KR20030003329A - Chemical vapor deposition method for depositing ruthenium - Google Patents

Chemical vapor deposition method for depositing ruthenium Download PDF

Info

Publication number
KR20030003329A
KR20030003329A KR1020010038650A KR20010038650A KR20030003329A KR 20030003329 A KR20030003329 A KR 20030003329A KR 1020010038650 A KR1020010038650 A KR 1020010038650A KR 20010038650 A KR20010038650 A KR 20010038650A KR 20030003329 A KR20030003329 A KR 20030003329A
Authority
KR
South Korea
Prior art keywords
ruthenium
source
oxygen gas
chemical vapor
vapor deposition
Prior art date
Application number
KR1020010038650A
Other languages
Korean (ko)
Inventor
하승철
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020010038650A priority Critical patent/KR20030003329A/en
Publication of KR20030003329A publication Critical patent/KR20030003329A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/65Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)

Abstract

PURPOSE: A CVD(Chemical Vapor Deposition) method of a ruthenium thin film is provided to obtain the ruthenium thin film of high quality by increasing or reducing the amount of oxygen gas. CONSTITUTION: A substrate is loaded into a deposition chamber(21). A flow process for a mixed solution of a solvent and a ruthenium source is performed(22). The ruthenium source is formed by using Ru(EtCp)2 or Ru(od)3. The ruthenium source is formed by melting the Ru(EtCp)2 into THF or methanol when the ruthenium source is formed by using the Ru(EtCp)2. The ruthenium source is formed by melting the Ru(od)3 into n-butyl acetate or diglyme when the ruthenium source is formed by using the Ru(od)3. A ruthenium thin film is deposited on the substrate by the flow of an oxygen gas into the deposition chamber. The amount of oxygen gas is increased in a nucleation step(23). The amount of oxygen gas is reduced in a ruthenium growth step(24).

Description

루테늄박막의 화학적기상증착 방법{CHEMICAL VAPOR DEPOSITION METHOD FOR DEPOSITING RUTHENIUM}Chemical vapor deposition method of ruthenium thin film {CHEMICAL VAPOR DEPOSITION METHOD FOR DEPOSITING RUTHENIUM}

본 발명은 반도체소자의 제조 방법에 관한 것으로서, 특히 모폴로지 특성 및 누설전류 특성이 우수한 금속전극의 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for forming a metal electrode having excellent morphology characteristics and leakage current characteristics.

최근에 메모리 소자의 집적도가 증가하면서 보다 높은 캐패시턴스와 작은 누설전류 특성이 요구됨에 따라 ONO구조에서 누설전류가 작은 MIM(Metal-Insulator-Metal) 구조로 변화되고 있다.Recently, as the degree of integration of memory devices increases, higher capacitance and smaller leakage current characteristics are required, thereby changing from ONO structure to metal-insulator-metal (MIM) structure with low leakage current.

다시 말하면, 집적화되면서 보다 높은 유전상수를 지니는 BLT, BST, Ta2O5등의 고유전 상수를 갖는 유전막이 요구됨과 동시에 누설전류를 감소시키기 위해 일함수값이 큰 금속을 상부전극 및 하부전극으로 적용해야 된다.In other words, a dielectric film having a high dielectric constant such as BLT, BST, Ta 2 O 5, etc. having a higher dielectric constant while being integrated is required, and a metal having a large work function is used as the upper electrode and the lower electrode to reduce leakage current. Should apply.

전극으로 적용되는 금속은 백금(Pt), 이리듐(Ir), 루테늄(Ru), 산화이리듐막(IrO), 산화루테늄막(RuO), 백금합금(Pt-alloy) 등이 있다.Metals applied as electrodes include platinum (Pt), iridium (Ir), ruthenium (Ru), iridium oxide film (IrO), ruthenium oxide film (RuO), platinum alloys (Pt-alloy), and the like.

상기한 전극들 중 루테늄(Ru) 박막 및 산화루테늄 박막을 포함하는 루테늄계 박막은 백금(Pt)과 비교하여 식각 공정이 상대적으로 쉬워, DRAM 및 FeRAM과 같은 메모리 소자(memory device)에 사용되는 강유전체 및 고유전체 재료로 구성되는 박막 캐패시터의 캐패시터 전극으로 적용될 수 있을 것으로 기대된다.Among the electrodes, ruthenium-based thin films including ruthenium (Ru) thin films and ruthenium oxide thin films are relatively easy to etch compared to platinum (Pt), and thus ferroelectrics used in memory devices such as DRAM and FeRAM. And a capacitor electrode of a thin film capacitor composed of a high dielectric material.

금속 박막, 산화금속 박막 및 복합 산화금속 박막을 형성하기 위한 박막공정은 스퍼터링법(sputtering), 이온 도금법(ion plating), 열분해 도포법(pyrolytic coating), 화학기상증착법(CVD) 등을 포함한다.Thin film processes for forming metal thin films, metal oxide thin films and composite metal oxide thin films include sputtering, ion plating, pyrolytic coating, chemical vapor deposition (CVD), and the like.

특히 화학기상증착법은 다양한 가스들을 반응챔버로 주입시키고, 열, 빛, 플라즈마와 같은 고에너지에 의해 유도된 가스들을 화학반응시키므로써 기판상에 요구되는 두께의 박막을 증착시킨다. 아울러, 화학기상증착법(CVD)에서는 반응에너지만큼 인가된 플라즈마 또는 가스들의 비(ratio) 및 양(amount)을 통해 반응조건을 제어하므로서 증착률을 증가시킬 수 있다.In particular, the chemical vapor deposition method injects various gases into the reaction chamber and chemically reacts gases induced by high energy, such as heat, light, and plasma, thereby depositing a thin film having a desired thickness on the substrate. In addition, in chemical vapor deposition (CVD), the deposition rate may be increased by controlling the reaction conditions through the ratio and amount of plasma or gases applied by the reaction energy.

최근에 소자의 집적도 증가에 따라 캐패시터의 면적을 최대한 증가시켜 캐패시턴스를 증가시키기 위해서 캐패시터 구조의 종횡비(aspect ratio)를 점점 증가시키고 있어 전극으로 사용할 루테늄 박막도 단차피복성이 우수한 화학기상증착법(CVD)을 이용하여 증착하고 있다.Recently, the aspect ratio of the capacitor structure is gradually increasing to increase the capacitance by increasing the area of the capacitor as much as the integration density of the device, so that the ruthenium thin film to be used as an electrode has excellent step coverage. It is deposited using.

루테늄(Ru)을 DRAM 및 FeRAM의 하부전극으로 이용하기 위하여 금속유기화학기상증착법(Metal Organic CVD; MOCVD)에 의해 증착할 경우, 루테늄 박막의 소스로는 디사이클로펜타디엔루테늄[Ru(Cp)2], 트리옥타네디오네이트[Ru(od)3], 디에틸사이클로펜타디엔루테늄[Ru(EtCp)2], 디메틸사이클로펜타디엔루테늄[Ru(MeCp)2] 등이 있으며, 이들은 실온에서 고체나 액체 상태로 존재한다.When ruthenium (Ru) is deposited by metal organic CVD (MOCVD) to use the lower electrodes of DRAM and FeRAM, dicyclopentadiene ruthenium [Ru (Cp) 2 is used as a source of the ruthenium thin film. ], Trioctanedionate [Ru (od) 3 ], diethylcyclopentadieneruthenium [Ru (EtCp) 2 ], dimethylcyclopentadieneruthenium [Ru (MeCp) 2 ], and the like. It is in a liquid state.

일반적으로 고체나 액체 소스의 경우, 안정된 소스의 운반이 웨이퍼내의 균일도 또는 웨이퍼간의 균일도를 결정하게 되므로 높은 증기압(Vapor pressure)을유지해주어야 한다. 그러나, 높은 증기압을 유지하기 위해서 소스 실린더를 가열해주면 소스가 실린더내에서 분해되거나 운반시스템내에 클로깅(clogging)되는 문제점이 발생한다.In general, for solid or liquid sources, high vapor pressures must be maintained since the transport of a stable source will determine the uniformity within the wafer or between wafers. However, heating the source cylinder to maintain a high vapor pressure causes a problem in that the source decomposes in the cylinder or is clogged in the delivery system.

따라서, 소스보다 점성(viscosity)이 작은 용매(solvent)에 소스를 용해시켜 운반라인내에 클로깅되지 않고 소스가 안정적으로 운반되는 방법을 사용한다.Therefore, a method is used in which the source is stably delivered without being clogged in the delivery line by dissolving the source in a solvent having a viscosity less than that of the source.

도 1은 종래기술에 따른 용액 화학기상증착법을 이용한 루테늄막의 증착 방법을 도시한 공정 흐름도이다.1 is a process flow diagram illustrating a method for depositing a ruthenium film using a solution chemical vapor deposition method according to the prior art.

도 1에 도시된 바와 같이, 기판을 증착챔버내에 로딩시킨 후, 용매에 루테늄소스를 용해시킨 용액을 플로우시킨다(11∼12).As shown in FIG. 1, after loading a substrate into a deposition chamber, a solution in which a ruthenium source is dissolved in a solvent is flowed (11-12).

이 때, 루테늄 소스로는 Ru(EtCp)2를 이용하는데, Ru(EtCp)2소스와 기화 온도(vapor temperature)가 비슷하며 Ru(EtCp)2소스가 쉽게 용해되는 테트라하이드로퓨란(TetraHydroFuran; THF)을 용매로 사용한다.At this time, the ruthenium source is, for using the Ru (EtCp) 2 Ru (EtCp ) 2 source and the vaporization temperature (vapor temperature) are similar, and Ru (EtCp) 2 in tetrahydrofuran source is readily soluble (TetraHydroFuran; THF) Is used as the solvent.

계속해서, 루테늄소스를 열분해시는 반응가스인 산소가스를 일정하게 플로우시켜 기판상에 루테늄막을 증착시킨다(13).Subsequently, a ruthenium film is deposited on the substrate by constantly flowing an oxygen gas which is a reaction gas during pyrolysis of the ruthenium source (13).

여기서, 산소가스는 루테늄 소스의 열분해를 도와 루테늄막의 형성을 가능케할뿐만 아니라 증착되는 루테늄막의 모폴로지(Morphology)와 결정성, 그리고 증착률의 변화에 영향을 주기도 한다. 따라서, 소스에 대한 산소의 플로우량을 일정하게 유지시켜준다.Here, the oxygen gas not only enables the pyrolysis of the ruthenium source to form the ruthenium film but also affects the morphology, crystallinity, and deposition rate of the deposited ruthenium film. Therefore, the flow amount of oxygen to the source is kept constant.

그러나, 용매로 테트라하이드로퓨란(THF)를 이용하는 경우, 표면에서 루테늄소스를 분해시켜주기 위해 첨가한 산소가 표면에 흡착되는 것을 방해하여 초기 핵생성밀도(nucleation density)를 낮게 한다고 보고된 바 있다.However, when tetrahydrofuran (THF) is used as a solvent, it has been reported that the initial nucleation density is lowered by preventing the oxygen added to decompose the ruthenium source from the surface to be adsorbed on the surface.

상술한 테트라하이드로퓨란를 이용함에 따른 문제점을 해결하기 위해 소스에 대한 산소가스를 과량 또는 소량 플로우시키는 방법에 제안되었다.In order to solve the problems caused by using the above-described tetrahydrofuran, it has been proposed in a method of flowing an excess or a small amount of oxygen gas to the source.

그러나, 소스의 플로우량에 비해 반응 가스인 산소가스의 플로우량을 과도하게 하면 표면에서의 초기 핵생성 밀도는 증가시켜주지만(도 2a 참조), 성장후 증착률이 감소하고 모폴로지가 열악해진다(도 2b 참조).However, excessively increasing the flow rate of the oxygen gas, the reaction gas, relative to the flow rate of the source increases the initial nucleation density on the surface (see FIG. 2A), but the deposition rate after growth decreases and the morphology is poor (FIG. 2b).

반면, 루테늄 소스에 비해 산소가스를 소량 플로우시킬 경우에는, 성장후 좋은 모폴로지와 높은 증착률을 얻을 수 있으나(도 2d 참조), 초기에 핵생성 밀도가 높지 않아 30㎚이하에서 균일하고 양질의 박막을 얻을 수 없다는 단점이 있다(도 2c 참조).On the other hand, when a small amount of oxygen gas is flowed compared to the ruthenium source, a good morphology and a high deposition rate can be obtained after growth (see FIG. 2D), but since the nucleation density is not high initially, a uniform and good thin film is below 30 nm. There is a disadvantage that can not be obtained (see Fig. 2c).

본 발명은 상기 종래기술의 문제점을 해결하기 위해 안출한 것으로서, 증착률, 모폴로지 및 누설전류 특성을 개선시키도록 한 루테늄박막의 화학기상증착 방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the problems of the prior art, and an object thereof is to provide a chemical vapor deposition method of ruthenium thin film to improve the deposition rate, morphology and leakage current characteristics.

도 1은 종래기술에 따른 루테늄 박막의 화학기상증착 공정 흐름도,1 is a chemical vapor deposition process flow chart of a ruthenium thin film according to the prior art,

도 2a는 종래 산소가스를 과량 플로우시킬 경우의 핵생성밀도를 도시한 SEM,Figure 2a is a SEM showing the nucleation density when the excess flow of oxygen gas conventionally,

도 2b는 종래 산소가스를 과량 플로우시킬 경우의 성장후 모폴로지를 도시한 SEM,Figure 2b is a SEM showing the morphology after growth in the case of excessive flow of conventional oxygen gas,

도 2c는 종래 산소가스를 소량 플로우시킬 경우의 핵생성밀도를 도시한 SEM,Figure 2c is a SEM showing the nucleation density in the case of flowing a small amount of conventional oxygen gas,

도 2d는 종래 산소가스를 소량 플로우시킬 경우의 모폴로지를 도시한 SEM,Figure 2d is a SEM showing the morphology in the case of flowing a small amount of conventional oxygen gas,

도 3은 본 발명의 실시예에 따른 루테늄 박막의 화학기상증착 공정 흐름도,3 is a chemical vapor deposition process flowchart of a ruthenium thin film according to an embodiment of the present invention,

도 4는 본 발명의 실시예에 따른 루테늄 박막을 구비한 캐패시터를 도시한 도면.4 is a view showing a capacitor having a ruthenium thin film according to an embodiment of the present invention.

*도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

31 : 반도체기판 32 : 소스/드레인31: semiconductor substrate 32: source / drain

33 : 층간절연막 34 : 폴리실리콘플러그33: interlayer insulating film 34: polysilicon plug

35 : 티타늄실리사이드 36 : 티타늄나이트라이드35: titanium silicide 36: titanium nitride

37 : 캐패시터산화막 38 : 하부전극37: capacitor oxide film 38: lower electrode

39 : 탄탈륨산화막 41 : 상부전극39 tantalum oxide film 41 upper electrode

상기의 목적을 달성하기 위한 본 발명의 루테늄박막의 화학기상증착 방법은 루테늄소스와 산소가스를 플로우시켜 상기 루테늄소스를 열분해시키되 상기 루테늄소스보다 상기 산소가스를 과량 플로우시키는 제 1 단계, 및 상기 산소가스의 플로우량을 감소시키는 제 2 단계를 포함함여 구성됨을 특징으로 한다.Chemical vapor deposition method of the ruthenium thin film of the present invention for achieving the above object is a first step of pyrolyzing the ruthenium source by flowing ruthenium source and oxygen gas, but the excess flow of the oxygen gas than the ruthenium source, and the oxygen And a second step of reducing the flow rate of the gas.

상기 제 1 단계는 상기 루테늄 소스의 플로우율을 0.05ml/min∼0.5ml/min으로 하고, 상기 산소가스의 플로우율을 200sccm∼1000sccm으로 하며, 0.5torr∼5torr의 압력 조건하에서 이루어지는 것을 특징으로 하고, 상기 제 2 단계는, 상기 루테늄 소스의 플로우율을 0.05ml/min∼0.5ml/min으로 하고, 산소가스의 플로우율을 20sccm∼400sccm으로 하며, 0.5torr∼5torr의 압력 조건하에서 이루어지는 것을 특징으로 한다.In the first step, the flow rate of the ruthenium source is 0.05 ml / min to 0.5 ml / min, the flow rate of the oxygen gas is 200 sccm to 1000 sccm, and the pressure is 0.5torr to 5 torr. In the second step, the flow rate of the ruthenium source is 0.05 ml / min to 0.5 ml / min, the flow rate of oxygen gas is 20 sccm to 400 sccm, and is made under a pressure condition of 0.5 tor to 5 tor. do.

바람직하게, 상기 루테늄소스는 Ru(EtCp)2를 포함하되, 상기 Ru(EtCp)2를 0.1mol/L∼0.5mol/L의 몰분율로 테트라하이드로푸란에 용해시키거나, 메탄올에 용해시키는 것을 특징으로 하고, 또한 상기 루테늄소스는 Ru(OD)3를 포함하되, 상기 Ru(OD)3를 0.1mol/L∼0.5mol/L의 몰분율로 엔부틸아세테이트트에 용해시키거나, 글라임에 용해시키는 것을 특징으로 한다.Preferably, the ruthenium source comprises Ru (EtCp) 2 , wherein the Ru (EtCp) 2 is dissolved in tetrahydrofuran at a mole fraction of 0.1 mol / L to 0.5 mol / L, or dissolved in methanol. In addition, the ruthenium source comprises Ru (OD) 3 , dissolving the Ru (OD) 3 in enbutyl acetate at a mole fraction of 0.1 mol / L to 0.5 mol / L, or in the glyme It features.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다.Hereinafter, the preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. .

도 3은 본 발명의 실시예에 따른 루테늄박막의 화학기상증착법을 도시한 공정 흐름도이다.3 is a process flow diagram illustrating a chemical vapor deposition method of a ruthenium thin film according to an embodiment of the present invention.

도 3에 도시된 바와 같이, 증착 챔버내에 기판을 로딩시킨 후, 용매에 루테늄소스를 용해시킨 용액을 플로우시킨다(21∼22).As shown in FIG. 3, after loading the substrate into the deposition chamber, a solution in which a ruthenium source is dissolved in a solvent is flowed (21 to 22).

이 때, 루테늄소스로는 Ru(EtCp)2또는 Ru(od)3를 이용한다.At this time, Ru (EtCp) 2 or Ru (od) 3 is used as the ruthenium source.

Ru(EtCp)2소스를 사용하는 경우, Ru(EtCp)2소스를 테트라하이드로푸란(THF)에 용해시키거나, Ru(EtCp)2소스를 메탄올(Methanol)에 용해시키되, 0.1mol/L∼0.5mol/L로 용해시킨다.If a Ru (EtCp) 2 source is used, the Ru (EtCp) 2 source is dissolved in tetrahydrofuran (THF) or the Ru (EtCp) 2 source is dissolved in methanol, but 0.1 mol / L to 0.5 dissolve in mol / L.

그리고, Ru(od)3소스를 사용하는 경우, Ru(od)3소스를 엔부틸아세테이트(n-butyl acetate)에 용해시키거나, 디글라임(diglyme)에 용해시키되, 0.1mol/L∼0.5mol/L로 용해시킨다.And, in the case of using Ru (od) 3 source, Ru (od) 3 source yen butyl acetate (n-butyl acetate) dissolved in or sikidoe dissolved in diglyme (diglyme), 0.1mol / L~0.5mol Dissolve in / L.

루테늄소스를 플로우시킨 후, 증착챔버내에 반응가스인 산소가스를 플로우시켜 루테늄소스를 열분해시키므로써 기판상에 순수한 루테늄박막만을 증착시킨다.After the ruthenium source is flowed, only a pure ruthenium thin film is deposited on the substrate by pyrolyzing the ruthenium source by flowing an oxygen gas which is a reaction gas into the deposition chamber.

이 때, 루테늄박막 증착 공정은 핵생성단계와 성장단계로 이루어지는데, 핵생성단계에서의 산소가스의 플로우량과 성장단계에서의 산소가스의 플로우량을 다르게 한다. 즉, 초기 핵생성단계에서는 과량의 산소를 플로우시키고(23), 성장단계에서는 산소가스의 플로우량을 감소시킨다(24).At this time, the ruthenium thin film deposition process is composed of a nucleation step and a growth step, the flow rate of oxygen gas in the nucleation step and the flow rate of oxygen gas in the growth step is different. That is, excess oxygen flows in the initial nucleation step (23), and the flow amount of oxygen gas is reduced (24) in the growth step.

먼저 초기 핵생성단계(23)에서는, 루테늄 소스의 플로우율을 0.05ml/min∼0.5ml/min으로 하고, 산소가스의 플로우율을 200sccm∼1000sccm으로 한다. 그리고, 증착챔버내 압력을 0.5torr∼5torr으로 유지한다.First, in the initial nucleation step 23, the flow rate of the ruthenium source is 0.05 ml / min to 0.5 ml / min, and the flow rate of oxygen gas is 200 sccm to 1000 sccm. Then, the pressure in the deposition chamber is maintained at 0.5torr to 5torr.

이처럼, 초기 핵생성단계(23)에서 루테늄 소스를 열분해시키는 산소가스를 루테늄소스의 플로우량에 비해 과량 플로우시키므로써 루테늄소스의 분해를 촉진시키면서 핵생성 밀도를 높여준다.As such, the oxygen gas pyrolyzing the ruthenium source in the initial nucleation step 23 increases the nucleation density while promoting the decomposition of the ruthenium source by flowing an excess amount of the ruthenium source.

다음으로, 성장 단계(24)에서는, 루테늄 소스의 플로우율 0.05ml/min∼0.5ml/min으로 하고, 산소가스의 플로우율을 20sccm∼400sccm으로 한다. 그리고, 증착챔버내 압력을 0.5torr∼5torr으로 유지한다.Next, in the growth step 24, the flow rate of the ruthenium source is set to 0.05 ml / min to 0.5 ml / min, and the flow rate of oxygen gas is set to 20 sccm to 400 sccm. Then, the pressure in the deposition chamber is maintained at 0.5torr to 5torr.

이처럼, 성장 단계(24)에서는 루테늄 소스를 열분해시키는 산소가스를 핵생성단계에 비해 산소의 플로우량을 감소시켜 루테늄막의 증착률을 증가시키고 모폴로지를 좋게 한다.As such, in the growth step 24, the oxygen gas pyrolyzing the ruthenium source is reduced compared to the nucleation step, thereby increasing the deposition rate of the ruthenium film and improving the morphology.

본 발명의 실시예는 상술한 루테늄 소스들 외에 디사이클로펜다디엔루테늄[Ru(Cp)2], 디메틸사이클로펜다디엔루테늄[Ru(MeCp)2] 등을 포함하는 다른 루테늄소스들을 이용하는 경우에도 소스의 분해를 도우는 산소의 첨가율을 변화시키는 2단계 공정에 의해 모폴로지가 좋은 박막을 형성할 수 있다.An embodiment of the present invention may be used in the case of using other ruthenium sources including dicyclopentadiene ruthenium [Ru (Cp) 2 ], dimethylcyclopentadiene ruthenium [Ru (MeCp) 2 ], and the like, in addition to the ruthenium sources described above. A thin morphologically thin film can be formed by a two-step process of changing the addition rate of oxygen to assist decomposition.

그리고, 본 발명의 실시예는 상술한 테트라하이드로퓨란, 메탄올, 엔부틸아세테이트, 디글라임의 용매 외에 다른 용매를 적용할 수도 있다.In addition, in the embodiment of the present invention, a solvent other than the solvent of tetrahydrofuran, methanol, enbutyl acetate, and diglyme may be applied.

예를 들면, 에탄올, 이소프로필 알콜(IPA) 및 n-부탄올, 에틸 아세테이트, 부틸 아세테이트, 메톡시에틸 아세테이트, 에틸렌글리콜 모노메틸 에테르, 에틸렌글리콜 모노에틸 에테르, 에틸렌 글리콜 모노부틸 에테르, 디에틸렌글리콜 모노메틸 에테르, 디글라임(diglyme), 트리글라임(triglyme), 디부틸 에테르, 메틸 부틸 케톤, 메틸 이소부틸 케톤, 에틸 부틸 케톤, 디프로필 케톤,디이소부틸 케톤, 메틸 아밀 케톤, 시클로헥사논, 메틸시클로헥사논, 헥산, 시클로헥산, 헵탄, 옥탄, 톨루엔, 크실렌 등을 적용할 수 있다.For example, ethanol, isopropyl alcohol (IPA) and n-butanol, ethyl acetate, butyl acetate, methoxyethyl acetate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol mono Methyl ether, diglyme, triglyme, dibutyl ether, methyl butyl ketone, methyl isobutyl ketone, ethyl butyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, Methylcyclohexanone, hexane, cyclohexane, heptane, octane, toluene, xylene and the like can be applied.

상기한 용매들은 용질의 용해도, 사용 온도와 용매의 끓는점 또는 인화점과의 관계에 따라 적당하게 선택될 수 있으나, 테트라하이드로퓨란(THF), 글라임 및 디글라임이 그들 착화합물의 안정화 효과때문에 바람직하다.The above solvents may be appropriately selected depending on the solubility of the solute, the use temperature and the relationship between the boiling point or flash point of the solvent, but tetrahydrofuran (THF), glyme and diglyme are preferable because of the stabilizing effect of their complex compounds.

본 발명에 따른 루테늄막은 티타늄나이트라이드나 폴리실리콘에 비해 일함수가 크고, 30㎚이하의 좋은 모폴로지를 가지므로, 3차원 구조의 캐패시터에서 하부전극 및 상부전극으로 적용 가능하다.The ruthenium film according to the present invention has a larger work function than titanium nitride or polysilicon and has a good morphology of 30 nm or less, and thus can be applied as a lower electrode and an upper electrode in a three-dimensional capacitor.

도 4는 본 발명에 따른 루테늄막을 구비한 캐패시터를 도시한 도면이다.4 is a view showing a capacitor having a ruthenium film according to the present invention.

도 4를 참조하여 캐패시터의 제조 방법을 설명하면, 먼저 소스/드레인(32)을 포함한 트랜지스터 및 비트라인(도시 생략)의 제조 공정이 완료된 반도체기판(31)상에 층간절연막(Inter Layer Dielectric; ILD)(33)을 형성한다.Referring to FIG. 4, a method of manufacturing a capacitor is described first. An interlayer dielectric (ILD) is formed on a semiconductor substrate 31 on which a process of manufacturing a transistor including a source / drain 32 and a bit line (not shown) is completed. 33).

그리고, 층간절연막(33)을 콘택마스크로 식각하여 콘택홀을 형성한 후, 콘택홀에 폴리실리콘플러그(34)를 부분 매립시키고, 폴리실리콘플러그(34)상에 하부전극과 폴리실리콘플러그간의 접촉저항을 개선시키기 위한 오믹콘택층(Ohmic contact)인 티타늄실리사이드(35)를 형성한다.After forming the contact hole by etching the interlayer insulating film 33 with the contact mask, the polysilicon plug 34 is partially embedded in the contact hole, and the contact between the lower electrode and the polysilicon plug on the polysilicon plug 34 is performed. Titanium silicide 35, which is an ohmic contact layer for improving resistance, is formed.

다음으로, 티타늄실리사이드(35)상에 후속 탄탈륨산화막의 열처리공정시 하부전극내에 잔존하는 산소가 폴리실리콘플러그(34) 또는 반도체기판(31)으로 확산하는 것을 방지하는 확산배리어막으로서 티타늄나이트라이드(36)을 형성한다. 이 때, 티타늄나이트라이드(36)는 콘택홀내에만 형성된다.Next, titanium nitride is used as a diffusion barrier film that prevents oxygen remaining in the lower electrode from diffusing to the polysilicon plug 34 or the semiconductor substrate 31 during the subsequent heat treatment of the tantalum oxide film on the titanium silicide 35. Form 36). At this time, the titanium nitride 36 is formed only in the contact hole.

계속해서, 티타늄나이트라이드(36)를 포함한 층간절연막(33)상에 하부전극의 높이를 결정짓는 캐패시터산화막(37)을 형성한 후, 감광막을 이용한 스토리지노드마스크로 캐패시터산화막(37)을 식각하여 하부전극이 형성될 오목부를 형성한다.Subsequently, after forming the capacitor oxide film 37 which determines the height of the lower electrode on the interlayer insulating film 33 including titanium nitride 36, the capacitor oxide film 37 is etched with a storage node mask using a photosensitive film. A recess is formed to form the lower electrode.

계속해서, 도 3에 따른 루테늄막을 증착한 후 이웃한 셀간 격리시켜 오목부내에만 루테늄막으로 이루어진 하부전극(38)을 형성한 다음, 하부전극(38)상에 탄탈륨산화막(39), 상부전극(40)을 순차적으로 증착하여 오목형 캐패시터를 완성한다.Subsequently, after depositing the ruthenium film according to FIG. 3, it is isolated between neighboring cells to form a lower electrode 38 made of a ruthenium film only in the recess, and then a tantalum oxide film 39 and an upper electrode ( 40) are sequentially deposited to complete the concave capacitor.

