KR20030049115A - Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and the electrolyte - Google Patents

Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and the electrolyte Download PDF

Info

Publication number
KR20030049115A
KR20030049115A KR1020010079232A KR20010079232A KR20030049115A KR 20030049115 A KR20030049115 A KR 20030049115A KR 1020010079232 A KR1020010079232 A KR 1020010079232A KR 20010079232 A KR20010079232 A KR 20010079232A KR 20030049115 A KR20030049115 A KR 20030049115A
Authority
KR
South Korea
Prior art keywords
electrolyte
gel electrolyte
binder
polyvinyl alcohol
silica
Prior art date
Application number
KR1020010079232A
Other languages
Korean (ko)
Other versions
KR100433470B1 (en
Inventor
박진
최대근
홍성훈
박승빈
양승만
홍원희
김광석
송현우
Original Assignee
한국전지주식회사
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전지주식회사, 한국과학기술원 filed Critical 한국전지주식회사
Priority to KR10-2001-0079232A priority Critical patent/KR100433470B1/en
Publication of KR20030049115A publication Critical patent/KR20030049115A/en
Application granted granted Critical
Publication of KR100433470B1 publication Critical patent/KR100433470B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: Provided is a binder-added inorganic gel electrolyte for a sealed type lead storage battery, which is excellent in structural strength, charging capacity, and lifetime property. CONSTITUTION: The binder-added inorganic gel electrolyte is produced by mixing and dispersing silica in sulfuric acid solution at more than 2000rpm and then adding 0.001-1%(based on the weight of the electrolyte) of polyvinyl alcohol as a binder to the silica-sulfuric acid solution dispersion, wherein the polyvinyl alcohol has a molecular weight of more than 10000.

Description

결합제를 첨가한 납축전지용 무기 젤 전해질의 제조방법 및 그 전해질{Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and the electrolyte}Method of manufacturing inorganic gel electrolyte for lead acid battery with binder added and its electrolyte {Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and the electrolyte}

본 발명은 수용액으로 됐을 때 전리(電離)하여 이온을 생기게 하고 전류를이끌 수 있는 전해질, 특히 결합제를 첨가한 납축전지용 무기 젤 전해질의 제조방법과 그 전해질에 관한 것이다.TECHNICAL FIELD The present invention relates to a method for producing an electrolyte that can ionize when generated as an aqueous solution, to generate ions, and to lead an electric current, in particular, an inorganic gel electrolyte for lead acid battery containing a binder and an electrolyte thereof.

납축전지는 전해질인 황산중에서 각각 납과 산화납으로 이루어진 양극판과 음극판의 산화와 환원 반응으로 충전과 방전이 가능케 된 축전지이다. 일반적으로 납축전지의 양극판과 음극판은 두 극판 사이를 격리시키는 격리판과 함께 번갈아 여러장 배치된다. 이렇게 배치된 여러장의 극판과 격리판 이외의 공간은 전해질인 황산으로 채워져 있다.A lead acid battery is a battery that can be charged and discharged by oxidation and reduction of a positive electrode plate and a negative electrode plate made of lead and lead oxide in sulfuric acid as an electrolyte. Generally, the positive and negative plates of lead acid batteries are alternately arranged with separators separating the two plates. The spaces other than the plates and separators arranged in this way are filled with sulfuric acid as an electrolyte.

납축전지는 오랜 사용 역사에 따른 안정적인 기술이며, 저렴한 가격과 대용량화 및 재활용의 용이성이 장점이다. 그러나 납축전지를 충방전용으로 사용하는 경우에 주기적인 보액이 필요하고, 대형화시에 전해질인 황산의 층리화 현상에 따른 극판의 부식과 황산화(sulfation)의 문제를 가지고 있는데, 이로 인해 축전지의 수명이 짧아져 상당한 비용 문제가 발생한다. 또한 과충전시 발생하는 가스에 의한 폭발의 위험성도 가지고 있다.Lead acid battery is a stable technology with a long history of use, and has the advantages of low price, large capacity and easy recycling. However, when lead-acid batteries are used for charging and discharging, periodic replenishment is required, and there is a problem of corrosion and sulfation of the electrode plate due to the stratification phenomenon of sulfuric acid, which is an electrolyte, in large-scale, which leads to the life of the battery. This shortening creates a significant cost problem. In addition, there is a risk of explosion by the gas generated during overcharging.

