KR200253492Y1 - An inverter cooling device of heat pump - Google Patents

An inverter cooling device of heat pump Download PDF

Info

Publication number
KR200253492Y1
KR200253492Y1 KR2020010024483U KR20010024483U KR200253492Y1 KR 200253492 Y1 KR200253492 Y1 KR 200253492Y1 KR 2020010024483 U KR2020010024483 U KR 2020010024483U KR 20010024483 U KR20010024483 U KR 20010024483U KR 200253492 Y1 KR200253492 Y1 KR 200253492Y1
Authority
KR
South Korea
Prior art keywords
inverter
cooling
compressor
evaporator
heat pump
Prior art date
Application number
KR2020010024483U
Other languages
Korean (ko)
Inventor
김진상
김태원
서운종
Original Assignee
(주)티이엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)티이엔 filed Critical (주)티이엔
Priority to KR2020010024483U priority Critical patent/KR200253492Y1/en
Application granted granted Critical
Publication of KR200253492Y1 publication Critical patent/KR200253492Y1/en

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

본 고안은 히트펌프 사이클에서 그 증발기를 통과한 저온의 일부 냉매가스를 인버터의 냉각이 필요한 부분을 통해 압축기로 바이패스시켜 인버터의 냉각이 이루어지도록 함으로써 즉, 인버터에 비해 상대적으로 매우 저온상태인 증발 냉매가스와 인버터가 열교환하여 그 인버터를 신속히 냉각할 수 있고, 히트 싱크와 냉각팬 등이 제거됨으로써 장치의 소형화와 함께 원가절감에 기여하며, 궁극적으로는 인버터와 함께 히트펌프 사이클의 성능을 최적의 상태로 유지하여 냉난방효율 향상에 기여하고자, 증발기(40)와 압축기(10)의 흡입단 사이에 전자밸브(V1, V2)를 연결하고, 이 밸브의 입구와 출구측을 통해 바이패스 라인(L)을 접속하면서 바이패스 라인에 인버터(50)를 경유하는 쿨링 튜브(60)를 포함하여, 저온인 증발기(40) 출구의 냉매가스를 인버터(50)의 내부를 통해 흐르도록 함으로써 냉각이 신속할 뿐만 아니라 통상적인 큰 부피의 히트 싱크와 냉각팬 등이 제거되어 장치를 소형화함과 동시에 제품의 원가절감에 기여하며, 또한 효율적인 냉각에 의해 인버터와 압축기의 성능을 최상으로 유지시켜 히트펌프 사이클의 냉난방효율을 극대화시키는 것은 물론, 증발기를 통과한 냉매가스 중에 혼재한 액상냉매가 인버터의 냉각이후 완전히 증발된 상태에서 압축기에 완전가스의 과열상태로 유입되므로 결과적으로 압축기의 성능 안정성과 과부하 방지에 따른 내구성 향상에 기여하는 효과가 있다.The present invention bypasses a portion of the low temperature refrigerant gas that has passed through the evaporator in the heat pump cycle to the compressor through the portion that needs to be cooled, so that the inverter can be cooled. The refrigerant gas exchanges with the inverter to cool the inverter quickly, and the heat sink and cooling fan are removed, contributing to the miniaturization of the device and the cost reduction, and ultimately the optimal performance of the heat pump cycle with the inverter. In order to contribute to the improvement of cooling and heating efficiency by maintaining the state, the solenoid valves (V 1 , V 2 ) are connected between the inlet end of the evaporator 40 and the compressor 10, and the bypass line through the inlet and outlet side of the valve Including the cooling tube 60 via the inverter 50 to the bypass line while connecting (L), the refrigerant gas at the outlet of the evaporator 40 which is a low temperature to the inverter (5) 0) flows through the inside, which not only makes cooling fast but also eliminates the usual large volume of heat sinks and cooling fans, thereby minimizing the size of the device and contributing to cost reduction of the product. By maintaining the best performance of the compressor to maximize the heating and cooling efficiency of the heat pump cycle, as well as the liquid refrigerant mixed in the refrigerant gas passing through the evaporator is completely evaporated after cooling the inverter flows into the compressor overheated state of the complete gas As a result, there is an effect that contributes to the performance stability of the compressor and the durability improvement due to overload protection.

