KR20030009724A - 유기 인듐 화합물을 사용한 불포화 탄화수소 화합물들간의결합 방법 - Google Patents

유기 인듐 화합물을 사용한 불포화 탄화수소 화합물들간의결합 방법 Download PDF

Info

Publication number
KR20030009724A
KR20030009724A KR1020010044299A KR20010044299A KR20030009724A KR 20030009724 A KR20030009724 A KR 20030009724A KR 1020010044299 A KR1020010044299 A KR 1020010044299A KR 20010044299 A KR20010044299 A KR 20010044299A KR 20030009724 A KR20030009724 A KR 20030009724A
Authority
KR
South Korea
Prior art keywords
unsaturated hydrocarbon
indium
compound
reaction
hydrocarbon compounds
Prior art date
Application number
KR1020010044299A
Other languages
English (en)
Other versions
KR100782583B1 (ko
Inventor
이필호
Original Assignee
(주)바이오니아
이필호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)바이오니아, 이필호 filed Critical (주)바이오니아
Priority to KR1020010044299A priority Critical patent/KR100782583B1/ko
Publication of KR20030009724A publication Critical patent/KR20030009724A/ko
Application granted granted Critical
Publication of KR100782583B1 publication Critical patent/KR100782583B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • B01J27/13Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0267Phosphines or phosphonium compounds, i.e. phosphorus bonded to at least one carbon atom, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, the other atoms bonded to phosphorus being either carbon or hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/56Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic condensed
    • C07C15/58Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic condensed containing two rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/20Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 유기 인듐 화합물을 결합체(coupling agent)로 사용하여 불포화 탄화수소 화합물들을 서로 결합시키는 방법에 관한 것이다. 보다 상세하게는, 본 발명은, 금속 인듐과 결합된 β,γ-불포화 탄화수소 화합물과 할로겐기 또는 트리플레이트기로 치환된 불포화 탄화수소 화합물을 반응시켜, 상기 불포화 탄화수소 화합물들을 서로 결합시키는 방법에 대한 것이다.