이러한 문제에 대한 대안으로 전해질인 황산을 무기 젤이나 흡수유리매트(AGM; absorptive glass mat)에 포함시켜 사용하게 되나, 흡수유리매트의 경우 사용중 발열의 문제가 발생하며, 무기 젤에 비해 황산의 층리화가 크다. 특히 대형 산업용의 경우, 황산의 층리화 현상이 적고 상대적으로 황산의 함유량이 높기 때문에 성능이 우수한 젤 전해질을 주로 사용한다.As an alternative to this problem, sulfuric acid, which is an electrolyte, is included in an inorganic gel or an absorptive glass mat (AGM), but in the case of an absorbent glass mat, there is a problem of heat generation during use. Angry Particularly in the large industrial industry, gel electrolytes having excellent performance are mainly used because of less layering of sulfuric acid and relatively high sulfuric acid content.

무기 젤은 일반적으로 퓸드 실리카(fumed silica)나 콜로이드 상태의 실리케이트 등의 무기 입자를 황산 수용액 중에서 젤화시켜 제조한다. 이 경우, 산소 재결합에 의해 가스 발생량이 감소하여, 축전지를 밀폐 상태로 사용할 수 있기 때문에, 전해액의 주기적 첨가 등의 보수가 불필요하고 폭발의 위험성도 적다. 또한 전해액의 층리화가 작기 때문에 극판의 부식이나 황산화가 감소하여 수명도 더 길어진다. 그러나 이러한 무기 젤 전해질은 황산에 비해 낮은 충전 용량 수명 성능, 그리고 반복되는 충방전에 따른 젤의 균열 등의 문제를 가지고 있다.Inorganic gels are generally prepared by gelling inorganic particles such as fumed silica or colloidal silicates in an aqueous sulfuric acid solution. In this case, the amount of gas generated is reduced by oxygen recombination, and the storage battery can be used in a sealed state, so that maintenance such as periodic addition of the electrolyte solution is unnecessary and the risk of explosion is small. In addition, since the stratification of the electrolyte is small, corrosion and sulfateization of the electrode plate are reduced, resulting in a longer lifetime. However, these inorganic gel electrolytes have problems such as low charge capacity life performance and gel cracking due to repeated charging and discharging, compared to sulfuric acid.

일반적으로 무기 젤 중의 무기 입자의 비율이 높아지면, 사용중 젤의 균열과 같은 물리적 변형이 감소하는 등 물리적인 강도는 높아지나, 이에 반해 충전 용량은 낮아진다고 알려져 있다.In general, it is known that the higher the proportion of inorganic particles in the inorganic gel, the higher the physical strength, such as reduced physical deformation such as cracking of the gel during use, while lowering the filling capacity.

무기 젤 전해질이 가지고 있는 상기와 같은 문제들을 해결하기 위해 소량의 결합제가 사용되는데, 결합제가 무기 입자들간의 결합을 강화하여 충전 용량을 낮추지 않으면서도 기계적인 강도를 높일 수 있는 것이다.In order to solve the problems of the inorganic gel electrolyte, a small amount of binder is used, which enhances the bond between the inorganic particles, thereby increasing the mechanical strength without lowering the filling capacity.

미국 특허 제3,172,782호에는 3∼10중량%의 실리카를 포함하는 젤 전해질이 발표되어 있다.U.S. Patent No. 3,172,782 discloses a gel electrolyte comprising 3-10% by weight of silica.

미국 특허 제3,271,199호와 3,328,208호에는 5∼8중량%의 실리카에 펙틴을 0.3중량% 첨가하여 제조한 젤에 대해 발표되어 있다. 펙틴은 또한 음극의 산화반응을 억제하는 효과도 있다고 한다(미국 특허 제3,271,199호).U.S. Patent Nos. 3,271,199 and 3,328,208 disclose gels prepared by adding 0.3% by weight of pectin to 5-8% by weight of silica. Pectin also has the effect of inhibiting the oxidation of the cathode (US Pat. No. 3,271,199).

미국 특허 제3,776,779호에는 3∼8.5중량%의 실리카 입자에 0.0001∼0.065중량%의 폴리에틸렌글리콜을 첨가하여 제조한 젤에 대해 발표되어 있으며, 이때 사용된 폴리에틸렌글리콜의 분자량은 800∼6000이었다.U.S. Patent No. 3,776,779 discloses a gel prepared by adding 0.0001 to 0.065% by weight of polyethylene glycol to 3 to 8.5% by weight of silica particles, wherein the molecular weight of polyethylene glycol used was 800 to 6000.

미국 특허 제4,937,156호와 유럽 특허 제325,672호에는 3∼5중량%의 실리카입자에 0.1∼1.0중량%의 폴리아크릴아마이드를 첨가하여 제조한 젤에 대해 발표되어 있다.US Patent No. 4,937,156 and European Patent No. 325,672 disclose gels prepared by adding 0.1 to 1.0% by weight of polyacrylamide to 3-5% by weight of silica particles.

본 발명의 목적은 보다 향상된 구조적 강도를 갖도록 하는 결합제가 첨가된 납축전지용 무기 젤 전해질의 제조방법과 그 전해질을 제공하는데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for preparing an inorganic gel electrolyte for a lead acid battery, to which a binder added to have improved structural strength and an electrolyte thereof.

도 1은 납축전용 무기 젤 전해질의 저장탄성율을 나타낸 그래프로서, (a)는 본 발명의 실시예 1 및 2에 따라 분자량 13,000의 폴리비닐알콜을 첨가하여 제조한 경우이고, (b)는 본 발명의 실시예 3에 따라 분자량 124,000의 폴리비닐알콜을 첨가하여 제조한 경우이고, (C)는 비교예 2에 따라 실리카의 비율이 8중량%이며 첨가제를 사용하지 않고 제조한 경우이다.1 is a graph showing the storage modulus of the lead-acid inorganic gel electrolyte, (a) is a case prepared by adding polyvinyl alcohol having a molecular weight of 13,000 according to Examples 1 and 2 of the present invention, (b) is the present invention According to Example 3 was prepared by the addition of polyvinyl alcohol having a molecular weight of 124,000, (C) is a case where the proportion of silica according to Comparative Example 2 is 8% by weight and prepared without using an additive.

도 2는 납축전지용 무기 젤 전해질의 전기전도도를 나타낸 그래프로서, (a)는 본 발명의 실시예 1에 따라 분자량 13,000의 폴리비닐알콜을 첨가하여 제조한 경우이고, (b)는 본 발명의 실시예 1 및 2에 따라 분자량 124,000인 폴리비닐알콜을 첨가하여 제조한 경우이고, (c)는 비교예 2에 따라 실리카의 비율이 8중량%이며 첨가제를 사용하지 않고 제조한 경우이다.Figure 2 is a graph showing the electrical conductivity of the inorganic gel electrolyte for lead acid battery, (a) is a case prepared by adding polyvinyl alcohol having a molecular weight of 13,000 according to Example 1 of the present invention, (b) is According to Examples 1 and 2 was prepared by the addition of polyvinyl alcohol having a molecular weight of 124,000, (c) is a case in which the proportion of silica according to Comparative Example 2 is 8% by weight and prepared without using an additive.

상기 목적을 달성하는 본 발명에 따른 결합제가 첨가된 납축전지용 무기 젤 전해질의 제조방법은, 결합제로서 분자량 10,000 이상인 폴리비닐알콜이 전해질 무게대비 0.01 내지 1% 첨가하여 제조하는 것을 특징으로 한다.A method for preparing an inorganic gel electrolyte for a lead acid battery containing a binder according to the present invention, which achieves the above object, is characterized in that polyvinyl alcohol having a molecular weight of 10,000 or more is added by 0.01 to 1% by weight of an electrolyte.

