KR20030009869A - method for overgrowth GaN layer of high quality - Google Patents

method for overgrowth GaN layer of high quality Download PDF

Info

Publication number
KR20030009869A
KR20030009869A KR1020010044533A KR20010044533A KR20030009869A KR 20030009869 A KR20030009869 A KR 20030009869A KR 1020010044533 A KR1020010044533 A KR 1020010044533A KR 20010044533 A KR20010044533 A KR 20010044533A KR 20030009869 A KR20030009869 A KR 20030009869A
Authority
KR
South Korea
Prior art keywords
gan
buffer layer
layer
gan buffer
gan layer
Prior art date
Application number
KR1020010044533A
Other languages
Korean (ko)
Other versions
KR100390442B1 (en
Inventor
김진교
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR10-2001-0044533A priority Critical patent/KR100390442B1/en
Publication of KR20030009869A publication Critical patent/KR20030009869A/en
Application granted granted Critical
Publication of KR100390442B1 publication Critical patent/KR100390442B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region

Abstract

PURPOSE: A method of growing high-quality GaN layer is provided to be capable of growing a high-quality GaN layer by overcoming a lattice constant difference. CONSTITUTION: A low temperature GaN buffer layer(200) is formed on a substrate(100). The low-temperature GaN buffer layer(200) is smoothed by sequentially applying a high power laser on a surface(210) of the GaN buffer layer. A GaN layer(300) is formed on the smoothed GaN buffer layer at a high temperature. The GaN buffer layer is formed using GaN of an amorphous or powder state.

Description

고품질 GaN 층 성장 방법{method for overgrowth GaN layer of high quality}Method for overgrowth GaN layer of high quality

본 발명은 GaN을 이용한 반도체 광소자의 제작에 관한 것으로, 특히 비정질이나 분말 상태의 GaN을 이용하여 고품질의 GaN 층을 성장시키는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the fabrication of semiconductor optical devices using GaN, and more particularly to a method for growing a high quality GaN layer using GaN in an amorphous or powder state.

단파장 영역에서의 LED 및 LD 개발을 위해 매우 유망한 물질로 여겨지는 GaN을 이용한 연구가 활발히 진행되고 있으며, 최근 이 분야의 연구에서 비약적인 발전을 통해 상당한 수준의 상업화가 이루어지고 있다.Research using GaN, which is considered as a very promising material for LED and LD development in the short wavelength region, is being actively conducted, and a considerable amount of commercialization is being made through the rapid development in recent researches in this field.

그러나 아직 좀더 안정적이고 열 특성이 좋은 소자 개발을 위해 개선해야할부분이 많이 남아 있으며, 그 중의 한 부분으로 격자 부정합에 의해 발생하는 결정 결함을 어떻게 줄일 것인가가 현재 보다 나은 소자 개발을 위한 관건 중의 하나이다.However, there are still a lot of areas to improve for the development of more stable and better thermal characteristics, and one of the key factors for better device development is how to reduce crystal defects caused by lattice mismatch.

일반적으로 GaN 층을 성장시키기 위해서는 도 1과 같이, 보통 사파이어나 SiC 기판(10)을 사용하고 있다.In general, to grow a GaN layer, as shown in FIG. 1, a sapphire or SiC substrate 10 is usually used.

이때, 사파이어 기판(10)과 GaN 층(30)간의 격자 상수 및 열팽창 계수의 차이가 발생되어 결정 결함이 발생되므로, 이를 막기 위해 저온 GaN 버퍼층(20)을 기판(10) 위에 형성하고, 상기 저온 GaN 버퍼층(20) 위에 온도를 높여서 고품질의 GaN 층(30)을 성장시킨다.In this case, since a difference in lattice constant and thermal expansion coefficient occurs between the sapphire substrate 10 and the GaN layer 30, crystal defects are generated. Thus, a low temperature GaN buffer layer 20 is formed on the substrate 10 to prevent the defects. The high temperature GaN layer 30 is grown by increasing the temperature on the GaN buffer layer 20.

이에 따라 기판(10)과 GaN 층(30)사이에서 발생되는 격자 상수의 차이를 줄여서 고품질의 GaN 층(30)을 성장시킬 수 있게 된다.Accordingly, the GaN layer 30 of high quality can be grown by reducing the difference in lattice constant generated between the substrate 10 and the GaN layer 30.