Description

유기 인듐 화합물을 사용한 불포화 탄화수소 화합물들간의 결합 방법{Coupling method for unsaturated hydrocarbon compounds, which employs organo-indium compound as coupling agent}
본 발명은 유기 인듐 화합물을 결합체(coupling agent)로 사용하여 불포화 탄화수소 화합물들을 서로 결합시키는 방법에 관한 것이다. 보다 상세하게는, 본 발명은, 금속 인듐과 결합된 β,γ-불포화 탄화수소 화합물과 할로겐기 또는 트리플레이트기로 치환된 불포화 탄화수소 화합물을 반응시켜, 상기 불포화 탄화수소 화합물들을 서로 결합시키는 방법에 대한 것이다.
일반적으로, 커플링 반응이라 함은 하기의 반응식과 같이 촉매존재하에서, 불포화 탄화수소 화합물들을 서로 결합시키는 화학반응을 의미한다.
불포화 탄화수소 화합물간의 탄소-탄소 결합을 형성시키는 방법은 금속 촉매 존재 하에 할로겐화 아릴 또는 할로겐화 비닐과 유기 금속 화합물간의 반응이 가장 일반적인 방법이다[(a) Heck, R. F. Palladium Reagents in Organic Synthesis; Academic Press: New York, 1985. (b) Trost, B. M.; Verhoeven, T. R. InComprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G., Abel, E. W., Eds.; Pergamon: Oxford, 1982; Vol. 8, pp 799-938. (c) Farina, V. InComprehensive Organometallic Chemistry II; Wilkinson, G., Stone, F. G., Abel, E. W., Eds.; Pergamon: Oxford, 1995; Vol. 12, pp 161-240. (d) Tsuji. J.Palladium Reagents and Catalyst; Wiley: Chichester, U.K., 1995: Chapter 4. (e) Diederich, F.; Stang, P. J., Eds.Metal-Catalyzed Cross-couplings Reactions; Wiley-VCH: Weinheim, 1998. (f) Malleron, J.; Fiaud, J.; Legros, J.Handbook of Palladium-Catalyzed Organic Reactions; Academic Press: San Diego, 1997.].
특히, 이들 중 팔라듐(Pd)과 니켈(Ni)을 금속 촉매로 사용하고, 유기 주석(Sn) 화합물을 커플링 시약(coupling agent)으로 사용하여 불포화 탄화수소 화합물간의 탄소-탄소 결합을 형성시키는 스틸레 커플링 반응[(a) Farina, V.; Krishnamurthy, V.; Scott, W.J. The Stille Reaction; Wiley: New York, 1998. (b) Stille, J. K.Angew. Chem., Int. Ed. Engl.1986, 25, 508. (c) Stille. J. K.Pure Appl. Chem.1985,57, 1771. (d) Mitchell. T. N.Synthesis 1992, 803. (e) Farina. V.; Krishnamurthy. V.; Scott. W. J.Org. React.1997,50, 1. (f) Pereyre, M.; Quintard, J.; Rahm, A.Tin in Organic Synthesis; Butterworths: London 1987.]은 대표적인 커플링 반응으로 알려져 있다.
이러한 스틸레(Stille) 반응의 개발로 커플링 반응에 다양한 유기금속(B, Zn, Mg, Li, Cu, Al, Zr, Si)화합물의 사용이 가능하게 되었고[(a) Geissler. H. InTransition Metals for Organic Synthesis; Beller, M., Bolm. C., Eds.; Wiley-VCH: Weomheim, 1998; Chapter 2.10. (b) Negishi. E. InOrganozinc Reagents; Knochel, P., Jones. P., Eds.; Oxford University Press; Oxford. U.K., 1999; Chapter 11. (c) Miyaura. N.; Suzuki. A.Chem. Rev.1995,95, 2457. (d) Yamamura, M.; Moritani,I,; Murahashi, S.J. Orgamomet. Chem.1975, 91, C39-C42. (e) Tamao, K.; Kiso, Y.; Sumitani, K.; Kumada, M.J. Am. Chem. Soc. 1972, 94, 9268-9269. (f) Sekia, A.; Ishikawa, N.J. Organomet. Chem.1976. 118, 349-354. (g) Hatanaka, Y.; Hiyama, T.Synlett 1991, 845-843, (h) Erdik, E.Tetrahedron 1992, 48, 9577-9648.], 특히, 스틸레 커플링 반응에 사용되는 유기 주석 화합물은 공기와 수분에 안정하고, 다양한 작용기들과 반응하지 않기 때문에 널리 사용되고 있다.
그러나, 상기의 스틸레 커플링 반응은 염화 트리알킬틴(trialkyltin chloride)과 알릴(allyl) 금속 음이온을 반응시켜 얻어지는 생성물에서 알릴 금속 음이온만을 정제하여 사용해야 하는데, 알릴 금속 음이온 이외에 분리하기가 어려운 부산물이 함께 생성되기 때문에 이에 대한 별도의 정제 과정이 필요하고, 또한, 상기 반응에서 얻어진 유기 주석 화합물이 독성을 가지고 있다는 문제점이 있다.
따라서, 이러한 문제점을 해결하기 위하여, 금속과 할로겐화 알릴을 반응시켜 얻은 생성물에서 알릴 금속 음이온을 분리하기 위한 별도의 정제과정을 거치지 않고 생성물 자체를 커플링 반응에 직접 사용하는 방법인 인 시튜(in situ) 방법이 사용되어 왔다. 예를 들어, 유기 마그네슘(organomagnesium)과 유기 리튬 (organolithium)화합물들은 금속과 할로겐화 알릴을 반응시켜 얻은 생성물에서 이들을 별도의 정제과정 없이 커플링 반응에 사용할 수 있기 때문에 커플링 시약(coupling agent)으로서 널리 사용되고 있다.
그러나, 상기의 커플링 시약 역시 기질에 있는 다양한 작용기와의 반응성이 크기 때문에, 커플링 반응에 있어서 작용기 선택의 범위가 좁다는 단점을 가지고 있다.
따라서, 생성물에서 유기 금속 화합물을 별도의 정제과정 없이도 커플링 반응에 사용할 수 있는 동시에, 독성이 없으며, 작용기의 선택 범위가 높은 유기 금속 화합물을 사용하여 불포화 탄화수소 화합물간의 결합을 생성시키는 방법이 요구되고 있다.
따라서, 본 발명에서는 상기의 유기 주석 화합물을 사용하는 스틸레 커플링 반응의 단점을 개선하고, 인듐 금속의 유기합성에 대한 이용성을 높이고자 금속 촉매 반응에 인듐 금속의 이용 가능성을 연구하여[(a) Li, C.-J.Tetrahedron 1996,52, 5643. (b) Li, C.-J.; Chan, T.-H.Organic Reactions in Aqueous Media; Wiley: New York,1997. (c) Li, C.-J.Chem. Rev. 1993,93, 2023. Li, C.-J.; (d) Chan, T.-H.Tetrahedron 1999,55, 11149. (e)Normera. R.; Miyazaki. S.-I.; Matsuda. H.J. Am. Chem. Soc. 1992,114, 2378. (f) Perez. I. ; Sestelo, J.; Sarandeses, L.OrgLett 1999,1, 1267. (g) Perez. I.; Sestelo, J.; Maestro. M. A.; Moourino. A.; Sarandeses, L.-A. J.Org. Chem. 1998,63, 10074. (h) Cintas, P. Synlett 1995, 1087. (i) Babu, G.; Perumal, P. T.Aldrichimica Acta.2000,33, 16. (j) Chauhan, K. K.; Frost, C. G.J. Chem. Soc., Perkin Trans. 1,2000, 3015. (k) Lee, P. H.; ang, K.; Lee, K.; Lee, C.-H.; Chang, S.Tetrahedron Lett.2000,41, 7521. (l) Lee, P. H.; Ahn, H.; Lee, K.; Sung, S.-Y.; Kim, S.Tetrahedron Lett.2001,42, 37.] 할로겐기로 치환된 β,γ-불포화 탄화수소 화합물을 인듐 금속과 반응시켜 얻은 인듐 금속이 결합된 β,γ-불포화 탄화수소 화합물을 불포화 탄화수소 화합물간 탄소-탄소 결합 방법을 개발하였다.