결합제는 젤 전해질을 구성하는 무기 입자 표면의 수산기와 수소결합을 일으켜 입자들의 결합을 강화시키는 역할을 하므로, 결합제에 수소 결합이 가능한 작용기를 포함하고 있어야 한다. 이러한 수소 결합을 위해 분자내에 산소나 질소 등의 원자를 포함하는 결합제가 일반적으로 사용되며, 결합제의 분자량이 클수록 결합제와 접촉하여 결합을 이룰 수 있는 무기 입자의 수가 많아지기 때문에 고분자 결합제가 많이 사용된다.Since the binder plays a role of hydrogen bonding with the hydroxyl groups on the surface of the inorganic particles constituting the gel electrolyte to strengthen the bonding of the particles, the binder must include a functional group capable of hydrogen bonding. A binder containing an atom such as oxygen or nitrogen in a molecule is generally used for such a hydrogen bond.As the molecular weight of the binder increases, the number of inorganic particles that can form a bond in contact with the binder increases, so that a polymer binder is used a lot. .

이러한 이유로 본 발명에서는 단위 사슬마다 수산기를 가지며 다른 첨가제에 비해 상대적으로 많은 수산기를 가지는 폴리비닐알콜을 결합제로 사용하였다.For this reason, in the present invention, polyvinyl alcohol having a hydroxyl group per unit chain and having a relatively large number of hydroxyl groups compared to other additives was used as a binder.

그러나 지나치게 높은 분자량의 결합제는 공정에 적합한 젤의 점도 범위를 넘어설 수 있기 때문에 적정한 범위의 분자량의 결합제를 사용할 필요가 있다. 또한 지나치게 낮은 분자량의 결합제가 과량 사용되는 경우, 결합제 분자가 다수의무기 입자간의 결합보다는 단일 입자의 표면에 흡착되어, 입자간의 결합과는 반대로 입자들간의 분산 안정성을 높이는 역할을 하게 될 수 있다.However, binders of too high molecular weight may exceed the viscosity range of the gel suitable for the process, so it is necessary to use a binder in an appropriate range of molecular weights. In addition, when an excessively low molecular weight binder is used, the binder molecule may be adsorbed on the surface of a single particle rather than a plurality of inorganic particles, thereby increasing the dispersion stability between particles as opposed to the binding between particles.

따라서 첨가하는 폴리비닐알콜의 분자량은 10,000 이상이 적정하며, 원하는 수준의 구조적 강도 향상과 공정상의 용이성을 위해서 첨가량은 젤 전해질 중량대비 0.001 내지 1%로 하는 것이 바람직하다.Therefore, the molecular weight of the polyvinyl alcohol to be added is more than 10,000 is appropriate, in order to improve the structural strength of the desired level and the ease of the process, the addition amount is preferably 0.001 to 1% relative to the weight of the gel electrolyte.

한편, 폴리비닐알콜은 실온에서 물에 용해되는 속도가 매우 느리기 때문에 첨가전에 미리 80℃의 물에 용해한 다음에 첨가함으로써 젤 전해질 내에서의 균일한 혼합을 이루도록 하였다.On the other hand, since polyvinyl alcohol has a very low rate of dissolving in water at room temperature, the polyvinyl alcohol is dissolved in water at 80 ° C. before addition and then added to achieve uniform mixing in the gel electrolyte.

이하에 실시예를 통해 본 발명을 상세히 설명하였으며, 이에 제한되는 것은 아니다.Hereinafter, the present invention has been described in detail with reference to Examples, but is not limited thereto.

[실시예 1]Example 1

퓸드 실리카인 에어로실(aerosil) 200(Degussa)을 황산 수용액과 2000rpm 이상에서 혼합하여 응집된 입자를 분산시켰다. 이때 실리카는 6중량%의 비율로 혼합하였다. 이렇게 혼합한 실리카-황산 수용액 분산에 분자량 13,000(aldrich)의 폴리비닐알콜을 0.1중량%로 첨가하여 젤 전해질을 제조하였다. 폴리비닐알콜은 미리 80℃의 물에 용해하여 준비해두었으며 이를 첨가하였다.Aerosil 200 (Degussa), fumed silica, was mixed with an aqueous sulfuric acid solution at 2000 rpm or more to disperse the aggregated particles. At this time, the silica was mixed in a proportion of 6% by weight. A gel electrolyte was prepared by adding 0.1 wt% of polyvinyl alcohol having a molecular weight of 13,000 (aldrich) to the dispersion of silica-sulfuric acid solution thus mixed. Polyvinyl alcohol was previously prepared by dissolving in water at 80 ° C. and adding it.

[실시예 2]Example 2

폴리비닐알콜을 0.2중량% 첨가하는 것을 제외하고는 실시예 1과 동일하게 제조하였다.It was prepared in the same manner as in Example 1 except adding 0.2% by weight of polyvinyl alcohol.

[실시예 3]Example 3

분자량 124,000의 폴리비닐알콜 0.05중량%를 첨가하는 것을 제외하고는 실시예 1과 동일하게 제조하였다.It was prepared in the same manner as in Example 1 except adding 0.05% by weight of polyvinyl alcohol having a molecular weight of 124,000.

[비교예 1]Comparative Example 1

퓸드 실리카인 에어로실 200을 황산 수용액과 2000rpm 이상에서 혼합하여 응집된 입자를 분산시켜서 젤 전해질을 제조하였다. 이때 실리카는 6중량%의 비율로 혼합하였다.Aerosil 200, fumed silica, was mixed with an aqueous sulfuric acid solution at 2000 rpm or more to disperse the aggregated particles to prepare a gel electrolyte. At this time, the silica was mixed in a proportion of 6% by weight.

[비교예 2]Comparative Example 2

실리카를 8중량%의 비율로 혼합한 것을 제외하고는 비교예 1과 동일하다.It is the same as that of Comparative Example 1, except that the silica was mixed at a ratio of 8% by weight.

[시험예][Test Example]

상기 실시예 1 내지 3 및 비교예 1 내지 2의 젤 전해질의 구조적 강도를 평가하기 위해서 동적 진동 테스트(dynamic oscillation test)를 통해 25℃에서 저장탄성율을 측정하였다. 측정에는 Rheometrics사의 ARES Fluid Rheometer를 사용하였다. 저장탄성율값이 높을수록 젤 전해질을 이루는 입자간의 결합이 강하다고 할 수 있다.In order to evaluate the structural strength of the gel electrolytes of Examples 1 to 3 and Comparative Examples 1 and 2, the storage modulus was measured at 25 ° C. through a dynamic oscillation test. Rheometrics ARES Fluid Rheometer was used for the measurement. The higher the storage modulus, the stronger the bond between the particles forming the gel electrolyte.

저장탄성율의 측정 결과, 실시예 1 내지 3의 젤 전해질은 폴리비닐알콜을 첨가하지 않은 비교예 1의 젤 전해질에 비해 높은 저장탄성율값을 보였으며, 실리카의 비율이 2중량% 더 높은 비교예 2의 젤 전해질 수준의 저장탄성율값을 보였다(도 1). 이는 폴리비닐알콜을 첨가한 젤 전해질이 폴리비닐알콜이 첨가되지 않고 실리카의 비율이 더 높은 젤 전해질에 상당하는 우수한 구조적 강도를 가진다는 것을 의미한다.As a result of measuring the storage modulus, the gel electrolytes of Examples 1 to 3 showed higher storage modulus values than the gel electrolyte of Comparative Example 1 without adding polyvinyl alcohol, and the silica content was 2% by weight. The storage modulus of the gel electrolyte level was shown (FIG. 1). This means that the gel electrolyte added with polyvinyl alcohol has excellent structural strength equivalent to that of the gel electrolyte with no polyvinyl alcohol added and with a higher proportion of silica.

상기 실시예 1 내지 3 및 비교예 1의 젤 전해질의 전기 전도도를 측정하였다. 측정에는 Frequency response analyzer를 사용하였다. 전기전도도가 높을수록 축전지의 전해질로서 우수하다고 할 수 있다.The electrical conductivity of the gel electrolyte of Examples 1 to 3 and Comparative Example 1 was measured. Frequency response analyzer was used for the measurement. The higher the electrical conductivity, the better the electrolyte of the battery.

