

무방향성 전기강판의 제조방법에 있어서,In the manufacturing method of the non-oriented electrical steel sheet, 중량%로 C: 0.005%이하, S:0.0005~0.005%, N:0.0005~0.005%, Si:0.1∼1.5%, 산가용성 Al:0.1~1.0%, Mn:0.1~1.0%, 나머지Fe 및 기타 불순물로 조성된 강 슬라브를 1050∼1250℃온도범위에서 S 및 N함량에 의 아래 관계식 1에 의해 결정되는 재가열온도(T1)에서 재가열하여 1.8~3.0mm두께로 열간압연하는 단계,By weight% C: 0.005% or less, S: 0.0005 ~ 0.005%, N: 0.0005 ~ 0.005%, Si: 0.1 ~ 1.5%, acid soluble Al: 0.1 ~ 1.0%, Mn: 0.1 ~ 1.0%, remaining Fe and others Reheating the steel slab composed of impurity at a reheating temperature (T1) determined by the following relation 1 according to the S and N content in the temperature range of 1050 to 1250 ° C. and hot rolling to a thickness of 1.8 to 3.0 mm, [관계식 1][Relationship 1] T1=1650+1200/log(X1+X2) ±5℃T1 = 1650 + 1200 / log (X1 + X2) ± 5 ° C 여기서 T1:적정 재가열온도, X1:S함량(중량%), X2:N함량(중량%)Where T1: Proper reheating temperature, X1: S content (% by weight), X2: N content (% by weight) 이 열간압연판을 600∼800℃온도범위에서 산가용성 Al 및 Mn첨가량에 의해 아래 관계식 2에 의해 결정되는 권취온도(T2)에서 권취하는 단계,Winding the hot rolled sheet at a winding temperature (T2) determined by the following equation 2 by the amount of acid-soluble Al and Mn added in a temperature range of 600 to 800 ° C., [관계식 2][Relationship 2] T2=1200+1200/log[(Y1+Y2)/200] ±5℃T2 = 1200 + 1200 / log [(Y1 + Y2) / 200] ± 5 ℃ 여기서 T2:적정 권취온도, Y1:산가용성 Al함량(중량%), Y2:Mn함량(중량%)Where T2: appropriate winding temperature, Y1: acid-soluble Al content (% by weight), Y2: Mn content (% by weight) 상기 권취한 미소둔 열간압연판을 산세척 행한 후 0.2~0.65mm두께로 1회 냉간압연하는 단계,After the pickled micro-rolled hot rolled plate is pickled and cold rolled to a thickness of 0.2 to 0.65 mm, 냉간압연판을 600∼800℃온도에서 30∼300초동안 소둔한 다음, 수요가 가공 후 700∼850℃온도에서 응력제거소둔하는 단계를 포함하여 이루어짐을 특징으로 하는 수요가 가공시 타발성이 우수하며 응력제거소둔후 철손이 낮은 무방향성 전기강판의제조방법.The cold rolled sheet is annealed at a temperature of 600 to 800 ° C. for 30 to 300 seconds, and the demand is followed by a stress relief annealing at a temperature of 700 to 850 ° C. after processing. And manufacturing method of non-oriented electrical steel sheet with low iron loss after stress relief annealing.
KR1020010082121A 2001-12-20 2001-12-20 Manufacturing Method for Non-Oriented Electrical Steel Sheet having Superior Punchability and Low Core Loss after Stress Relief Annealing KR100544738B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010082121A KR100544738B1 (en) 2001-12-20 2001-12-20 Manufacturing Method for Non-Oriented Electrical Steel Sheet having Superior Punchability and Low Core Loss after Stress Relief Annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010082121A KR100544738B1 (en) 2001-12-20 2001-12-20 Manufacturing Method for Non-Oriented Electrical Steel Sheet having Superior Punchability and Low Core Loss after Stress Relief Annealing

Publications (2)

Publication Number Publication Date
KR20030052207A true KR20030052207A (en) 2003-06-26
KR100544738B1 KR100544738B1 (en) 2006-01-24

Family

ID=29577056

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010082121A KR100544738B1 (en) 2001-12-20 2001-12-20 Manufacturing Method for Non-Oriented Electrical Steel Sheet having Superior Punchability and Low Core Loss after Stress Relief Annealing

Country Status (1)

Country Link
KR (1) KR100544738B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819465B2 (en) * 1990-02-02 1996-02-28 日本鋼管株式会社 Non-oriented electrical steel sheet manufacturing method
TW422885B (en) * 1996-12-09 2001-02-21 Po Hang Iron & Steel Non-oriented magnetic steel plate with excellent electro-magnetic properties and process for making the same
KR100395100B1 (en) * 1998-06-16 2003-10-17 주식회사 포스코 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment

Also Published As

Publication number Publication date
KR100544738B1 (en) 2006-01-24

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH10298653A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
JPH10152724A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
KR100373871B1 (en) Non-oriented electrical steel sheet and core for motor or transformer with low iron loss after stress relief annealing
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP2014156633A (en) Manufacturing method for directional electromagnetic steel plate, directional electromagnetic steel plate, surface glass coating for directional electromagnetic steel plate
KR100530069B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
CN115066508A (en) Method for producing grain-oriented electromagnetic steel sheet
KR100544738B1 (en) Manufacturing Method for Non-Oriented Electrical Steel Sheet having Superior Punchability and Low Core Loss after Stress Relief Annealing
KR100340548B1 (en) A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
KR100466176B1 (en) Method for Manufacturing non-oriented electrical steel sheet having low core loss
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
KR100940714B1 (en) Method for manufacturing non-oriented electrical steel sheet having low core loss after stress relief annealing
KR100530047B1 (en) A non-oriented electrical steel sheet having improved core loss after stress relief annealing and a method for manufacturing it
KR101089302B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction
JPH11131196A (en) Nonoriented silicon steel sheet minimal in iron loss
KR100890812B1 (en) A electrical steel sheet manufacturing method having low iron loss and high magnetic property
EP4317471A1 (en) Production method for grain-oriented electrical steel sheet
KR20230159875A (en) Manufacturing method of grain-oriented electrical steel sheet
JPH11323437A (en) Production of thick grain-oriented silicon steel plate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130103

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150108

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160111

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170109

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180110

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200110

Year of fee payment: 15