그러나 사파이어나 SiC 기판(10) 위에 저온의 버퍼층(20)을 두께 5nm~500nm 정도 성장시키고, 성장된 저온 GaN 버퍼층(20) 위에 바로 고온 GaN 층(30)을 성장시키고 있다.However, the low temperature buffer layer 20 is grown on the sapphire or SiC substrate 10 by about 5 nm to 500 nm in thickness, and the high temperature GaN layer 30 is grown directly on the grown low temperature GaN buffer layer 20.

이때, 낮은 온도에서 성장된 GaN 버퍼층(20)은 매우 많은 양의 결정성 결함을 갖게 되고, 결정질이라기 보다는 비정질에 더 가까운 형태를 갖게 된다.At this time, the GaN buffer layer 20 grown at a low temperature has a very large amount of crystalline defects, and has a form closer to amorphous rather than crystalline.

따라서 저온 GaN 버퍼층(20) 위에 고온 GaN 층(30)을 바로 성장시키게 되면 많은 양의 결정성 결함이 그대로 전파되어지므로 전위 없는(dislocation free) GaN 층(30)을 얻는데는 어려움이 따른다.Therefore, when the high temperature GaN layer 30 is directly grown on the low temperature GaN buffer layer 20, since a large amount of crystalline defects are propagated as it is, it is difficult to obtain a dislocation free GaN layer 30.

이를 해결하기 위해 쉽게 생각할 수 있는 방법으로 저온 성장된 GaN버퍼층(20)의 표면을 기계적인 폴리싱(mechanical polishing), 체모-기계적인 폴리싱( chemo-mechanical polishing) 혹은 리액티브 이온 에칭(reactive ion etching) 등을 이용하여 제거한 후 열처리를 하는 방법을 생각할 수도 있는데, 이런 방법으로는 GaN 버퍼층(20)의 표면의 결정성이나 결함 등을 근본적으로 바꿀 수 없기 때문에 큰 효과를 얻기 어렵다.To solve this problem, mechanical polishing, chemo-mechanical polishing, or reactive ion etching of the surface of the low-growth GaN buffer layer 20 may be performed. It is also possible to consider a method of performing heat treatment after removal using the same or the like. In this method, it is difficult to obtain a great effect because the crystallinity or defect of the surface of the GaN buffer layer 20 cannot be changed fundamentally.

따라서 본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 격자상수 차이를 극복하여 고품질 GaN 층을 성장시키는 방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for growing a high quality GaN layer by overcoming the difference in lattice constant, which has been devised to solve the above problems.

도 1 은 종래 기술에 따른 GaN 층 성장 방법을 나타낸 도면1 shows a GaN layer growth method according to the prior art

도 2 는 본 발명에 따른 고품질 GaN 층 성장 방법을 나타낸 도면2 illustrates a high quality GaN layer growth method according to the present invention.

*도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

10, 100 : 기판20, 200 : 버퍼층10, 100: substrate 20, 200: buffer layer

30, 300 : GaN 층40 : 전위30, 300: GaN layer 40: dislocation

상기와 같은 목적을 달성하기 위한 본 발명에 따른 GaN 층 성장 방법의 특징은 기판 위에 저온의 GaN 버퍼층을 형성하는 단계와, 상기 GaN 버퍼층의 표면에 고출력 레이저를 순차적으로 조사시켜 평탄화시키는 단계와, 상기 평탄화된 GaN 버퍼층에 고온에서 GaN층을 형성하는 단계를 포함하여 이루어지는데 있다.Characterized by the GaN layer growth method according to the present invention for achieving the above object is the step of forming a low-temperature GaN buffer layer on the substrate, the step of sequentially irradiating a high-power laser on the surface of the GaN buffer layer to planarize, And forming a GaN layer at a high temperature in the planarized GaN buffer layer.

본 발명의 다른 목적, 특성 및 잇점들은 첨부한 도면을 참조한 실시예들의 상세한 설명을 통해 명백해질 것이다.Other objects, features and advantages of the present invention will become apparent from the following detailed description of embodiments taken in conjunction with the accompanying drawings.

본 발명에 따른 고품질의 GaN 층 성장 방법의 바람직한 실시예에 대하여 첨부한 도면을 참조하여 설명하면 다음과 같다.A preferred embodiment of the high quality GaN layer growth method according to the present invention will be described with reference to the accompanying drawings.