따라서, 본 발명의 목적은 금속 인듐과 결합된 불포화 탄화수소 화합물을 결합체로 사용하여 불포화 탄화수소 화합물들간의 결합을 생성시키는 방법을 제공하는 것을 목적으로 한다.
상기의 본 발명의 목적은 하기의 반응식 2에 나타낸 바와 같이, 할로겐기 또는 트리플레이트기로 치환된 불포화 탄화수소 화합물(substituted-unsaturated hydrocarbon compound)과 인듐으로 치환된 불포화 탄화수소 화합물(unsaturated organo-indium compound)을 금속 화합물 촉매 존재하에서 반응시키는 불포화 탄화수소들간의 결합 방법을 제공함으로써 달성된다.
상기의 반응식에서,
Y는 염소, 브롬, 요오드, OTf, N2X, OSO2R, OSO2F, SO2R, SOR, SR, SeR, OR, IPhX, IPhOTf, I(OH)OTs, 및 OPO(OR)2로 이루어진 군에서 선택된다.
본 발명에 있어서, 상기의 인듐과 결합된 불포화 탄화수소 화합물 (unsaturated organo-indium compound)은, 하기의 반응식3에 나타낸 바와 같이, 금속 인듐과 할로겐기로 치환된 β,γ-불포화 탄화수소 화합물을 인 시튜(in situ)방법으로 반응시켜 제조되어지는 것을 특징으로 한다.
상기의 반응식에서,
X는 염소, 브롬, 요오드 및 염소로 이루어진 군에서 선택되어진다. X가 염소일 경우에는 상기 반응이 요오드화 리튬 존재하에서 수행되는 것을 특징으로 한다.
본 발명에 있어서, 인 시튜(in situ)방법이란 상기의 반응식3을 통해 생성된 생성물에서 불순물을 제거하여 정제된 인듐이 결합된 β,γ-불포화 탄화수소 화합물을 반응식2에 사용하는 것이 아니라, 상기의 반응식3의 결과 생성된 생성물 전부를 그대로 반응식2에 반응시키는 것을 의미한다.
본 발명에 사용되는 촉매는 PdCl2, Pd(OAc)2, Pd(CH3CN)2Cl2, Pd(PPh3)4, 또는 Pd2dba3CHCl3에서 선택되는 것이 바람직하며, Pd2dba3CHCl3또는 Pd(PPh3)4를 사용하는 것이 더욱 바람직하다.
또한, 본 발명은 디메틸포름아미드(DMF) 또는 테트라히드로푸란(THF)의 용매하에서 수행되며, 리간드는 Ph3P, [2,6-(MeO)2Ph]3P, (o-Tolyl)3P, Ph3As, 또는 (2-Furyl)3P로 이루어진 포스핀 화합물을 사용할 수 있으며, Ph3P 또는 (2-Furyl)3P을 사용하는 것이 바람직하다.
또한, 본 발명의 첨가제는 염화리튬(LiCl)을 사용하는 것이 바람직하다.
이하, 실시예를 통하여 본 발명의 구성을 보다 구체적으로 설명하지만, 본 발명의 보통의 범위가 하기 실시예의 내용으로 한정되는 것은 아니다.
실시예 1
각종 촉매 및 촉매 조성물을 사용했을 때의 수율 비교
하기의 반응식 4와 같이 인듐 금속과 할로겐화 알릴(allyl halide) 화합물로부터 인 시튜(in situ)방법으로 얻어지는 알릴 인듐(allyl indium,1) 화합물을 다양한 조성의 팔라듐 촉매 존재하에서 1-요오드나프탈렌(1-iodonaphthalene)과 반응시켜 1-알릴나프탈렌(1-allylnaphthalene,19)을 얻었다.
험결과 표 1의 반응 6에 나타난 바와 같이 4%의 Pd(PPh3)4를 촉매로 사용한 경우에 알릴 인듐의 알릴기와 1-요오드나프탈렌의 1번 탄소가 결합된 1-알릴나프탈렌(19)를 91%의 수율로 얻었다.
또한, 표 1의 반응 14에 나타난 바와 같이 2%의 Pd2dba3CHCl3를 촉매로 사용한 경우도 1-알릴나프탈렌(19)를 93%의 수율로 얻었다.