Description

히트펌프의 인버터 냉각장치{An inverter cooling device of heat pump}An inverter cooling device of heat pump

본 고안은 인버터냉각장치에 관한 것으로, 더욱 상세하게는 히트펌프의 난방사이클에서 증발을 마치고 압축기에 흡입되기 이전의 저온상태인 냉매가스를 이용하여 고온상태인 인버터와 열교환하여 그 인버터를 신속히 냉각할 뿐만 아니라 보다 광범위한 냉각범위를 제공하고, 히트 싱크와 냉각팬 등이 제거하여 장치를 소형화함과 동시에 제품의 원가절감에 기여하며, 아울러 증발기를 통과한 냉매가스 중에 혼류하는 액상냉매가 인버터의 냉각이후 완전히 증발된 상태에서 압축기에 완전가스의 과열상태로 유입되도록 함에 따라 압축기의 성능 안정성과 과부하 방지에 따른 내구성 향상 및 냉난방효율을 극대화시키도록 된 히트펌프의 인버터 냉각장치에 관한 것이다.The present invention relates to an inverter cooling device, and more particularly, to exchange heat with an inverter of a high temperature state by using a refrigerant gas of a low temperature state before evaporation in a heating cycle of a heat pump and drawn into the compressor, thereby rapidly cooling the inverter. In addition, it provides a wider range of cooling, removes the heat sink and cooling fan, thereby minimizing the device and contributing to the reduction of the cost of the product, and the liquid refrigerant mixed in the refrigerant gas passing through the evaporator after cooling the inverter. The present invention relates to an inverter cooling device of a heat pump that maximizes cooling performance and improves the performance of the compressor by preventing the overheating of the entire gas from the fully evaporated state.

일반적으로 인버터를 채택한 히트펌프는 상용 교류전압을 정류하여 이를 직류로 변환하고 직류전압을 다시 교류로 변환하여 냉방조건 또는 히트펌프 사이클의 부하량이나 외부온도 등의 부하조건에 따라 주파수나 전압을 가변시키는 것으로, 즉 주파수값의 변화에 따라 압축기의 회전수를 가감 변화시켜 냉난방 능력을 가변시킴으로써 이에 따른 소비전력의 절감과 절전 냉난방운전에 기여하게 되는데, 이 과정에서 특히 고전압이 발생하는 인버터의 스위칭부 등에서 열이 많이 나기 때문에 신속한 방열을 필요로 하게 되며, 인버터의 냉각은 통상적으로 히트 싱크와 팬을 이용한 공랭방식으로 송풍에 의해 내부의 열원을 강제로 외부로 배기함으로써 이루어진다.In general, a heat pump adopting an inverter rectifies and converts a commercial AC voltage into a direct current, and converts a direct current voltage into an alternating current to change a frequency or voltage according to a cooling condition or a load condition of a heat pump cycle or an external temperature. In other words, by changing the frequency of the compressor to change the number of revolutions of the compressor to change the cooling and heating capacity, thereby contributing to the reduction of power consumption and power-saving cooling and heating operation, in this process, especially in the switching unit of the inverter that generates high voltage Due to the large amount of heat, rapid heat dissipation is required, and cooling of the inverter is usually performed by forcibly exhausting an internal heat source to the outside by blowing in an air cooling method using a heat sink and a fan.

도 1은 일반적인 히트펌프 시스템의 인버터 냉각구조를 나타낸 것으로, 냉매를 고온ㆍ고압의 과열증기로 압축하는 압축기(10)와, 이 압축기(10)에 그 구동주파수를 출력하는 인버터(110)가 연결되어 있고, 인버터(110)에는 그 열원을 흡열할 수 있는 알루미늄 재질의 히트 싱크(111)가 부착되면서 이 히트 싱크(111) 로부터의 열량을 외부로 방출할 수 있도록 그 일측에 다수의 냉각팬(112)이 설치되어 있다.1 shows an inverter cooling structure of a general heat pump system, in which a compressor 10 for compressing a refrigerant into superheated steam of high temperature and high pressure and an inverter 110 for outputting a driving frequency to the compressor 10 are connected. In the inverter 110, a heat sink 111 made of an aluminum material capable of absorbing the heat source is attached to the inverter 110, and a plurality of cooling fans are disposed at one side thereof so as to discharge heat from the heat sink 111 to the outside. 112 is installed.