도 2를 보면, 실시예 1 내지 3의 젤 전해질은 폴리비닐알콜을 첨가하지 않은 비교예 2의 젤 전해질보다 높은 전기 전도도를 가진다. (도 2에서는 비교의 용이함을 위해, 실리카를 포함하지 않은 황산의 전기 전도도를 기준 100으로 했다. 또한 참고를 위해 8%의 실리카를 함유하는 젤의 전기 전도도를 점선으로 표시하였다.) 특히 실시예 1과 3은 같은 양의 실리카를 포함하는 젤은 비교예 1의 젤과 거의 동등한 전기 전도도를 가진다. 이는 폴리비닐알콜을 첨가한 젤 전해질이 폴리비닐알콜이 첨가되지 않고 실리카의 비율이 더 높은 젤 전해질에 상당하는 우수한 구조적 강도를 가지면서도 전기 전도도는 거의 변화가 없다는 것을 의미한다. 즉, 폴리비닐알콜을 소량 첨가하면 전기 전도도에서의 저하 없이도 구조적 강도의 향상을 이룰 수 있다는 것이다.2, the gel electrolytes of Examples 1 to 3 have higher electrical conductivity than the gel electrolyte of Comparative Example 2 without the addition of polyvinyl alcohol. (In Fig. 2, for ease of comparison, the electrical conductivity of sulfuric acid without silica was set to 100. Also, for reference, the electrical conductivity of a gel containing 8% silica was indicated by dotted lines.) In particular, Examples 1 and 3 gels containing the same amount of silica have an electrical conductivity almost equivalent to that of Comparative Example 1. This means that the polyelectrolyte added gel electrolyte has excellent structural strength equivalent to that of the polyelectrolyte without the addition of polyvinyl alcohol and a higher proportion of silica, but almost no change in electrical conductivity. In other words, the addition of a small amount of polyvinyl alcohol can achieve an improvement in structural strength without a decrease in electrical conductivity.

본 발명에 의해 제조된 밀폐형 납축전지용 젤 전해질은 폴리비닐알콜이 첨가되지 않은 젤 전해질보다 우수한 구조적 강도를 가진다는 장점이 있다. 따라서 결과적으로 더 작은 비율의 실리카로도 밀폐형 납축전지에 사용되는 젤 전해질로서 요구되는 구조적 강도를 확보하는 것이 가능하여, 그에 상당하는 황산의 함유량을 높여서 더 우수한 충전 용량과 수명 성능을 이룰 수 있게 된다.The gel electrolyte for a sealed lead acid battery manufactured by the present invention has an advantage of having structural strength superior to that of a polyelectrolyte-free gel electrolyte. As a result, even smaller proportions of silica make it possible to obtain the structural strength required as a gel electrolyte used in sealed lead acid batteries, thereby increasing the content of sulfuric acid corresponding thereto to achieve better charging capacity and longer life performance. .

Claims (5)

실리카를 황산 수용액에 혼합 분산시켜 젤 전해질을 제조함에 있어서, 그 혼합된 실리카-황산 수용액 분산에 결합제로서 분자랑 10,000 이상의 폴리비닐알콜을 전해질 중량 대비 0.001 내지 1% 첨가하는 것을 특징으로 하는 결합제를 첨가한 납축전지용 무기 젤 전해질의 제조방법.In preparing a gel electrolyte by mixing and dispersing silica in an aqueous solution of sulfuric acid, a binder is added to the mixed silica-sulfuric acid aqueous solution in which 0.001 to 1% of a molecular weight of 10,000 or more polyvinyl alcohol is added as a binder. A method for preparing an inorganic gel electrolyte for a lead acid battery. 제1항에 있어서, 혼합시 2000rpm 이상에서 혼합하는 것을 특징으로 하는 결합제를 첨가한 전해질의 제조방법.The method according to claim 1, wherein the binder is added at 2000 rpm or more. 제1항에 있어서, 상기 폴리비닐알콜을 물에 용해시켜서 첨가하는 것을 특징으로 하는 젤 전해질의 제조방법.The method of claim 1, wherein the polyvinyl alcohol is dissolved in water and added. 제3항에 있어서, 상기 물을 가열한 후 상기 폴리비닐알콜을 용해시켜는 것을 특징으로 하는 젤 전해질의 제조방법.The method of claim 3, wherein the polyvinyl alcohol is dissolved after heating the water. 제1항 내지 제4항의 한 방법으로 제조된 결합제를 첨가한 납축전지용 무기 젤 전해질.An inorganic gel electrolyte for lead acid batteries, to which a binder prepared by the method of claim 1 is added.
KR10-2001-0079232A 2001-12-14 2001-12-14 Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and the electrolyte KR100433470B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0079232A KR100433470B1 (en) 2001-12-14 2001-12-14 Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and the electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0079232A KR100433470B1 (en) 2001-12-14 2001-12-14 Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and the electrolyte