표 1의 반응 1 내지 4 에 나타난 바와 같이 PdCl2, Pd(OAc)2, Pd(CH3CN)2Cl2, Pd(PhCN)2Cl2를 촉매로 사용한 경우도 높은 수율로 1-알릴나프탈렌(19)을 생성하였다.
리간드 중에는 표 1의 반응 14에 나타난 바와 같이 트리페닐포스핀 (triphenylphosphine)을 사용하였을 때 가장 좋은 수율로 1-알릴나프탈렌을 얻었다.
첨가제 중에는 표 1의 반응 11에 나타난 바와 같이 염화리튬(lithium chloride)이 존재하여야 반응이 진행하였다.
결론적으로, 촉매는 Pd(PPh3)4또는 Pd2dba3CHCl3을 사용하고, 리간드는 트리페닐포스핀(triphenylphosphine)을 사용하였으며, 염화 리튬(lithium chloride)이 존재하고 용매로는 디메틸포름아미드(DMF)를 사용할 때 가장 좋은 수율로 생성물을 얻었다 (표 1의 반응 6, 14 참조).
또한 1.0 당량의 인듐과 1.5 당량의 요오드화 알릴로부터 생성된 알릴 인듐을 사용하였을 때 가장 높은 수율로 생성물을 얻었다.
1.0 당량 이하의 인듐 또는 1.5 당량 이하의 요오드화 알릴(allyl iodide)을 사용한 경우 반응 시간이 길어지거나 수득률이 떨어졌다 (반응 12 내지 13 참조).
상기의 결과들을 표 1에 나타내었다.
실시예 2
본 발명의 효율성을 알아보기 위하여 다양한 할로겐화 알릴을 인듐과 반응시켜 생성된 알릴 인듐을 할로겐기로 치환된 불포화 탄화수소 또는 플레이트기로 치환된 불포화 탄화수소와 반응시켰다.
표 2에 나타난 바와 같이 α나 β-위치에 다양한 치환체를 가지는 할로겐화 알릴의 경우 수득률과 반응 속도에서 큰 영향을 미치지 못하였고 높은 수율로 생성물을 얻었다.
가. 할로겐화 알릴에 치환된 치환체의 종류에 따른 수율 비교
표 2의 반응 4에 나타난 바와 같이 최적 반응 조건하에서 1-요오드나프탈렌 (1-iodonaphthalene,7)을 브롬화 알릴(allyl bromide)과 인듐(indium)으로부터 생성된 알릴 인듐과 반응시켜 1-알릴나프탈렌(1-allylnaphthalene,19)을 87%의 수율로 얻었다.
표 2의 반응 5에 나타난 바와 같이 1-요오드나프탈렌 (1-iodonaphthalene,7)을 크로틸 브로마이드(crotyl bromide;cis:trans=1:5)와 인듐과 반응시켜 생성된 생성물과 반응시켜 화합물20(cis:trans=1.5:1)과21을 얻었다. 이때 주생성물은 화합물21이었다.
화합물7과 프레닐 인듐(prenyl indium)을 반응시켜 화합물22를 88%의 수율로 얻었다 (반응 6 참조). 화합물7을 인듐과 브롬화 제라닐 (geranyl bromide)으로부터 생성된 제라닐 인듐(geranyl indium)과 반응시켜 수율 71%의 화합물23(cis:trans=1:2)을 얻었다(반응 7 참조).
반응 8, 11, 18에 나타난 바와 같이 할로겐화 알릴로 3-브로모시클로헥센(3-bromocyclohexene)을 사용하여 반응을 시켰을 경우 원하는 화합물을 높은 수율로 얻었다.
나. 방향족 불포화 탄화수소에 치환된 치환체의 종류에 따른 수율 비교
반응 8 내지 19에 나타난 바와 같이 방향족(aromatic)고리에 다양한 치환체(n-butyl, acetyl, ketal, ethoxycarbonyl, nitro)가 존재하는 요오드화 아릴을 최적 조건하에 할로겐화 인듐과 반응시킨 결과 방향족 탄화수소에 치환된 치환체의 종류가 반응의 수율에 큰 영향을 미치지 못함을 알 수 있었다.
반응 9 와 10에 나타난 바와 같이 치환체에 반응성이 큰 케톤기를 가지는 4-요오드아세토페논(4-iodoacetophenone)을 알릴 인듐과 반응시켰을 경우 알릴 인듐이 케톤은 공격하지 않고 요오드화 아릴과 반응하여 커플링 생성물만을 얻었다.
할로겐기로 치환된 불포화 탄화수소에 있어서 치환체의 위치에 대한 선택성을 알아보기 위하여 에틸 요오드벤조에이트(ethyl iodobenzoate)과 알릴 인듐을 반응시켰다. 그 결과 반응 12 내지 14에 나타난 바와 같이 에틸기(ethyl)기의 위치(ortho,meta,para)와 상관없이 높은 수율의 생성물을 얻었다.