한편, 캐패시터산화막(37)을 선택적으로 습식식각한 후, 탄탈륨산화막, 상부전극을 순차적으로 증착하여 실린더형 캐패시터를 형성할 수 있다.Meanwhile, after the capacitor oxide film 37 is selectively wet-etched, the tantalum oxide film and the upper electrode may be sequentially deposited to form a cylindrical capacitor.

다음으로, 하부전극(38)상에 탄탈륨산화막(39)을 증착 및 결정화를 위한 열처리 공정을 실시하고, 탄탈륨산화막(39)상에 상부전극(20)을 증착한다.Next, a heat treatment process for depositing and crystallizing the tantalum oxide film 39 on the lower electrode 38 is performed, and the upper electrode 20 is deposited on the tantalum oxide film 39.

전술한 공정에 의한 캐패시터에서, 모폴로지 특성이 우수한 루테늄막을 하부전극으로 적용가능하기 때문에, 고유전율을 갖는 유전막, 예컨대 Ta2O5, BST 등을 적용하여 캐패시터의 정전용량을 충분히 확보할 수 있다.In the capacitor according to the above-described process, since the ruthenium film having excellent morphology characteristics can be applied as the lower electrode, it is possible to sufficiently secure the capacitance of the capacitor by applying a dielectric film having a high dielectric constant such as Ta 2 O 5 , BST, or the like.

본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

상술한 바와 같은 본 발명은 초기에 루테늄 소스에 대해 상대적으로 과량의 산소를 첨가시켜므로써 초기 핵생성단계에서 표면위에서의 소스분해를 촉진시켜 핵생성밀도를 증가시켜준 후 성장 단계에서는 산소의 첨가량을 줄여주므로써 30㎚이하의 두께에서 모폴로지가 우수한 루테늄 박막을 얻을 수 있는 효과가 있다.As described above, the present invention promotes source decomposition on the surface in the initial nucleation step to increase the nucleation density by initially adding an excessive amount of oxygen to the ruthenium source, and then increases the amount of oxygen in the growth step. By reducing it, there is an effect of obtaining a ruthenium thin film having excellent morphology at a thickness of 30 nm or less.

또한, 모폴로지가 우수한 루테늄막을 캐패시터의 전극으로 이용하므로써 고유전율을 갖는 유전막을 이용한 캐패시터의 적용이 가능하며, 이로써 캐패시터의 정전용량을 증대시킬 수 있는 효과가 있다.In addition, by using a ruthenium film having excellent morphology as the electrode of the capacitor, it is possible to apply a capacitor using a dielectric film having a high dielectric constant, thereby increasing the capacitance of the capacitor.

Claims (5)

루테늄박막의 화학적기상증착법에 있어서,In chemical vapor deposition of ruthenium thin film, 루테늄소스와 산소가스를 플로우시켜 상기 루테늄소스를 열분해시키되 상기 루테늄소스보다 상기 산소가스를 과량 플로우시키는 제 1 단계; 및A first step of thermally decomposing the ruthenium source by flowing a ruthenium source and oxygen gas, but an excess flow of the oxygen gas than the ruthenium source; And 상기 산소가스의 플로우량을 감소시키는 제 2 단계A second step of reducing the flow amount of the oxygen gas 를 포함함을 특징으로 하는 루테늄막의 화학기상증착 방법.Chemical vapor deposition method of a ruthenium membrane, characterized in that it comprises a. 제 1 항에 있어서,The method of claim 1, 상기 제 1 단계는, 상기 루테늄 소스의 플로우율을 0.05ml/min∼0.5ml/min으로 하고, 상기 산소가스의 플로우율을 200sccm∼1000sccm으로 하며, 0.5torr∼5torr의 압력 조건하에서 이루어지는 것을 특징으로 하는 루테늄막의 화학기상증착 방법.In the first step, the flow rate of the ruthenium source is 0.05 ml / min to 0.5 ml / min, the flow rate of the oxygen gas is 200 sccm to 1000 sccm, and the pressure is 0.5torr to 5 torr. Chemical vapor deposition method of ruthenium membrane 제 1 항에 있어서,The method of claim 1, 상기 제 2 단계는, 상기 루테늄 소스의 플로우율을 0.05ml/min∼0.5ml/min으로 하고, 산소가스의 플로우율을 20sccm∼400sccm으로 하며, 0.5torr∼5torr의 압력 조건하에서 이루어지는 것을 특징으로 하는 루테늄막의 화학기상증착 방법.In the second step, the flow rate of the ruthenium source is 0.05 ml / min to 0.5 ml / min, the flow rate of oxygen gas is 20 sccm to 400 sccm, and the pressure is 0.5torr to 5 torr. Chemical vapor deposition method of ruthenium membrane. 제 1 항에 있어서,The method of claim 1, 상기 루테늄소스는 Ru(EtCp)2를 포함하되, 상기 Ru(EtCp)2를 0.1mol/L∼0.5mol/L의 몰분율로 테트라하이드로푸란에 용해시키거나, 메탄올에 용해시키는 것을 특징으로 하는 루테늄막의 화학기상증착 방법.The ruthenium source includes Ru (EtCp) 2 , wherein the Ru (EtCp) 2 is dissolved in tetrahydrofuran at a mole fraction of 0.1 mol / L to 0.5 mol / L, or dissolved in methanol. Chemical vapor deposition method. 제 1 항에 있어서,The method of claim 1, 상기 루테늄소스는 Ru(OD)3를 포함하되, 상기 Ru(OD)3를 0.1mol/L∼0.5mol/L의 몰분율로 엔부틸아세테이트트에 용해시키거나, 글라임에 용해시키는 것을 특징으로 하는 루테늄막의 화학기상증착 방법.The ruthenium source includes Ru (OD) 3 , wherein the Ru (OD) 3 is dissolved in enbutyl acetate at a mole fraction of 0.1 mol / L to 0.5 mol / L, or dissolved in glyme. Chemical vapor deposition method of ruthenium membrane.
KR1020010038650A 2001-06-30 2001-06-30 Chemical vapor deposition method for depositing ruthenium KR20030003329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010038650A KR20030003329A (en) 2001-06-30 2001-06-30 Chemical vapor deposition method for depositing ruthenium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010038650A KR20030003329A (en) 2001-06-30 2001-06-30 Chemical vapor deposition method for depositing ruthenium