Publications (2)

Publication Number Publication Date
KR20030049115A true KR20030049115A (en) 2003-06-25
KR100433470B1 KR100433470B1 (en) 2004-05-27

Family

ID=29574945

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0079232A KR100433470B1 (en) 2001-12-14 2001-12-14 Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and the electrolyte

Country Status (1)

Country Link
KR (1) KR100433470B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100477616B1 (en) * 2002-10-25 2005-03-23 주식회사 아트라스비엑스 Method of manufacturing inorganic gel electrolyte for lead-acid battery at low temperature and such a electrolyte
CN113782822A (en) * 2021-08-09 2021-12-10 安徽理士电源技术有限公司 Electrolyte for long-life colloid storage battery and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236141A (en) * 1995-02-23 1996-09-13 Nippon Oil Co Ltd Reforming method for electrolyte
JP3431438B2 (en) * 1996-12-13 2003-07-28 昭弥 小沢 Secondary batteries and additives for secondary batteries
JP2000149981A (en) * 1998-11-02 2000-05-30 Jec Service Kk Lead-acid battery, and additive therefor
KR100323992B1 (en) * 1999-09-08 2002-02-16 조충환 The gel electrolyte for a sealed lead storage battery
JP2001313064A (en) * 2000-04-28 2001-11-09 Mase Shunzo Lead storage battery and its additive agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100477616B1 (en) * 2002-10-25 2005-03-23 주식회사 아트라스비엑스 Method of manufacturing inorganic gel electrolyte for lead-acid battery at low temperature and such a electrolyte
CN113782822A (en) * 2021-08-09 2021-12-10 安徽理士电源技术有限公司 Electrolyte for long-life colloid storage battery and preparation method thereof

Also Published As

Publication number Publication date
KR100433470B1 (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP4523580B2 (en) Negative electrode active material for secondary battery and intermediate kneaded material for producing them
CN111430667B (en) Negative electrode slurry, negative electrode plate, power battery and electric automobile
WO2017000219A1 (en) Doped conductive oxide and improved electrochemical energy storage device polar plate based on same
JP2010225564A (en) Negative electrode composition for secondary battery, intermediate composition for generating the same, and secondary battery using them
JP2003123760A (en) Negative electrode for lead-acid battery
CN1222070C (en) Colloid electrolyte for accumulator
CN107331863A (en) A kind of lead-acid accumulator anode diachylon
CN111029664B (en) Lead storage battery regeneration liquid and preparation method and regeneration method thereof
KR100433470B1 (en) Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and the electrolyte
WO2009093464A1 (en) Positive electrode composition for secondary battery, process for production thereof, and secondary battery using positive electrode composition for secondary battery
KR100433471B1 (en) Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and such a electrolyte
CN1324754C (en) Lead-acid cell colloid electrolyte
JP2007250308A (en) Control valve type lead acid battery
KR100477616B1 (en) Method of manufacturing inorganic gel electrolyte for lead-acid battery at low temperature and such a electrolyte
JPWO2011077640A1 (en) Control valve type lead acid battery
US3716412A (en) Electric storage batteries
JPH09147872A (en) Negative electrode plate for lead-acid battery
JP2006185743A (en) Control valve type lead-acid battery
JPS63152868A (en) Lead-acid battery
JP2559610B2 (en) Method for manufacturing sealed lead acid battery
JPH01100869A (en) Sealed lead storage battery
JP4887590B2 (en) Sealed lead acid battery
CN111416123A (en) Additive for improving performance of lead-acid storage battery positive lead plaster
KR20080105339A (en) Lead acid battery having lightly gelled electrolyte
JPH04196059A (en) Lead-acid battery

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130506

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140429

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150501

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170502

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180503

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190520

Year of fee payment: 16