할로겐기로 치환된 불포화 탄화수소에 있어서 치환체에 전자를 끄는기 혹은 전자를 미는기(반응 8 참조)의 존재와 무관하게 최적조건에서 생성된 알릴 인듐(allyl indium)과 반응시켜 높은 수율로 알릴이 결합된 불포화 탄화수소를 얻었다. 특히 전자 끄는기를 가지는 할로겐화 아릴(aryl halide)의 경우 높은 수율로 탄소와 탄소간의 결합이 생성된 생성물을 얻었다.
반응 1, 2에 나타난 바와 같이 불포화 탄화수소에 요오드로 치환되어 있는 요오드화 아릴(aryl iodide)이 브롬으로 치환되어 있는 브롬화 아릴(aryl bromide)보다 반응성이 더 좋았다.
반응 21에 나타난 바와 같이 β-브로모스틸렌(β-bromostyrene;cis:trans=1:4,18)의 경우 알릴 인듐과 반응하여 1-페닐-1,4-펜타디엔(1-phenyl-1,4-pentadiene;cis:trans=1:4,38)을 91%의 수율로 생성하였다.
반응 3, 20에 나타난 바와 같이 아릴 트리플레이트(aryl triflate) 또는 비닐 트리플레이트(vinyl triflate)를 알릴 인듐과 반응시킨 경우 화합물19, 37이 각각 87%와 88%의 수율로 생성되었다.
상기의 결과들을 표 2와 3에 나타내었다.
반응 촉매 리간드 시간(h) 수율(%)
1 4% PdCl2 Ph3P 1 86
2 4% Pd(OAc)2 Ph3P 1 86
3 4% Pd(CH3CN)2Cl2 Ph3P 3 70
4 4% Pd(PhCN)2Cl2 Ph3P 1 87
5 4% Pd(PPh3)4 - 18 58b
6 4% Pd(PPh3)4 - 1 91
7 2% Pd2dba3CHCl3 [2,6-(MeO)2Ph]3P 21 10
8 2% Pd2dba3CHCl3 (o-Tolyl)3P 21 11
9 2% Pd2dba3CHCl3 Ph3As 20 11
10 2% Pd2dba3CHCl3 (2-Furyl)3P 3 75
11 2% Pd2dba3CHCl3 Ph3P 1 0c
12 2% Pd2dba3CHCl3 Ph3P 16 46d
13 2% Pd2dba3CHCl3 Ph3P 16 50e
14 2% Pd2dba3CHCl3 Ph3P 1 93
a100℃, 디메틸포름아미드(DMF) 용매하에 16% 리간드와 3당량의 염화리튬(LiCl)의존재하의 반응. 1당량의 인듐과 1.5당량의 요오드화 알릴의 반응으로부터 알릴 인듐을 얻었다.
bTHF를 용매로 사용함.c염화리튬(LiCl)을 사용하지 않음.d인듐:요오드화 알릴=0.66:1
e인듐:요오드화알릴=1:1
커플링 반응의 결과
반응 할로겐화 아릴 할로겐화 알릴 생성물 시간(h) 수율(%)
커플링 반응의 결과
반응 할로겐화 아릴 할로겐화 알릴 생성물 시간(h) 수율(%)
a부분입체이성질체의 비율 시스:트랜스=1.5:1.b 20(α):21(γ) 비율.c시스:트랜스 비율.d에틸벤조에이트.e부분입체이성질체의 비율 시스:트랜스=1.5:1.f 32(α):33(γ) 비율.g시스:트랜스=1:4
본 발명의 유기 인듐 금속을 사용한 불포화 탄화수소 화합물간의 탄소-탄소 결합 방법은 인 시튜(in situ) 방법으로 생성된 유기인듐화합물을 사용함으로써 불순물을 분리해내는 별도의 정제 과정이 불필요하다.
또한, 상기 인듐 금속이 결합된 β,γ-불포화 탄화수소화합물은 반응성이 우수하고, 작용기 선택의 범위가 넓으며, 독성이 낮기 때문에 종래의 유기 주석 화합물을 사용했을 때의 단점인 부산물 제거의 어려움, 유기 주석 화합물의 독성의 단점을 극복하여 불포화 탄화수소 화합물간의 탄소-탄소 결합 생성물을 높은 수율로 얻을 수 있다.
현재 커플링 반응들이 천연물, 의약 및 농약 등의 합성에 많이 사용되고 있기 때문에, 본 발명의 유기 인듐 화합물을 사용한 커플링 반응은 폴리올레핀 매크롤리드(Polyolefin macrolide), 라파마이신(rapamycin), 버지아마이신 (virginiamycin), 스트리츠닌(strychnine), 파푸아민(papuamine), 헬리클로나디아민(heliclonadiamine), 고니오푸르푸론(goniofurfurone) 등의 합성에 이용될 수 있으며, 종래 커플링 반응의 여러 단점에 대한 보완으로 그 이용 가능성은 크다고 할 수 있다.