상기 압축기(10)의 출구측은 난방운전시의 실내기로서 과열된 냉매가스와 열교환하여 난방열량을 방출하고 냉매를 고온ㆍ고압으로 액화하는 응축기(20)가 연결되며, 상기 응축기(20)에는 냉매를 중온ㆍ중압으로 교축ㆍ감압시키기 위한 팽창밸브(30)가 연결되고, 또한 팽창밸브(30)는 난방시의 실외기인 증발기(40)에 연결되면서, 증발기(40)는 저온ㆍ저압의 액상냉매를 귀환시키도록 압축기(10)의 흡입단에 연결되어 1회의 난방사이클을 형성하도록 구성되어 있다.The outlet side of the compressor 10 is an indoor unit during a heating operation, and is connected to a condenser 20 that exchanges heat with a refrigerant gas that is superheated, thereby releasing heating heat and liquefying the refrigerant at high temperature and high pressure. The refrigerant is connected to the condenser 20. An expansion valve 30 for throttling and reducing pressure at medium temperature and medium pressure is connected, and the expansion valve 30 is connected to an evaporator 40 which is an outdoor unit during heating, while the evaporator 40 supplies liquid refrigerant of low temperature and low pressure. It is configured to be connected to the suction end of the compressor 10 so as to return it to form one heating cycle.

이러한 일반적인 히트펌프 사이클은 압축기(10)가 구동되면 등엔트로피하에서 냉매가 고온ㆍ고압의 과열증기로 압축되고, 압축된 냉매가스는 과열증기 상태로 응축기(20)에 유입되어 등온-등압하에서 응축기(20)를 흐르는 고온의 냉매가스와 외부공기와의 열교환이 이루어지면서 난방을 행하고, 난방을 마친 고온ㆍ고압의 액상냉매는 팽창밸브(30)를 통해 저온ㆍ저압의 냉매로 교축ㆍ감압된 상태로 압축기(10)의 흡입측으로 회수되어 1회의 난방사이클을 완료하게 되며, 이 과정중에 인버터(110)에서 발생하는 열은 냉각팬(112)과 히트 싱크(111)의 열량의 대류배기에 의해 냉각을 행하게 된다.In this general heat pump cycle, when the compressor 10 is driven, the refrigerant is compressed into superheated steam of high temperature and high pressure under isotropy, and the compressed refrigerant gas flows into the condenser 20 in a superheated steam state to condenser under isothermal isothermal pressure. The heat is exchanged between the high temperature refrigerant gas flowing through the external air and the external air, and the high-temperature / high-pressure liquid refrigerant after heating is throttled and reduced by the low-temperature / low-pressure refrigerant through the expansion valve 30. The heating cycle is recovered to the suction side of the furnace compressor 10 to complete one heating cycle. During this process, the heat generated by the inverter 110 is cooled by the convection exhaust of the heat of the cooling fan 112 and the heat sink 111. Will be done.

그러나 이와 같은 인버터 냉각방식은 인버터 각 부분의 대량의 열량을 흡열시켜야 하므로 히트 싱크(111)의 부피와 중량이 대폭 증가하는 것은 물론, 더욱이 이 때문에 히트 싱크의 부피는 인버터 전체의 약 70% 이상을 점유하고 있어 이로 인하여 장치의 대형화와 함께 장치의 제조공정과 제조원가가 상승하는 단점이 있다.However, such an inverter cooling method must absorb a large amount of heat of each part of the inverter, so that the volume and weight of the heat sink 111 are greatly increased, and moreover, the volume of the heat sink is more than about 70% of the entire inverter. As a result, the manufacturing process and manufacturing cost of the device increase with the increase of the size of the device.

