KR20030003918A - Asymmetric preswirl stator - Google Patents

Asymmetric preswirl stator Download PDF

Info

Publication number
KR20030003918A
KR20030003918A KR1020010039779A KR20010039779A KR20030003918A KR 20030003918 A KR20030003918 A KR 20030003918A KR 1020010039779 A KR1020010039779 A KR 1020010039779A KR 20010039779 A KR20010039779 A KR 20010039779A KR 20030003918 A KR20030003918 A KR 20030003918A
Authority
KR
South Korea
Prior art keywords
current
degrees
propeller
current fixed
fixed
Prior art date
Application number
KR1020010039779A
Other languages
Korean (ko)
Other versions
KR100416720B1 (en
Inventor
김근제
김문찬
김호충
김성표
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to KR10-2001-0039779A priority Critical patent/KR100416720B1/en
Publication of KR20030003918A publication Critical patent/KR20030003918A/en
Application granted granted Critical
Publication of KR100416720B1 publication Critical patent/KR100416720B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE: An asymmetric current-fixed vane is provided to cut down expenses by improving efficiency and reducing the weight. CONSTITUTION: In a current-fixed vane installed in front of a propeller of the stern, a current-fixed vane is asymmetrically installed at the port side and the starboard side. In the current-fixed vane, three current-fixed vanes are installed at the port side each at an angle of 45 degrees and two current-fixed vanes are installed at the starboard side each at an angle of 60 degrees. The code length of the current-fixed vanes of the starboard side is 80% of the code length of the current-fixed vanes of the port side. The angles of the current-fixed vanes of the port side to the axial central line are 12 degrees, 6 degrees, and 10 degrees, and the angles of the current-fixed vanes of the starboard side to the axial central line are 12 degrees and 18 degrees.

Description

비대칭 전류 고정 날개{Asymmetric preswirl stator}Asymmetric preswirl stator

본 발명은 저속 비대선에 사용되는 전류고정날개에 관한 것으로서, 특히 상세하게는 선체 반류의 특성을 적용시킨 비대칭 전류 고정날개에 관한 것이다.The present invention relates to a current fixed wing used for a low speed hypertrophic line, and more particularly to an asymmetric current fixed wing to which the characteristics of the hull reflux is applied.

선박의 추진성능을 위하여 사용하고 있는 전류고정날개는 통상 프로펠러가 전진 회전하여 선체가 전진 항주하고 있을 때 선미부분의 물의 흐름을 회전방향과 반대로 휘게 하여 프로펠러로 다시 보내준다. 이렇게 하여 프로펠러 후방에 발생하는 회전류가 감소하므로 프로펠러의 추진효율이 향상한다. 일반적으로 프로펠러가회전하면 수중에는 그 후방에 프로펠러의 회전방향과 동일방향의 회전류가 발생하고 이러한 회전류는 선체의 추진에 이용되지 않고 오히려 그 에너지분만큼 프로펠러의 추진효율을 저하시킨다. 따라서 그러한 회전류를 감소시키면 그 만큼의 프로펠러 추진효율이 증가하므로 프로펠러의 회전방향과 반대방향의 회전류를 발생시키기 위한 전류고정날개를 개발하여 왔다.Current fixed wing used for propulsion performance of ship is generally propeller rotates forward and when the hull is moving forward, the water flow in the stern is bent back to the propeller. In this way, the propulsion efficiency of the propeller is improved because the rotational flow generated behind the propeller is reduced. In general, when the propeller rotates, water flows in the rear of the propeller in the same direction as that of the propeller, and this rotational flow is not used for propulsion of the hull, but rather lowers propulsion efficiency of the propeller. Therefore, since the propeller propulsion efficiency is increased by reducing such rotational flow, current fixed blades for generating the rotational flow in the opposite direction to the rotational direction of the propeller have been developed.

저속 비대선의 경우 도 1에서 볼 수 있듯이 프로펠러 플레인(plane)에서의 선미 형상에 의한 상승 속도(upward velocity)가 커서 좌현(port side)과 우현(starboard side)에서 배에 의해 유기되는 접선 속도(tangential velocity)가 프로펠러가 좌현에서 작동될때와 우현에서 작동될 때 프로펠러에 유입되는 흐름의 충돌각(angle of attack)을 크게 다르게 하여 도 2에 도시된 바와 같이 프로펠러 바로 뒤에서 유속을 측정할 경우 잔류 접선 속도를 측정하면 좌 우가 크게 다르게 나타난다.In the case of a low-speed hypertrophy, as shown in Fig. 1, the upstream velocity due to the stern shape in the propeller plane is large, so that the tangential velocity induced by the ship at the port side and starboard side ( The tangential velocity differs from the angle of attack of the flow entering the propeller when the propeller is operated at the port and at the starboard, so that the residual tangential is measured when the flow velocity is measured directly behind the propeller as shown in FIG. When you measure the speed, the left and right are very different.

이는 프로펠러의 회전 에너지 회수에 의한 효율 증가를 목적으로 설치된 전류고정날개가 대칭형으로 설계될 경우 우현쪽에서의 탄젠셜 벨로시티 캔설레이션(tangential velocity cancellation)이 상대적으로 필요이상 많이 나타나는 결과를 초래한다고 볼 수 있다.This results in tangential velocity cancellation on the starboard side more than necessary when the current-locked vanes are designed symmetrically to increase the efficiency of propeller rotational energy recovery. have.

본 발명은 전술한 바와 같은 문제점을 해결하기 위하여 안출한 것으로서, 비대칭 전류 날개(asymmetric preswirl stator)의 개념을 도입하여 우현 쪽에서 선체에 의해 상당부분 상쇄된 접선속도를 고려하여 이 부분에서 고정날개 수를 하나 없애 불필요한 저항을 최소화 하고자 하는 목적을 가지고 있다.The present invention has been made to solve the problems described above, by introducing the concept of an asymmetric preswirl stator, in consideration of the tangential speed offset by the hull in the starboard side, the number of fixed wings in this part It aims to minimize unnecessary resistance by eliminating one.

본 발명은 전술한 목적을 달성하기 위하여 선미의 프로펠러의 전방에 설치되는 전류고정날개에 있어서, 좌현과 우현에 비대칭으로 전류 고정날개를 설치하며, 비대칭으로 설치되는 상기 전류 고정날개는 좌현쪽에 각각 45도의 각도로 3개의 전류 고정날개를 설치하고 우현쪽에는 각각 60도의 각도로 2개의 전류고정날개를 설치하며, 상기 우현쪽 전류 고정날개의 코드의 길이는 좌현쪽 전류 고정날개의 코오드 길이의 80%인 것을 특징으로 하는 비대칭 전류 고정 날개 및 상기 좌현쪽의 전류 고정날개에서 축방향의 중심선에 대한 각은 가장 위에서부터 12도 6도 10도 이며, 우현쪽의 전류 고정날개에서 축방향의 중심선에 대한 각은 위에서부터 12도 18도 인 것을 특징으로 하는 비대칭 전류 고정 날개를 제공한다.The present invention is a current fixed wing installed in front of the propeller of the stern in order to achieve the above object, the current fixed wing is installed asymmetrically in the port and starboard, the asymmetrically installed current fixed wing respectively 45 on the port side Three current fixed wings are installed at the angle of degrees, and two current fixed wings are installed at the angle of 60 degrees on the starboard side, and the length of the cord of the current fixed wing of the starboard side is 80% of the length of the cord of the current fixed blade at the port side. In the asymmetrical current fixing wing and the current fixed wing of the port side, the angle with respect to the center line in the axial direction is 12 degrees 6 degrees 10 degrees from the top, and for the axial center line in the current fixed wing of the starboard side The angle provides an asymmetrical current holding vane characterized in that 12 degrees 18 degrees from above.

도 1은 저속 비대선의 경우 프로펠러 프레인에서의 접선속도를 표시한 도면.1 is a diagram showing a tangential velocity in a propeller plane in the case of a low speed hypertrophic line.

도 2는 프로펠러 뒤의 유속을 측정한 도면.2 is a view measuring the flow rate behind the propeller.

도 3은 프로펠러와 리액션핀이 설치되는 통상적인 선박의 모습을 도시한 도면.Figure 3 is a view showing a state of a typical ship in which the propeller and the reaction pin is installed.

도 4는 본 발명의 비대칭 전류 고정날개를 도시한 도면.4 is a view showing the asymmetric current holding blade of the present invention.

< 도면의 주요 부분에 대한 부호의 간단한 설명 ><Brief description of symbols for the main parts of the drawings>

1 : 리액션 핀 2 : 프로펠러1: reaction pin 2: propeller

이하 첨부된 도면을 참조하여 본 발명의 구성을 상세히 설명하면 다음과 같다.Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.

도 4에 도시되어 있듯이 비대칭 전류 고정날개의 개념을 도입하면 우현쪽에서의 접선속도는 선체에 의해 상당부분 상쇄되었으므로 이부분에서의 고정 날개 수를 하나 없애 좌현에는 3개 우현에는 2개를 설치한다. 이로 인하여 불필요한 저항이 최소화 된다.As shown in Fig. 4, when the concept of the asymmetric current fixed wing is introduced, the tangential velocity at the starboard side is substantially canceled by the hull, so that the number of fixed vanes at this part is eliminated so that three portboards are provided at the three starboards. This minimizes unnecessary resistance.

또한 온 커밍 플로우(on-comming flow)의 이상적인 충돌 각을 맞추기 위해서 우현쪽에 있는 고정날개의 피치 각이 상대적으로 커지기 때문에 이로 인하여 프로펠러로 유입되는 축의 흐름을 막아 이 부분에서의 프로펠러 부하를 커지게 하는 효과를 가져 오므로 선체에 의한 상승 흐름과 더불어 프로펠러 부하의 불균일성을 심화시키는 결과를 초래할 수 있다.In addition, the pitch angle of the fixed blade on the starboard side is increased relatively to match the ideal collision angle of the on-comming flow, thereby preventing the flow of the shaft flowing into the propeller, thereby increasing the propeller load in this area. This has the effect of increasing the propeller load nonuniformity along with the upward flow by the hull.

따라서 우현쪽의 고정 날개를 하나 줄이는 것뿐만 아니라 그쪽에 있는 날개들의 코오드(chord) 길이(현의 길이) 또한 반대쪽 날개의 코오드 길이의 75%~85% 정도로 적게 설계하는 것이 바람직하고 약 80%가 가장 이상적이다.Therefore, it is desirable not only to reduce one fixed wing on the starboard side, but also to design the chord length (string length) of the wings thereon as low as 75% to 85% of the code length of the opposite wing, and about 80% Most ideal.

우현쪽에서의 고정날개 수를 한 개 감소시키고 코오드 길이 또한 감소시킴으로 인하여 우현쪽에서의 축 주위 속도(axial velocity)가 빨라 짐으로 인해 프로펠러의 부하 분포가 균일해 짐에 따라 프로펠러 자체적으로도 효율 및 캐비테이션 특성을 향상시킬 수 있다.As the number of stator blades on the starboard side is reduced by one and the length of the cord is also reduced, the axial velocity on the starboard side is increased, so that the propeller load distribution becomes uniform. Can improve.

도 4에 바람직한 일 실시예를 도시하였는데, 좌현쪽에 각각 45도의 각도로 고정날개 3개를 설치하고, 우현쪽에 각각 60도의 각도로 2개의 고정날개를 설치한다.4 shows a preferred embodiment, three fixed blades are installed on the port side at an angle of 45 degrees, and two fixed blades are installed on the starboard side at an angle of 60 degrees.

각 고정날개는 축방향의 중심선에 대하여 좌현쪽은 가장 위의 것이 가장 각도가 크고, 중간 것이 가장 각도가 작으며, 가장 아래의 것은 위의 2개의 중간 정도의 각도를 유지하는 것이 바람직하며, 우현쪽의 고정날개는 축방향의 중심선에 대하여 위의 것이 좌현쪽의 고정날개중 가장 위의 것과 같은 크기를 이루는 것이 바람직하며, 아래의 것은 좌현쪽의 아래 2개의 것을 합친 각도보다 크게 잡는 것이 바람직하다.It is preferable that each fixed wing has the highest angle at the top of the port, the lowest at the middle, and the lowest at the middle of the two at the port side with respect to the centerline in the axial direction. It is preferable that the upper blade has the same size as the uppermost of the fixed blades on the port side with respect to the center line in the axial direction, and the lower one is preferably larger than the combined angle of the lower two sides of the port side. .

가장 바람직한 일실시예를 보면, 각 고정날개는 축방향의 중심선에 대하여 좌현쪽은 위에서부터 각각 12도, 6도, 10도이고 우현쪽은 위에서부터 12도 18도로구성하는 것이 가장 바람직하다.In the most preferred embodiment, each fixed wing is most preferably composed of 12 degrees, 6 degrees, 10 degrees from the top side and 12 degrees 18 degrees from the top side, respectively, from the top side with respect to the center line in the axial direction.

이상과 같이 본 발명은 기존의 고정날개와 대비하여 1~2% 효율 향상을 가져오고, 기존의 대칭형 리액션 핀과 대비하여 약 10톤의 무게가 절감된다. 이를 비용으로 환산하면 약 2천 5백만원의 절감효과를 가져온다.As described above, the present invention brings about 1 ~ 2% improvement in efficiency compared to the existing fixed wing, and the weight of about 10 tons is reduced in comparison with the conventional symmetrical reaction pin. Converting it to cost, it brings about 25 million won of savings.

또한 프로펠러 부하 분포가 균일해 짐에 따라 프로펠러의 효율 및 캐비테이션 특성이 향상되는 효과가 있다.In addition, as the propeller load distribution becomes uniform, there is an effect of improving the efficiency and cavitation characteristics of the propeller.

Claims (2)

선미의 프로펠러의 전방에 설치되는 전류고정날개에 있어서, 좌현과 우현에 비대칭으로 전류 고정날개를 설치하며, 비대칭으로 설치되는 상기 전류 고정날개는 좌현쪽에 각각 45도의 각도로 3개의 전류 고정날개를 설치하고 우현쪽에는 각각 60도의 각도로 2개의 전류고정날개를 설치하며, 상기 우현쪽 전류 고정날개의 코드의 길이는 좌현쪽 전류 고정날개의 코오드 길이의 80%인 것을 특징으로 하는 비대칭 전류 고정 날개.In the current fixed wing installed in front of the stern propeller, the current fixed wing is installed asymmetrically on the port and starboard, the current fixed wing is installed asymmetrically, three current fixed wing at 45 degrees each installed on the port side And install two current fixed wings at an angle of 60 degrees on the starboard side, and the length of the cord of the starboard current fixed blade is 80% of the cord length of the port current fixed blade. 제 1 항에 있어서, 좌현쪽의 전류 고정날개에서 축방향의 중심선에 대한 각은 가장 위에서부터 12도 6도 10도 이며, 우현쪽의 전류 고정날개에서 축방향의 중심선에 대한 각은 위에서부터 12도 18도 인 것을 특징으로 하는 비대칭 전류 고정 날개.2. The angle of the centerline in the axial direction of the current fixed wing of the port side is 12 degrees 6 degrees 10 degrees from the top, and the angle of the centerline of the axial direction of the current fixed wing of the starboard side is 12 from the top. Fig. 18 is an asymmetric current holding blade, characterized in that.
KR10-2001-0039779A 2001-07-04 2001-07-04 Asymmetric preswirl stator KR100416720B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0039779A KR100416720B1 (en) 2001-07-04 2001-07-04 Asymmetric preswirl stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0039779A KR100416720B1 (en) 2001-07-04 2001-07-04 Asymmetric preswirl stator

Publications (2)

Publication Number Publication Date
KR20030003918A true KR20030003918A (en) 2003-01-14
KR100416720B1 KR100416720B1 (en) 2004-01-31

Family

ID=27713368

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0039779A KR100416720B1 (en) 2001-07-04 2001-07-04 Asymmetric preswirl stator

Country Status (1)

Country Link
KR (1) KR100416720B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043632A (en) * 2011-08-22 2013-03-04 Hyundai Heavy Industries Co Ltd Asymmetric twist flow control fin of ship
CN102951261A (en) * 2011-08-22 2013-03-06 现代重工业株式会社 Forming method for stern structure of ship attached with asymmetric twisted flow control fin

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946968B1 (en) * 2007-11-26 2010-03-15 삼성중공업 주식회사 Pre-swirl Stator improving ability to maneuver in vessel
DE202009009899U1 (en) * 2009-07-23 2010-12-02 Becker Marine Systems Gmbh & Co. Kg Nozzle propellers for ships
ES2502475T3 (en) * 2011-11-11 2014-10-03 Becker Marine Systems Gmbh & Co. Kg Device for reducing the demand for propulsion power of a vessel
KR101603409B1 (en) 2014-04-29 2016-03-14 주식회사 한진중공업 Flow Control Device of Ship
KR20200134718A (en) 2019-05-23 2020-12-02 대우조선해양 주식회사 Pre-swirl stator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139396U (en) * 1982-03-17 1983-09-19 三菱重工業株式会社 Reaction fin rectifier type strut
JPS59180999U (en) * 1983-05-23 1984-12-03 ユリイ・セルゲ−ビツチ・プンソン Guidance device
JPS61203199U (en) * 1985-06-11 1986-12-20
JPS6455197U (en) * 1987-10-01 1989-04-05
JPH075037Y2 (en) * 1987-10-16 1995-02-08 三菱重工業株式会社 Reaction fins for ships
US5209642A (en) * 1988-03-03 1993-05-11 The United States Of America As Represented By The Secretary Of Transportation Modified optimum pitch propeller
JPH0732382Y2 (en) * 1988-06-02 1995-07-26 三菱重工業株式会社 Double reaction fin
KR0174768B1 (en) * 1991-11-14 1999-04-15 코오노 미찌아끼 Marine reaction fin arrangement
JP3519541B2 (en) * 1996-03-12 2004-04-19 三菱重工業株式会社 Marine stator fin device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043632A (en) * 2011-08-22 2013-03-04 Hyundai Heavy Industries Co Ltd Asymmetric twist flow control fin of ship
CN102951280A (en) * 2011-08-22 2013-03-06 现代重工业株式会社 Flow control wing of unsymmetrical torsion of ship
CN102951261A (en) * 2011-08-22 2013-03-06 现代重工业株式会社 Forming method for stern structure of ship attached with asymmetric twisted flow control fin
KR101365878B1 (en) * 2011-08-22 2014-02-24 현대중공업 주식회사 Forming method for stern structure of a ship attached with asymmetric twisted flow control fin

Also Published As

Publication number Publication date
KR100416720B1 (en) 2004-01-31

Similar Documents

Publication Publication Date Title
KR101334217B1 (en) Fuel-efficiecy Improving crown duct for ship
JP5539025B2 (en) Front fixed wing with duct
JP5081455B2 (en) Asymmetrical front wing of a ship
KR100640299B1 (en) Installation structure for preswirl stator of ship
KR101425369B1 (en) appendage of duct with guide fin directed in center of radial
KR100416720B1 (en) Asymmetric preswirl stator
CN106043641A (en) Annular flow guide gate for ship
CN106985990A (en) A kind of preposition flap peculiar to vessel
EP1955944B1 (en) Asymmetric preswirl stator of ship
CN206704493U (en) A kind of preposition flap peculiar to vessel
KR101276120B1 (en) rudder for ship
JP4382120B2 (en) Turbine fin with duct
JPH10244993A (en) Duct propeller device
KR20120121112A (en) Pre-swirl Stator of Ship
CN111532408A (en) Low-vibration high-efficiency double-conduit paddle front energy-saving device
KR100640298B1 (en) Installation structure for preswirl stator of ship
JPH07267189A (en) Marine propeller device with current fin
KR20190048346A (en) Propulsion efficiency enhancing apparatus
CN209096990U (en) A kind of guide plate type ring duct peculiar to vessel
CN210191740U (en) Energy-saving hydrofoil for thin and small stern ship
CN212500968U (en) Low-vibration high-efficiency double-conduit paddle front energy-saving device
KR20170062752A (en) Asymmetric pre-swirl stator for vessel
JP3886049B2 (en) Valve, rudder, ship
CN211543842U (en) Wing flap type asymmetric front guide wheel
KR20200134718A (en) Pre-swirl stator

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121227

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131226

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141222

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20151228

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170111

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180112

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190114

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20200114

Year of fee payment: 17