Claims (7)

  1. 염소, 브롬, 요오드, OTf, N2X, OSO2R, OSO2F, SO2R, SOR, SR, SeR, OR, IPhX, IPhOTf, I(OH)OTs, 및 OPO(OR)2로이루어진 군에서 선택되는 기로 치환된 불포화 탄화수소 화합물(substituted-unsaturated hydrocarbon compound)과 인듐으로 치환된 불포화 탄화수소 화합물(unsaturated organo-indium compound)을 금속화합물 촉매 존재하에서 반응시키는 불포화 탄화수소들간의 결합 방법.
  2. 제 1항에 있어서, 상기 인듐으로 치환된 불포화 탄화수소 화합물 (unsaturated organo-indium compound)이 하기의 반응식과 같이 인듐과 할로겐기로 치환된 β,γ-불포화 탄화수소 화합물로부터 인 시튜(in situ)방법으로 제조되는 것임을 특징으로 하는 불포화 탄화수소 화합물들간의 결합 방법.
    상기의 반응식에서, X는 염소, 브롬, 요오드로 이루어진 군에서 선택된다.
  3. 제2항에 있어서, X가 염소일 경우에는 상기 반응이 요오드화리튬존재하에서 수행되는 것을 특징으로 하는 불포화 탄화수소 화합물들간의 결합 방법.
  4. 제1항에 있어서, 상기 금속 화합물 촉매가 PdCl2, Pd(OAc)2, Pd(CH3CN)2Cl2, Pd(PhCN)2Cl2, Pd(PPh3)4및 Pd2dba3CHCl3로 이루어지는 군에서 선택되는 것임을 특징으로 하는 불포화 탄화수소 화합물간의 결합 방법.
  5. 제1항에 있어서, 염화리튬 또는 테트라알킬암모늄 염으로 이루어진 첨가제를 첨가하는 단계를 추가로 포함하는 것임을 특징으로 하는 불포화 탄화수소 화합물들간의 결합 방법.
  6. 제1항에 있어서, 상기 금속 화합물 촉매가 Ph3P, [2,6-(MeO)2Ph]3P, (o-Tolyl)3P, Ph3As 및 (2-Furyl)3P로 이루어진 리간드를 포함하는 것임을 특징으로 하는 불포화 탄화수소 화합물들간의 결합 방법.
  7. 제1항에 있어서, 상기 불포화 탄화수소 화합물간의 결합 반응이 디메틸포름아미드(DMF) 용매존재하에서 수행되는 것임을 특징으로 하는 불포화 탄화수소 화합물들간의 결합 방법.
KR1020010044299A 2001-07-23 2001-07-23 유기 인듐 화합물을 사용한 불포화 탄화수소 화합물들간의 결합 방법 KR100782583B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010044299A KR100782583B1 (ko) 2001-07-23 2001-07-23 유기 인듐 화합물을 사용한 불포화 탄화수소 화합물들간의 결합 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010044299A KR100782583B1 (ko) 2001-07-23 2001-07-23 유기 인듐 화합물을 사용한 불포화 탄화수소 화합물들간의 결합 방법