상기와 같은 인버터의 냉각방식은 또한 강제대류방식으로 하절기 냉방운전의 경우에 외기온도가 높은 상태에서 냉각속도와 냉각효율이 떨어질 뿐만 아니라, 결과적으로 인버터의 과부하에 의한 수명단축과 히트펌프 사이클의 정밀한 제어가 불가능하여 전체적인 히트펌프의 성능저하를 초래하는 문제점이 있었다.In addition, the cooling method of the inverter is also forced convection, which reduces cooling speed and cooling efficiency at high ambient temperature in the summer cooling operation, and consequently shortens the life cycle and overheats the heat pump cycle due to the overload of the inverter. There was a problem in that it is impossible to control the overall performance of the heat pump.

본 고안은 상기와 같은 문제점을 해결하기 위하여, 히트펌프 순환계에서 그 증발기를 통과한 저온의 일부 냉매가스를 인버터의 냉각이 필요한 부분을 통해 압축기로 바이패스시켜 인버터의 냉각이 이루어지도록 함으로써 즉, 인버터에 비해 상대적으로 매우 저온상태인 증발 냉매가스와 인버터가 열교환하여 그 인버터을 신속히 냉각시킬 뿐만 아니라 종래와 같은 히트 싱크와 냉각팬 등이 제거됨으로써 장치의 소형화와 원가절감에 기여하며, 궁극적으로는 인버터와 함께 히트펌프 사이클의 성능을 최적의 상태로 유지하여 냉난방효율 향상에 기여하는 인버터의 냉각장치와 방법을 제공하는데 목적이 있다.In order to solve the above problems, the present invention bypasses a portion of the low-temperature refrigerant gas that has passed through the evaporator in the heat pump circulation system to the compressor through a portion requiring the cooling of the inverter, that is, the inverter is cooled, that is, the inverter Compared to the relatively low temperature evaporative refrigerant gas and the inverter heat exchanges to cool the inverter quickly, eliminating the conventional heat sink and cooling fan, contributing to the miniaturization and cost reduction of the device, and ultimately In addition, it is an object of the present invention to provide an inverter cooling apparatus and method that contributes to improving the heating and cooling efficiency by maintaining the performance of the heat pump cycle in an optimal state.

이러한 목적을 달성하기 위하여 본 고안은, 통상의 히트펌프 사이클에 있어서, 증발기와 압축기의 흡입단 사이에 전자밸브를 연결하고, 이 밸브의 입구와 출구측을 통해 바이패스 라인을 접속하면서 바이패스 라인에 인버터를 경유하는 쿨링 튜브를 포함시켜, 저온인 증발기 출구의 냉매가스와 고온인 인버터를 상호 열교환하여 인버터의 냉각을 실현하는 특징을 갖는다.In order to achieve this object, the present invention, in the normal heat pump cycle, the solenoid valve is connected between the evaporator and the suction end of the compressor, the bypass line while connecting the bypass line through the inlet and outlet side of the valve Including a cooling tube via the inverter, the refrigerant gas at the outlet of the low temperature evaporator and the high temperature inverter are heat exchanged with each other to realize the cooling of the inverter.

도 1은 일반적인 인버터형 히트펌프 시스템의 구성회로도1 is a circuit diagram of a typical inverter type heat pump system

도 2는 본 고안 인버터 냉각장치가 구성된 히트펌프 시스템의 회로도2 is a circuit diagram of a heat pump system configured with the present invention inverter cooling device

< 도면의 주요부분에 대한 부호의 설명 ><Description of Symbols for Major Parts of Drawings>

10 : 압축기 20 : 응축기10 compressor 20 condenser

30 : 팽창밸브 40 : 증발기30 expansion valve 40 evaporator

50, 110 : 인버터 60 : 쿨링 튜브50, 110: inverter 60: cooling tube

70 : 마이컴 112 : 냉각팬70: microcomputer 112: cooling fan

111 : 히트 싱크 V1, V2: 밸브111: heat sink V 1 , V 2 : valve

이하 본 고안의 구체적인 실시예를 도면을 참조하여 상세히 설명한다.Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