도 2a 내지 도 2c 는 본 발명에 따른 고품질의 GaN 층 성장 방법의 다른 실시예를 나타낸 도면이다.2a to 2c show another embodiment of the high quality GaN layer growth method according to the present invention.

도 2a와 같이, 사파이어(α-Al2O3)나 SiC 기판(100) 위에 비정질이나 분말 상태의 GaN을 이용하여 저온인 약 500℃에서 버퍼층(200)을 형성한다. 그리고 상기 버퍼층(200) 표면에 고출력 레이저를 조사시킨다.As shown in FIG. 2A, the buffer layer 200 is formed on the sapphire (α-Al 2 O 3 ) or the SiC substrate 100 at a low temperature of about 500 ° C. using GaN in an amorphous or powder state. The high power laser is irradiated onto the surface of the buffer layer 200.

그리고 도 2b와 같이, 모든 GaN 버퍼층(200) 표면에 순차적으로 고출력 레이저를 조사시킨다.As shown in FIG. 2B, all GaN buffer layers 200 are sequentially irradiated with high power lasers.

그러면, 상기 고출력 레이저가 조사되는 GaN 버퍼층 표면(210)은 레이저로부터 전달된 에너지에 의해 GaN 버퍼층 표면이 순간적으로 액체화(liquify)되었다가 다시 결정화(recrystallization) 되어 GaN 버퍼층 표면을 전체적으로 결정화시키게 된다.Then, the GaN buffer layer surface 210 to which the high power laser is irradiated is instantaneously liquefied and recrystallized by energy transmitted from the laser to crystallize the GaN buffer layer surface as a whole.

그리고 도 2c와 같이, 상기 결정화된 GaN 버퍼층(200) 위에 고온인 1000℃에서 GaN 층(300)을 성장시킨다.As shown in FIG. 2C, the GaN layer 300 is grown on the crystallized GaN buffer layer 200 at a high temperature of 1000 ° C.

이와 같이, 고출력 레이저를 GaN 버퍼층(200) 전체 영역의 표면에 순차적으로 조사시켜, 상기 GaN 버퍼층 표면이 결정상태가 되도록 형성하므로서, 상기 GaN 버퍼층 위에 성장되는 GaN 층(300)으로 전파되는 결정 결함을 최소화시키게 된다.As described above, the high power laser is sequentially irradiated onto the surface of the entire GaN buffer layer 200 so that the surface of the GaN buffer layer is in a crystalline state, thereby crystal defects propagating to the GaN layer 300 grown on the GaN buffer layer. Will be minimized.

이때, 상기 GaN 버퍼층(200)으로 조사되는 레이저의 파워는 너무 크면 GaN이 Ga와 N으로 분해되어서 오히려 박막을 파괴시키게 된다.At this time, if the power of the laser irradiated onto the GaN buffer layer 200 is too large, GaN is decomposed into Ga and N, and thus the thin film is destroyed.

따라서, 레이저의 파워는 500 [mJ/cm2] 이하로 조절하는게 바람직하다.Therefore, the power of the laser is preferably adjusted to 500 [mJ / cm 2 ] or less.

이상에서 설명한 바와 같은 본 발명에 따른 GaN 층 성장 방법은 비정질 GaN층의 표면을 다시 결정화시킴으로 GaN 버퍼층을 사용하여 GaN층을 성장시킬 때 발생되는 결정 결함을 줄일 수 있게 된다.As described above, the GaN layer growth method according to the present invention can reduce the crystal defects generated when the GaN layer is grown using the GaN buffer layer by recrystallizing the surface of the amorphous GaN layer.

이상 설명한 내용을 통해 당업자라면 본 발명의 기술 사상을 이탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다.Those skilled in the art will appreciate that various changes and modifications can be made without departing from the spirit of the present invention.

따라서, 본 발명의 기술적 범위는 실시예에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의하여 정해져야 한다.Therefore, the technical scope of the present invention should not be limited to the contents described in the embodiments, but should be defined by the claims.