Publications (2)

Publication Number Publication Date
KR20030009724A true KR20030009724A (ko) 2003-02-05
KR100782583B1 KR100782583B1 (ko) 2007-12-06

Family

ID=27716252

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010044299A KR100782583B1 (ko) 2001-07-23 2001-07-23 유기 인듐 화합물을 사용한 불포화 탄화수소 화합물들간의 결합 방법

Country Status (1)

Country Link
KR (1) KR100782583B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100841407B1 (ko) * 2007-06-15 2008-06-25 강원대학교산학협력단 알리나인-1,6-다이올 유도체와 이의 제조방법
CN109824495A (zh) * 2019-02-02 2019-05-31 盐城锦明药业有限公司 一种新型偶联反应在制备碳-碳键结构化合物中的应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100841407B1 (ko) * 2007-06-15 2008-06-25 강원대학교산학협력단 알리나인-1,6-다이올 유도체와 이의 제조방법
CN109824495A (zh) * 2019-02-02 2019-05-31 盐城锦明药业有限公司 一种新型偶联反应在制备碳-碳键结构化合物中的应用
CN109824495B (zh) * 2019-02-02 2022-12-09 盐城师范学院 一种新型偶联反应在制备碳-碳键结构化合物中的应用

Also Published As

Publication number Publication date
KR100782583B1 (ko) 2007-12-06

Similar Documents

Publication Publication Date Title
van Asselt et al. Palladium complexes containing rigid bidentate nitrogen ligands as catalysts for carboncarbon bond formation
Colacot The 2010 Nobel Prize in chemistry: palladium-catalysed cross-coupling
Terasawa et al. A coordinatively unsaturated, polymer-bound palladium (0) complex. Synthesis and catalytic activities
Van Asselt et al. New palladium complexes of cis-fixed bidentate nitrogen ligands as catalysts for carbon-carbon bond formation
Vasconcelos et al. Synthesis of symmetrical biaryl compounds by homocoupling reaction
van Asselt et al. Rigid bidentate nitrogen ligands in organometallic chemistry and homogeneous catalysis. 8. On the mechanism of formation of homocoupled products in the carbon-carbon cross-coupling reaction catalyzed by palladium complexes containing rigid bidentate nitrogen ligands: evidence for the exchange of organic groups between palladium and the transmetalating reagent
Itami et al. Multisubstituted olefins: platform synthesis and applications to materials science and pharmaceutical chemistry
Nishihara et al. Copper-catalyzed Sila-Sonogashira–Hagihara cross-coupling reactions of alkynylsilanes with aryl iodides under palladium-free conditions
KR100186801B1 (ko) 비아릴화합물의 제조방법
Werner et al. Vinylidene transition-metal complexes. 18.(Arene) osmium complexes containing alkynyl, vinyl, vinylidene, and thio-and selenoketene units as ligands: A series of organometallic compounds built up from 1-alkynes
Gilbertson et al. Palladium-catalyzed synthesis of vinyl phosphines from ketones
JP2006043697A (ja) コロイド触媒の製造方法
Bergin et al. Application of the Suzuki reaction to the asymmetric desymmetrisation of 1, 2-and 1, 3-disubstituted bulky cobalt metallocenes
Arambasic et al. A rhodium-catalysed Sonogashira-type coupling exploiting C–S functionalisation: orthogonality with palladium-catalysed variants
KR100782583B1 (ko) 유기 인듐 화합물을 사용한 불포화 탄화수소 화합물들간의 결합 방법
Gulevich et al. Substitutional Carbonylation of Organic Compounds Catalysed by Palladium Complexes
Johansson Seechurn et al. Pd–Phosphine Precatalysts for Modern Cross-Coupling Reactions
Kasák et al. Study on the synthesis of nonracemic C2-symmetric 1, 1′-binaphthyl-2, 2′-diyl bridged ferrocene. Stereochemical result of the cross-coupling reactions controlled by Pd (II) or Pd (IV) complex intermediacy
Yamamoto et al. Organic synthesis by low-valent isocyanide complexes. Part 5. Formation of indolenine derivatives from dicobalt octaisocyanide and carbon polyhalide
JP4719988B2 (ja) 9,10−ジフェニルアントラセンの製造法
Beletskaya Organometallic compounds in synthesis and catalysis
Kotora et al. Palladium‐Catalyzed Homocoupling of Organic Electrophiles or Organometals
Fugami et al. Palladium-Catalyzed Novel Arylstannylation of Norbornene
Van Asselt et al. On the mechanism of formation of homocoupled products in the carbon-carbon crosscoupling reaction catalyzed by palladium complexes containing rigid bidentate nitrogen ligands: evidence for the exchange of organic groups between palladium and the transmet
JP3353046B2 (ja) 有機ビスマス化合物を用いる有機化合物の製造法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141001

Year of fee payment: 14