도 2는 본 고안 인버터냉각장치가 구성된 히트펌프 시스템의 회로도를 나타낸 것으로, 냉매를 고온ㆍ고압의 과열증기로 압축하는 압축기(10)와, 이 압축기(10)에 그 구동속도를 가감할 수 있도록 가변주파수를 출력하는 인버터(50)가 연결되고, 상기 압축기(10)의 출구측은 난방운전시의 실내기로서 과열된 냉매가스와 열교환하여 난방열량을 방출하면서 냉매를 고온ㆍ고압으로 액화하는 응축기(20)가 연결되며, 상기 응축기(20)에는 냉매를 중온ㆍ중압으로 교축ㆍ감압시키기 위한 팽창밸브(30)가 연결되고, 또한 팽창밸브(30)는 난방시의 실외기인 증발기(40)에 연결되면서, 증발기(40)는 저온ㆍ저압의 액상냉매를 귀환시키도록 압축기(10)의 흡입단에 연결되어 1회의 난방(냉방)사이클을 형성하도록 구성된다.FIG. 2 is a circuit diagram of a heat pump system in which an inverter cooling device of the present invention is constructed, and a compressor 10 for compressing a refrigerant into a superheated steam of high temperature and high pressure, and a driving speed of the compressor 10 can be added or subtracted. An inverter 50 for outputting a variable frequency is connected, and the outlet side of the compressor 10 is an indoor unit during a heating operation, and condensers 20 liquefy the refrigerant at high temperature and high pressure while releasing heat of heat by exchanging heat with the refrigerant gas. Is connected to the condenser 20, an expansion valve 30 for throttling and reducing the refrigerant to medium temperature and medium pressure is connected, and the expansion valve 30 is connected to the evaporator 40 which is an outdoor unit during heating. The evaporator 40 is configured to be connected to the suction end of the compressor 10 so as to return the low temperature and low pressure liquid refrigerant to form one heating (cooling) cycle.

상기 냉난방 사이클의 인버터(50)가 압축기(10)의 가감속 구동을 위하여 부하에 따른 지속적인 가변주파수를 출력함에 따라 많은 발열을 수반하게 되는데, 본 고안은 이러한 인버터(50)의 신속하고 효율적인 냉각을 위하여 히트 싱크와 같은 대류방식을 배제하고 냉난방 사이클의 순환계를 이용하였다.As the inverter 50 of the heating / cooling cycle outputs a continuous variable frequency according to the load for acceleration / deceleration driving of the compressor 10, the present invention entails a lot of heat generation. In order to eliminate the convection method such as heat sink, the circulation system of cooling and heating cycle was used.

즉, 증발기(40)를 통과한 저온의 냉매와 인버터(50)의 고온의 열량을 열교환하고, 그 열교환된 냉매가스를 압축기(10)로 회수시키도록 하되, 이를 위해 증발기(40)와 압축기(10) 사이에 흡입조정밸브(V1)를 연결하여 압축기(10)에 흡입되는 냉매량을 조절할 수 있도록 하고, 상기 흡입조정밸브(V1)의 입구와 출구 사이에 바이패스 라인(L)을 연결하여 증발기(40) 출구의 일부의 냉매를 도피시킬 수 있도록 구성된다.That is, the heat exchanged between the low-temperature refrigerant passing through the evaporator 40 and the high-temperature heat of the inverter 50, and to recover the heat exchanged refrigerant gas to the compressor 10, for this purpose, the evaporator 40 and the compressor ( 10) to connect the suction control valve (V 1 ) to adjust the amount of refrigerant sucked into the compressor 10, and connect the bypass line (L) between the inlet and the outlet of the suction control valve (V 1 ). To escape some of the refrigerant at the outlet of the evaporator 40.

상기 바이패스 라인(L)은 인버터(50)의 내부를 회류하여 열교환하는 쿨링 튜브(60)를 포함하며, 이 쿨링 튜브(60)는 시스템의 필요로 하는 레이 아웃에 따라 인버터(50)내에서의 위치를 설정함과 아울러, 냉각용량에 따라 그 방열면적과 크기 및 수량을 변경할 수 있으며, 본 고안에서 그 적용범위가 한정되는 것은 아니다.The bypass line (L) includes a cooling tube (60) for returning and heat-exchanging the interior of the inverter (50), the cooling tube (60) in the inverter (50) according to the layout required by the system In addition to setting the position, the heat dissipation area and the size and quantity can be changed according to the cooling capacity, the scope of the present invention is not limited.

바이패스 라인(L)에는 그 쿨링 튜브(60)의 이전에 바이패스 밸브(V2)가 연결되어 바이패스 라인(L)을 흐르는 냉매가스의 양을 조절할 수 있도록 하고, 상기의 밸브(V1)(V2)들은 마이컴(70)에 의해 그 개폐량이 최적의 상태로 연동 조정되도록 하였다.A bypass line (L) is before the bypass valve (V 2) to the cooling tube 60 is connected to be able to adjust the amount of refrigerant gas flowing through the by-pass line (L), wherein the valves (V 1 ) (V 2 ) to the interlock adjustment to the optimum state by the microcomputer (70).

따라서 본 고안의 인버터 냉각장치는 도 2와 같이 난방사이클에서, 바이패스 밸브(V2)가 닫혀진 상태에서 압축기(10)가 구동되면 등엔트로피하에서 냉매가 고온ㆍ고압의 과열증기로 압축되고, 압축된 냉매가스는 과열증기 상태로 응축기(20)에 유입됨과 아울러 등온-등압하에서 응축기(20)를 흐르는 고온의 냉매가스와 외부공기와의 열교환이 이루어지면서 난방을 행하고, 난방을 마친 고온ㆍ고압의 액상냉매는 팽창밸브(30)를 통해 비가역적으로 교축ㆍ감압되면서 증발기(40)로부터 저온ㆍ저압의 완전한 기상으로 증발이 이루어진 상태로 압축기(10)의 흡입단에 회수되어 1회의 난방사이클을 완료하게 된다.Therefore, in the inverter cooling apparatus of the present invention, when the compressor 10 is driven while the bypass valve V 2 is closed in the heating cycle as shown in FIG. 2, the refrigerant is compressed to a high temperature / high pressure superheated steam under isotropy and compressed. The refrigerant gas is introduced into the condenser 20 in the state of superheated steam, and is heated while the heat exchange between the high temperature refrigerant gas flowing through the condenser 20 and the external air is performed under isothermal isothermal pressure, and the heating is completed. Liquid refrigerant is recovered from the evaporator 40 to the suction end of the compressor 10 in a state where evaporation is carried out from the evaporator 40 to the low temperature and low pressure in the complete gas phase while irreversibly throttling and reducing the pressure through the expansion valve 30. You are done.

상기 난방 사이클의 운전직후 인버터(50)의 냉각이 이루어지게 되는데, 인버터(50)의 소정한 위치의 온도값(T2)과 증발기(40)를 통과한 냉매가스의 온도값(T1)의 검출신호가 마이컴(70)에 인가되면, 마이컴(70)은 온도값(T2)과 설정값(T0)을 비교하고, 온도값(T1)(T2)을 비교하여, T2T0, T2T1이면 바이패스 밸브(V2)를 개방하여 저온의 일부 냉매가스가 바이패스 라인(L)과 그 쿨링 튜브(60)를 통해 흐름과 동시에 인버터(50)를 냉각하고, 냉각을 마친 냉매는 일부 액화된 상태로 흡입조정밸브(V1)를 통과한 냉매가스와 합류하여 압축기(10)로 흡입ㆍ회수된다.The inverter 50 is cooled immediately after the operation of the heating cycle. The temperature value T 2 of the predetermined position of the inverter 50 and the temperature value T 1 of the refrigerant gas passing through the evaporator 40 are determined. When the detection signal is applied to the microcomputer 70, the microcomputer 70 compares the temperature value T 2 with the set value T 0 , and compares the temperature value T 1 (T 2 ) with T 2 T. 0 , T 2 T 1 opens the bypass valve (V 2 ) to cool the inverter 50 at the same time as some low temperature refrigerant gas flows through the bypass line (L) and its cooling tube (60), After the refrigerant is partially liquefied, the refrigerant is combined with the refrigerant gas that has passed through the suction adjustment valve V 1 and is sucked and recovered by the compressor 10.

증발기(40)의 출구를 통과한 냉매가스 중에는 미세한 액상의 냉매가 혼류하고 있으나, 이러한 액냉매는 인버터(50)의 냉각을 완료함과 동시에 완전히 증발되고 또한 압축기(10)로의 흡입시 완전가스의 과열상태로 유입됨으로써 압축기(10)의 성능 안정성과 과부하 방지에 따른 내구성 향상에 기여하게 된다.A fine liquid refrigerant is mixed in the refrigerant gas passing through the outlet of the evaporator 40, but this liquid refrigerant is completely evaporated upon completion of cooling of the inverter 50, By entering the superheated state contributes to the improvement of the performance stability of the compressor 10 and durability due to overload prevention.

한편, 인버터(50)의 냉각이 충분히 이루어지거나 또는 증발기(40)측의 냉매온도(T1)가 인버터(50)의 온도(T2)와 같거나 그보다 높으면 바이패스 밸브(V2)가 닫혀지면서 냉매가스의 전량이 흡입조정밸브(V1)를 통해 압축기(10)로 회수된다.On the other hand, if the inverter 50 is sufficiently cooled or the refrigerant temperature T 1 of the evaporator 40 side is equal to or higher than the temperature T 2 of the inverter 50, the bypass valve V 2 is closed. The entire amount of the refrigerant gas is recovered to the compressor 10 through the suction control valve (V 1 ).

이처럼 본 고안은 증발기(40)를 통과한 저온의 냉매가스 일부를 이용하여 인버터(50)를 냉각함으로써 보다 신속하고 폭넓은 범위에 걸쳐 냉각을 행할 수 있음은 물론, 인버터(50)의 성능을 최적으로 유지하여 궁극적으로 히트펌프 사이클의 성능안정성과 성적계수향상에 기여하게 되는 것이다.As such, the present invention cools the inverter 50 by using a portion of the low-temperature refrigerant gas that has passed through the evaporator 40, and enables cooling to be performed more quickly and over a wide range, as well as to optimize the performance of the inverter 50. This will ultimately contribute to the performance stability and performance factor of the heat pump cycle.

이상과 같이 본 고안은, 증발을 마치고 압축기에 흡입되기 이전의 저온상태인 냉매가스를 이용하여 고온상태인 인버터와 열교환하여 그 인버터의 냉각을 행함으로써 냉각이 신속히 이루어질 뿐만 아니라 보다 광범위한 냉각범위를 제공하며, 별도로 큰 부피를 갖는 히트 싱크와 냉각팬 등이 제거됨으로써 장치를 소형화함과 동시에 제품의 원가절감에 기여하고, 또한 효율적인 냉각으로 최적의 성능을 발휘하는 인버터와 그에 따른 압축기에 의해 히트펌프 사이클의 냉난방효율을 극대화시키며, 아울러 증발기를 통과한 냉매가스 중에 혼재한 액상냉매가 인버터의 냉각이후 완전히 증발된 상태에서 압축기에 완전가스의 과열상태로 유입되어 결과적으로 압축기의 성능 안정성과 과부하 방지에 따른 내구성 향상에 기여하는 효과가 있다.As described above, the present invention, by cooling the inverter by heat exchange with the high-temperature inverter using a low-temperature refrigerant gas before evaporation and suctioned in the compressor to provide a wider range of cooling as well as cooling quickly In addition, the heat pump cycle is reduced by the inverter and its compressor, which contributes to the miniaturization of the device and the cost reduction of the product by eliminating a large volume of the heat sink and the cooling fan. It maximizes cooling and heating efficiency, and liquid refrigerant mixed in the refrigerant gas that has passed through the evaporator is completely evaporated after cooling of the inverter. It has the effect of contributing to the improvement of durability.

Claims (2)

인버터-압축기-응축기-팽창기구-증발기의 순환계로 되는 난방 히트펌프에 있어서, 상기 증발기와 압축기 사이에 연결된 바이패스 라인; 상기 인버터를 경유하도록 바이패스 라인에 연결되어 증발기로부터의 냉매와 인버터의 열교환을 행하고 열교환된 냉매가스를 압축기에 흡입시키는 쿨링 튜브, 상기 바이패스 라인의 입구에 설치되어 인버터의 냉각조건에 따라 바이패스 냉매유량을 제어하는 바이패스 밸브로 구성된 것을 특징으로 하는 히트펌프의 인버터 냉각장치.A heating heat pump serving as a circulation system of an inverter-compressor-condenser-expansion mechanism-evaporator, comprising: a bypass line connected between the evaporator and the compressor; A cooling tube connected to the bypass line via the inverter to perform heat exchange between the refrigerant from the evaporator and the inverter and to suck the heat exchanged refrigerant gas into the compressor, and installed at the inlet of the bypass line to bypass the inverter according to the cooling conditions of the inverter. Inverter cooling device of a heat pump, characterized in that consisting of a bypass valve for controlling the refrigerant flow rate. 제 1 항에 있어서, 상기 바이패스 냉매유량제어를 위해 증발기와 압축기 사이에 바이패스 밸브와 병렬로 흡입조정밸브가 연결된 것을 특징으로 하는 히트펌프의 인버터 냉각장치.The inverter cooling apparatus of claim 1, wherein a suction control valve is connected between the evaporator and the compressor in parallel with the bypass valve for controlling the bypass refrigerant flow rate.
KR2020010024483U 2001-08-13 2001-08-13 An inverter cooling device of heat pump KR200253492Y1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR2020010024483U KR200253492Y1 (en) 2001-08-13 2001-08-13 An inverter cooling device of heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR2020010024483U KR200253492Y1 (en) 2001-08-13 2001-08-13 An inverter cooling device of heat pump

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0048604A Division KR100403017B1 (en) 2001-08-13 2001-08-13 An inverter cooling device and process of heat pump

Publications (1)

Publication Number Publication Date
KR200253492Y1 true KR200253492Y1 (en) 2001-11-22

Family

ID=73068172

Family Applications (1)

Application Number Title Priority Date Filing Date
KR2020010024483U KR200253492Y1 (en) 2001-08-13 2001-08-13 An inverter cooling device of heat pump

Country Status (1)

Country Link
KR (1) KR200253492Y1 (en)

Similar Documents

Publication Publication Date Title
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
JP3972860B2 (en) Refrigeration equipment
JP4411870B2 (en) Refrigeration equipment
US20080302118A1 (en) Heat Pump Water Heating System Using Variable Speed Compressor
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
JP5375919B2 (en) heat pump
KR20040050477A (en) An air-condition system
JP4317793B2 (en) Cooling system
JP2007051841A (en) Refrigeration cycle device
KR20060086763A (en) Air conditioner equipped with variable capacity type compressor
WO2024078085A1 (en) Heat exchange system, and heat pump apparatus
KR100403017B1 (en) An inverter cooling device and process of heat pump
KR200253492Y1 (en) An inverter cooling device of heat pump
AU2020360865B2 (en) A heat pump
KR100258235B1 (en) Surging-proof device of turbo refrigerator
JP3871207B2 (en) Refrigeration system combining absorption and compression
KR100268266B1 (en) Cooling/heating apparatus of airconditioner
CN117177545B (en) Machine room air conditioner
KR100389640B1 (en) System for controlling air conditioner and method thereof
JPH06272992A (en) Air conditioner
JP3874262B2 (en) Refrigeration system combining absorption and compression
KR100513493B1 (en) Heat pump system
JP2003336929A (en) Absorbing and compression type refrigerator and method of operating the refrigerator
KR100234974B1 (en) Capacity variable airconditioner
WO2020240732A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
U107 Dual application of utility model
REGI Registration of establishment
LAPS Lapse due to unpaid annual fee