Publications (1)

Publication Number Publication Date
KR20030003329A true KR20030003329A (en) 2003-01-10

Family

ID=27712581

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010038650A KR20030003329A (en) 2001-06-30 2001-06-30 Chemical vapor deposition method for depositing ruthenium

Country Status (1)

Country Link
KR (1) KR20030003329A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980012492A (en) * 1996-07-19 1998-04-30 김광호 Capacitor having ferroelectric film and method of manufacturing the same
KR20010066747A (en) * 1999-12-23 2001-07-11 윤종용 Forming method of Ru film using chemical vapor deposition with changing process conditions and Ru film formed thereby
JP2001345285A (en) * 2000-03-31 2001-12-14 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device and apparatus for producing semiconductor
KR20020074922A (en) * 2001-03-22 2002-10-04 삼성전자 주식회사 Method for depositing ruthenium layer having Ru02 seeding layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980012492A (en) * 1996-07-19 1998-04-30 김광호 Capacitor having ferroelectric film and method of manufacturing the same
KR20010066747A (en) * 1999-12-23 2001-07-11 윤종용 Forming method of Ru film using chemical vapor deposition with changing process conditions and Ru film formed thereby
JP2001345285A (en) * 2000-03-31 2001-12-14 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device and apparatus for producing semiconductor
KR20020074922A (en) * 2001-03-22 2002-10-04 삼성전자 주식회사 Method for depositing ruthenium layer having Ru02 seeding layer

Similar Documents

Publication Publication Date Title
US6992022B2 (en) Fabrication method for semiconductor integrated devices
US7101779B2 (en) Method of forming barrier layers
US7259058B2 (en) Fabricating method of semiconductor integrated circuits
US6800937B2 (en) RuSixOy-containing adhesion layers and process for fabricating the same
US6656835B2 (en) Process for low temperature atomic layer deposition of Rh
KR100629023B1 (en) Titanium containing dielectric films and methods of forming same
KR100390938B1 (en) Method of manufacturing a capacitor in a semiconductor device
KR100406546B1 (en) Method for fabricating capacitor
KR100772531B1 (en) Method for fabricating capacitor
KR20030003329A (en) Chemical vapor deposition method for depositing ruthenium
JPH0786270A (en) Formation of metal oxide film
KR100422596B1 (en) Method for fabricating capacitor
KR100414870B1 (en) Method for fabricating capacitor using atomic layer deposition
KR100780631B1 (en) Method for deposition titanium oxide and method for manufacturing capacitor using the same
KR100454256B1 (en) Method for fabricating capacitor having ruthenium bottom-electrode
KR100744664B1 (en) Method for forming of ruthenium by chemical vapor deposition
KR100761406B1 (en) Method for fabricating capacitor with tantalum oxide
KR100474592B1 (en) method for fabricating capacitor
KR100443356B1 (en) Method for atomic layer deposition of ruthenium
KR100384868B1 (en) Method for fabricating capacitor
KR20030092579A (en) Method of fabrication capacitor using ruthenium
KR100390811B1 (en) Method for atomic layer deposition of ruthenium layer and method for fabricating capacitor
US6709916B2 (en) Method for forming capacitor of semiconductor device
KR100530008B1 (en) Method to deposit Ru film
JP2002033462A (en) Method for fabricating semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application