Claims (3)

기판 위에 저온의 GaN 버퍼층을 형성하는 단계와,Forming a low temperature GaN buffer layer on the substrate, 상기 GaN 버퍼층의 표면에 고출력 레이저를 순차적으로 조사시켜 평탄화시키는 단계와,Sequentially irradiating a planarized high power laser onto the surface of the GaN buffer layer; 상기 평탄화된 GaN 버퍼층에 고온에서 GaN층을 형성하는 단계를 포함하여 이루어지는 고품질의 GaN 층 성장방법.Forming a GaN layer at a high temperature in the planarized GaN buffer layer. 제 1 항에 있어서,The method of claim 1, 상기 GaN 버퍼층은 비정질이나 분말 상태의 GaN을 사용하는 것을 특징으로 하는 고품질의 GaN 층 성장방법.The GaN buffer layer is a high quality GaN layer growth method, characterized in that using the amorphous or powdered GaN. 제 1 항에 있어서,The method of claim 1, 상기 고출력 레이저의 파워는 500 [mJ/cm2] 이하인 것을 특징으로 하는 GaN 층 성장 방법.GaN layer growth method characterized in that the power of the high power laser is less than 500 [mJ / cm 2 ].
KR10-2001-0044533A 2001-07-24 2001-07-24 method for overgrowth GaN layer of high quality KR100390442B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0044533A KR100390442B1 (en) 2001-07-24 2001-07-24 method for overgrowth GaN layer of high quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0044533A KR100390442B1 (en) 2001-07-24 2001-07-24 method for overgrowth GaN layer of high quality

Publications (2)

Publication Number Publication Date
KR20030009869A true KR20030009869A (en) 2003-02-05
KR100390442B1 KR100390442B1 (en) 2003-07-04

Family

ID=27716391

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0044533A KR100390442B1 (en) 2001-07-24 2001-07-24 method for overgrowth GaN layer of high quality

Country Status (1)

Country Link
KR (1) KR100390442B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651431A (en) * 2011-02-28 2012-08-29 半材料株式会社 Method of manufacturing gan powder and nitride based light emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651431A (en) * 2011-02-28 2012-08-29 半材料株式会社 Method of manufacturing gan powder and nitride based light emitting device
US20120217503A1 (en) * 2011-02-28 2012-08-30 Semimaterials Co., Ltd. METHOD OF MANUFACTURING GaN POWDER AND NITRIDE-BASED LIGHT EMITTING DEVICE USING GaN POWDER MANUFACTURED BY THE METHOD

Also Published As

Publication number Publication date
KR100390442B1 (en) 2003-07-04

Similar Documents

Publication Publication Date Title
US6537513B1 (en) Semiconductor substrate and method for making the same
US5629532A (en) Diamond-like carbon optical waveguide
JP3179346B2 (en) Method for producing gallium nitride crystal
CA1225571A (en) Growth of oriented single crystal semiconductor on insulator
TWI462154B (en) Group iii nitride semiconductor and a manufacturing method thereof
JPH0582442A (en) Manufacture of polycrystalline semiconductor thin film
TW561652B (en) Method of manufacturing compound semiconductor substrate
KR100390442B1 (en) method for overgrowth GaN layer of high quality
JP5482051B2 (en) Manufacturing method of semiconductor substrate
JPS5821818B2 (en) Method for manufacturing semiconductor single crystal film
KR100519326B1 (en) method for fabricating substate of GaN semiconductor laser diode
WO2014200077A1 (en) Microstructure forming method, semiconductor device manufacturing method, and cmos forming method
JP2687445B2 (en) Heteroepitaxial growth method
US6794274B2 (en) Method for fabricating a polycrystalline silicon film
JP2020038968A (en) Method for manufacturing semiconductor stacked structure and semiconductor stacked structure
WO2016093287A1 (en) Microstructure formation method, method for manufacturing semiconductor device, and cmos formation method
Soga et al. Growth of stress-reduced GaAs on Si substrate by using epitaxial lift-off and MOCVD regrowth
JPH0453123A (en) Manufacture of semiconductor film
Doi et al. Solid phase epitaxial seed for laser‐crystallized silicon on glass substrates
JPH0524113B2 (en)
JPH0536605A (en) Manufacture of compound semiconductor substrate
JPH0228560B2 (en) TANKETSUSHOSHIRIKONMAKUKEISEIHO
JPS61270295A (en) Method for forming compound semiconductor single crystal film
JPS63239922A (en) Epitaxial growth crystal
JPH04271114A (en) Defect reduction method of compound semiconductor

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130514

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140523

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150522

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160524

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee