KR20020090429A - Process for crystallizing amorphous silicon and its application - fabricating method of thin film transistor and TFT-LCD - Google Patents

Process for crystallizing amorphous silicon and its application - fabricating method of thin film transistor and TFT-LCD Download PDF

Info

Publication number
KR20020090429A
KR20020090429A KR1020010028959A KR20010028959A KR20020090429A KR 20020090429 A KR20020090429 A KR 20020090429A KR 1020010028959 A KR1020010028959 A KR 1020010028959A KR 20010028959 A KR20010028959 A KR 20010028959A KR 20020090429 A KR20020090429 A KR 20020090429A
Authority
KR
South Korea
Prior art keywords
layer
forming
thin film
amorphous silicon
metal thin
Prior art date
Application number
KR1020010028959A
Other languages
Korean (ko)
Other versions
KR100425156B1 (en
Inventor
황광조
김빈
배종욱
Original Assignee
엘지.필립스 엘시디 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지.필립스 엘시디 주식회사 filed Critical 엘지.필립스 엘시디 주식회사
Priority to KR10-2001-0028959A priority Critical patent/KR100425156B1/en
Priority to US10/140,288 priority patent/US6695955B2/en
Publication of KR20020090429A publication Critical patent/KR20020090429A/en
Application granted granted Critical
Publication of KR100425156B1 publication Critical patent/KR100425156B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE: A poly crystallizing method and method for fabricating a thin film transistor and a liquid crystal display device are provided to control an amount of metal by using a metal collecting layer, thereby supplying a proper amount for uniform crystallization. CONSTITUTION: A poly crystallizing method includes the steps of forming a buffer layer(202) on an insulating substrate(201), forming an amorphous silicon layer(203) on the buffer layer, forming a metal thin film layer(204) on the amorphous silicon layer, forming a metal collecting layer(204a) on the metal thin film layer, and crystallizing the amorphous silicon layer to a poly crystalline silicon by heating the substrate simultaneously with applying electric fields to the surface resistance heating material via electrodes.

Description

다결정화 방법과 이를 이용한 박막트랜지스터 제조방법 및 액정표시장치 제조방법{Process for crystallizing amorphous silicon and its application - fabricating method of thin film transistor and TFT-LCD}Process for crystallizing amorphous silicon and its application-fabricating method of thin film transistor and TFT-LCD}

본 발명은 다결정 실리콘 박막트랜지스터 제조방법에 관한 것으로 특히, 전계인가 금속유도결정화 방법을 이용한 다결정화 방법 및 그를 이용한 박막트랜지스터 및 액정표시장치 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a polycrystalline silicon thin film transistor, and more particularly, to a polycrystallization method using an electric field applied metal induction crystallization method, and a method for manufacturing a thin film transistor and a liquid crystal display device using the same.

박막트랜지스터 액정표시장치(TFT-LCD)가 고밀도, 대면적화되고 디스플레이 부분과 구동회로 부분을 동일 기판 위에 제작하기 위해서는 스위칭 소자인 박막트랜지스터의 이동도(Mobility) 증가가 절실히 요구되고 있지만, 비정질 수소화 실리콘 박막트랜지스터(a-Si:H TFT)로는 이점을 만족하기가 어렵다.Although TFT-LCDs have high density and large area, and display and driving circuits are fabricated on the same substrate, there is an urgent need for increasing mobility of thin film transistors, which are switching elements. It is difficult to satisfy this advantage with a thin film transistor (a-Si: H TFT).

최근에 이런 문제점을 효과적으로 해결할 수 있는 방법으로 다결정 실리콘 박막트랜지스터(Polycrystalline silicon TFT ; Poly-Si TFT)가 많은 주목을 받고 있다. 다결정 실리콘 TFT는 이동도가 크기 때문에 유리기판 위에 주변회로를 집적할 수 있는 장점이 있어서 생산비용 절감 측면에서도 많은 관심을 끌고 있다.Recently, polycrystalline silicon TFTs (Poly-Si TFTs) have attracted much attention as a method for effectively solving these problems. Since polycrystalline silicon TFTs have high mobility, they have the advantage of allowing peripheral circuits to be integrated on glass substrates, thus attracting much attention in terms of reducing production costs.

또한, 다결정 실리콘 TFT는 비정질 실리콘 TFT보다 이동도가 높아 고해상도 패널의 스위칭 소자로 유리하고, 비정질 실리콘 TFT에 비하여 광전류가 적어 빛이 많이 쪼이는 프로젝션 패널에 적합하다.In addition, polycrystalline silicon TFTs have higher mobility than amorphous silicon TFTs, and are advantageous as switching elements of high-resolution panels, and are suitable for projection panels in which a lot of light is emitted due to less photocurrent compared to amorphous silicon TFTs.

다결정 실리콘을 제작하는 방법은 여러 가지가 보고되어 있는데, 크게 다결정 실리콘을 직접 증착하는 방법과 비정질 실리콘을 증착한 후, 결정화하는 단계를 거쳐서 다결정질 실리콘을 만드는 방법이 있다.There have been many reports on the method of fabricating polycrystalline silicon, and there are largely a method of directly depositing polycrystalline silicon and a method of forming polycrystalline silicon by depositing amorphous silicon and then crystallizing.

전자의 방법에는 저압 화학기상증착(Low Pressure Chemical Vapor Deposition ; LPCVD)법, 플라즈마 화학기상증착(Plasma Enhanced Chemical VaporDeposition ; PECVD)법 등이 있는데, 이중 LPCVD법은 그 증착 온도가 550℃이상으로 기판 재료로 고가의 실리카(silica) 또는 석영(quartz)을 사용하기 때문에 제작 단가가 높아 대량 생산용으로는 적합하지 못하다. 그리고 PECVD법은 경우 SiF4/SiH4/H2혼합 가스를 사용하여 400℃ 이하에서 증착이 가능하지만, 결정립을 억제하기 힘들며, 특히 증착시의 결정립 성장 방향의 불균일성 때문에 다결정 실리콘 박막의 표면 특성에 심각한 문제점을 가지고 있는 것으로 알려져 있다.The former methods include Low Pressure Chemical Vapor Deposition (LPCVD) and Plasma Enhanced Chemical Vapor Deposition (PECVD). Among them, the LPCVD method has a substrate temperature of 550 ° C. or higher. Due to the use of expensive silica or quartz, the manufacturing cost is high, which is not suitable for mass production. In the case of PECVD, the SiF 4 / SiH 4 / H 2 mixed gas can be deposited at 400 ° C. or lower, but it is difficult to suppress the grains. It is known to have serious problems.

후자의 방법 즉, 비정질 실리콘을 증착하여 결정화하는 방법에는 고상결정화(Solid Phase Crystallization ; SPC)법, 엑시머 레이저(Excimer Laser Annealing ; ELA)법 등이 있다.The latter method, that is, a method of depositing and crystallizing amorphous silicon includes a solid phase crystallization (SPC) method and an excimer laser annealing (ELA) method.

상기 ELA법은 강한 에너지를 갖는 엑시머 레이저(eximer laser)를 비정질 실리콘 박막에 펄스 형태로 투여하여 순식간에 박막을 결정화시키는 방법으로 박막 내 결정립의 크기가 크고 우수한 결정성을 갖는 다결정 실리콘 박막의 제조가 가능한 방법이다. 그러나, ELA법은 엑시머 레이저라는 고가의 부대 장비를 필요로 하기 때문에 대량 생산 및 대면적용의 LCD 구동용 TFT용으로는 한계점을 가지고 있는 방법이라 할 수 있다.The ELA method is a method of crystallizing a thin film in an instant by administering an excimer laser having a strong energy in an amorphous silicon thin film to form a polycrystalline silicon thin film having a large crystal grain size and excellent crystallinity. This is possible. However, the ELA method requires an expensive accessory equipment, such as an excimer laser, and thus can be said to have a limitation in mass production and large area LCD driving TFTs.

고상결정화법은 주로 반응로(furnace)속에서 로 가열법을 이용하여 비정질 실리콘 박막을 결정화시키는 방법으로, 마찬가지로 우수한 결정성을 갖는 다결정 실리콘 박막의 제조가 가능하나, 고상 반응에 의해서 진행되기 때문에 결정화 반응 속도가 느려 600℃ 이상의 고온에서 수십 시간 이상의 오랜 결정화 시간이 요구된다는 단점을 가진다.Solid phase crystallization is mainly a method of crystallizing an amorphous silicon thin film by using a furnace heating method in a furnace. Likewise, polycrystalline silicon thin film having excellent crystallinity can be produced, but is crystallized because it proceeds by solid phase reaction. Due to the slow reaction rate, a long crystallization time of several tens of hours or more is required at a high temperature of 600 ° C. or more.

상기와 같은 방법 외에, 최근에는 대면적의 액정표시장치 제작에 다결정 실리콘을 사용하기 위하여 결정화 온도를 낮추기 위한 많은 연구가 진행되고 있는데, 그 중 하나가 금속유도결정화(Metal Induced Crystallization)방법이고 나아가 금속유도결정화법에 전계를 인가하여 결정화 속도를 향상시키는 전계인가 금속유도결정화(Electric Field Enhanced Metal Induced Crystallization)법도 연구 진행 중이다.In addition to the above methods, a lot of research has recently been conducted to lower the crystallization temperature in order to use polycrystalline silicon in the manufacture of large-area liquid crystal display devices, one of which is a metal induced crystallization method and furthermore, Electric field enhanced metal induced crystallization (ESD), which applies an electric field to induction crystallization and improves the rate of crystallization, is also being studied.

이 방법들에 의하면, 특정한 종류의 금속을 비정질 실리콘과 접촉시키면 비정질 실리콘의 결정화 온도를 500℃ 이하로 낮출 수 있으며, 이러한 금속유도결정화 효과는 여러 종류의 금속에서 나타나는 것으로 알려져 있다.According to these methods, when a specific type of metal is contacted with amorphous silicon, the crystallization temperature of the amorphous silicon can be lowered to 500 ° C. or lower, and the metal induction crystallization effect is known to occur in various kinds of metals.

금속유도결정화는 금속의 종류에 따라 결정화를 일으키는 원인이 다르다. 즉, 수소화 비정질 실리콘(a-Si:H)에 접하는 금속의 종류에 따라 결정화 현상이 달라질 수 있다.Metal-induced crystallization differs in causing crystallization depending on the type of metal. That is, the crystallization phenomenon may vary depending on the type of metal in contact with the hydrogenated amorphous silicon (a-Si: H).

예를 들면, 알루미늄(Al), 금(Au), 은(Ag) 등의 금속은 비정질 실리콘과의 경계면에서 실리콘(Si)의 확산(diffusion)에 의해서 지배된다. 즉, 금속과 실리콘의 경계면에서 실리콘의 확산에 의한 준안정상태의 실리사이드(silicide)상을 형성하는데, 이 실리사이드는 결정화 에너지를 낮추는 역할을 하게 되어 실리콘의 결정화를 촉진한다.For example, metals such as aluminum (Al), gold (Au), and silver (Ag) are governed by the diffusion of silicon (Si) at the interface with amorphous silicon. In other words, at the interface between the metal and the silicon, a metastable silicide phase is formed by diffusion of silicon, and the silicide lowers the crystallization energy to promote the crystallization of silicon.

이에 반하여 니켈(Ni), 티타늄(Ti) 등의 금속은 어닐링(annealing)에 의한 금속의 확산이 지배적이다. 즉, 금속과 실리콘 경계면에서 실리콘층 방향으로의 금속 확산에 의하여 실리사이드상을 형성하고, 이러한 실리사이드가 결정화를 촉진하여 결정화 온도를 낮춘다.In contrast, in metals such as nickel (Ni) and titanium (Ti), diffusion of metals by annealing is dominant. That is, a silicide phase is formed by metal diffusion from the metal and silicon interface in the direction of the silicon layer, and the silicide promotes crystallization and lowers the crystallization temperature.

이하, 첨부된 도면을 참조하여 종래 기술에 따른 다결정화 방법을 설명하기로 한다.Hereinafter, a polycrystallization method according to the prior art will be described with reference to the accompanying drawings.

도 1a 내지 1c는 종래 기술에 따른 비정질 실리콘 박막을 결정화하는 방법을 설명하기 위한 공정단면도이다.1A to 1C are cross-sectional views illustrating a method of crystallizing an amorphous silicon thin film according to the prior art.

도 1a에 도시한 바와 같이, 절연기판(101) 상에 실리콘 산화막(SiO2)으로 버퍼층(102)을 형성하고 상기 버퍼층상에 비정질 실리콘(103)을 증착한 후, 결정화 촉매로 작용하는 금속박막층(104)을 비정질 실리콘층에 형성한다. 여기서, 상기 금속박막층(104)으로는 니켈(Ni) 등이 사용된다.As shown in FIG. 1A, a buffer layer 102 is formed of a silicon oxide film (SiO 2 ) on an insulating substrate 101, an amorphous silicon 103 is deposited on the buffer layer, and then a metal thin film layer serving as a crystallization catalyst. 104 is formed in the amorphous silicon layer. Here, nickel (Ni) or the like is used as the metal thin film layer 104.

도 1b에 도시한 바와 같이, 상기 금속박막층(104)상에 전계를 인가하기 위한 전극(105)을 부가한다. 상기 전극용 물질로는 몰리브덴(Mo)등이 사용된다.As shown in FIG. 1B, an electrode 105 for applying an electric field on the metal thin film layer 104 is added. Molybdenum (Mo) is used as the material for the electrode.

이어서, 상기 전극(105)에 소정의 전계를 인가하고 동시에 열처리공정을 진행하며, 도 1c에 도시한 바와 같이, 도 1b의 결정화 작업 결과로 실리콘(Si)층 방향으로의 니켈(Ni)의 확산에 의하여 실리사이드상(NiSi2)이 형성된다. 그리고, 이 실리사이드(NiSi2)가 실리콘 박막의 결정화를 촉진하여 결정화 온도를 낮춘 상태에서 비정질 실리콘 박막을 다결정 실리콘 박막(106)으로 결정화한다.Subsequently, a predetermined electric field is applied to the electrode 105, and at the same time, a heat treatment is performed. As shown in FIG. 1C, as a result of the crystallization of FIG. As a result, a silicide phase (NiSi 2 ) is formed. The silicide (NiSi 2 ) promotes crystallization of the silicon thin film to crystallize the amorphous silicon thin film into the polycrystalline silicon thin film 106 in a state where the crystallization temperature is lowered.

그러나 상기와 같은 종래 다결정화 방법은 다음과 같은 문제점이 있었다.However, the conventional polycrystallization method as described above has the following problems.

비정질 실리콘층의 결정화 이후 다결정 실리콘층 상에 미반응 금속(104a)(도 1c 참조)이 잔류하게 되어 누설 전류를 야기하고 또한, 표면 열손실에 의한 결정화 반응 속도의 저하 및 결정화 이후, 결정립 내에 점결함(Point defect) 등의 결함이 존재하는 등의 단점이 있다.After crystallization of the amorphous silicon layer, the unreacted metal 104a (see FIG. 1C) remains on the polycrystalline silicon layer, causing leakage current, and also degrading the crystallization reaction rate due to surface heat loss and defects in the crystal grains after crystallization. There are disadvantages such as the presence of defects such as (Point defect).

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로, 상기 미반응 금속의 양을 최소화함으로써, 박막트랜지스터의 소자 특성을 향상시키는 다결정화 방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems, the object of the present invention is to provide a polycrystallization method for improving the device characteristics of the thin film transistor by minimizing the amount of the unreacted metal.

본 발명의 다른 목적은 상기 다결정화 방법을 이용하여 박막트랜지스터 및 액정표시장치를 제조하는 방법을 제공하는데 있다.Another object of the present invention is to provide a method for manufacturing a thin film transistor and a liquid crystal display using the polycrystallization method.

도 1a 내지 1c는 종래 기술에 따른 다결정화 방법을 설명하기 위한 공정단면도.1A to 1C are cross-sectional views for explaining a polycrystallization method according to the related art.

도 2a 내지 2d는 본 발명에 따른 다결정화 방법을 설명하기 위한 공정단면도.Figure 2a to 2d is a cross-sectional view for explaining the polycrystallization method according to the present invention.

도 3a 내지 3e는 본 발명의 다결정화 방법을 이용한 박막트랜지스터 제조방법을 설명하기 위한 공정단면도.3A to 3E are cross-sectional views illustrating a method of manufacturing a thin film transistor using the polycrystallization method of the present invention.

도 4a 내지 4f는 본 발명의 다결정화 방법을 이용한 액정표시장치 제조방법을 설명하기 위한 공정단면도.4A to 4F are cross-sectional views illustrating a method of manufacturing a liquid crystal display device using the polycrystallization method of the present invention.

도면의 주요 부분에 대한 부호의 설명Explanation of symbols for the main parts of the drawings

201 : 기판 202 : 버퍼층201: substrate 202: buffer layer

203 : 비정질 실리콘층 204 : 금속박막층203: amorphous silicon layer 204: metal thin film layer

204a : 금속 포집층204a: metal collecting layer

상기 목적을 달성하기 위한 본 발명의 다결정화 방법은 절연기판 상에 버퍼층을 형성하는 단계와, 상기 버퍼층 상에 비정질 실리콘층을 형성하는 단계와, 상기 비정질 실리콘층 상에 금속박막층을 형성하는 단계와, 상기 금속박막층 상에 금속 포집층을 형성하는 단계와, 상기 금속박막층에 전계를 인가함과 동시에 기판을 열처리하여 상기 비정질 실리콘층을 다결정 실리콘으로 결정화하는 단계를 포함하여 이루어지는 것을 특징으로 한다.The polycrystallization method of the present invention for achieving the above object comprises the steps of forming a buffer layer on an insulating substrate, forming an amorphous silicon layer on the buffer layer, forming a metal thin film layer on the amorphous silicon layer; And forming a metal collection layer on the metal thin film layer, and applying an electric field to the metal thin film layer and simultaneously heat-treating the substrate to crystallize the amorphous silicon layer into polycrystalline silicon.

그리고 상기와 같은 다결정화 방법을 이용한 박막트랜지스터 제조방법은 절연기판 상에 버퍼층을 형성하는 공정과, 상기 버퍼층 상에 비정질 실리콘층을 형성하는 공정과, 상기 비정질 실리콘층 상에 금속박막층을 형성하는 공정과, 상기 금속박막층 상에 금속 포집층을 형성하는 공정과, 상기 금속박막층에 전계를 인가함과 동시에 기판을 열처리하여 상기 비정질 실리콘층을 결정화하는 단계와, 상기 비정질 실리콘층을 결정화한 후, 섬 모양의 반도체층을 형성하는 공정과, 상기 반도체층을 포함한 기판 전면에 게이트 절연막을 형성하는 공정과, 상기 게이트 절연막 상의 소정부위에 게이트 전극을 형성하는 공정과, 상기 반도체층에서 상기 게이트 전극과 중첩되지 않는 영역을 이온 도핑하여 소스/드레인 영역을 형성하는 공정과, 상기 반도체층을 활성화시키는 공정과, 상기 반도체층과 게이트 전극 상에 층간절연막을 형성한 후, 상기 소스/드레인 영역의 일부를 노출시키는 공정과, 노출된 상기 소스/드레인 영역과 연결되도록 소스 전극과 드레인 전극을 형성하는 공정을 포함하여 이루어진다.The method of manufacturing a thin film transistor using the polycrystallization method as described above includes forming a buffer layer on an insulating substrate, forming an amorphous silicon layer on the buffer layer, and forming a metal thin film layer on the amorphous silicon layer. And forming a metal collection layer on the metal thin film layer, applying an electric field to the metal thin film layer, and heat treating a substrate to crystallize the amorphous silicon layer, and crystallizing the amorphous silicon layer. Forming a semiconductor layer of the shape, forming a gate insulating film on the entire surface of the substrate including the semiconductor layer, forming a gate electrode on a predetermined portion of the gate insulating film, and overlapping the gate electrode in the semiconductor layer. Forming a source / drain region by ion doping a region that is not Activating a layer, forming an interlayer insulating layer on the semiconductor layer and the gate electrode, exposing a portion of the source / drain region, and forming a source electrode and a drain electrode to be connected to the exposed source / drain region. It is made, including the process.

또한, 상기와 같은 박막트랜지스터를 이용한 액정표시장치 제조방법은 제 1 기판과 제 2 기판을 준비하는 공정과, 상기 제 1 기판 상에 버퍼층을 형성하는 공정과, 상기 버퍼층 상에 비정질 실리콘층을 형성하는 공정과, 상기 비정질 실리콘층 상에 금속박막층을 형성하는 공정과, 상기 금속박막층 상에 금속포집층을 형성하는 공정과, 상기 금속박막층에 전계를 인가함과 동시에 기판을 열처리하여 상기 비정질 실리콘층을 결정화하는 공정과, 상기 비정질 실리콘층을 결정화한 후, 섬 모양의 반도체층을 형성하는 공정과, 상기 반도체층을 포함한 전면에 게이트 절연막을 형성하는 공정과, 상기 게이트 절연막 상의 소정부위에 게이트 전극 및 게이트 라인들을 형성하는 공정과, 상기 반도체층에서 상기 게이트 전극과 중첩되지 않는 영역을 도핑하여 소스/드레인 영역을 형성하는 공정과, 상기 반도체층을 활성화시키는 공정과, 상기 반도체층과 게이트 전극 상에 제 1 절연막을 형성한 후, 상기소스/드레인 영역을 노출시키는 공정과, 노출된 상기 소스/드레인 영역과 연결되도록 소스/드레인 전극 및 데이터 라인들을 형성하는 공정과, 상기 드레인 전극과 전기적으로 연결되는 화소전극을 형성하는 공정과, 상기 제 1 기판과 제 2 기판 사이에 액정층을 형성하는 공정을 포함하여 이루어지는 것을 특징으로 한다.In addition, the method of manufacturing a liquid crystal display device using the thin film transistor as described above may include preparing a first substrate and a second substrate, forming a buffer layer on the first substrate, and forming an amorphous silicon layer on the buffer layer. Forming a metal thin film layer on the amorphous silicon layer, forming a metal collecting layer on the metal thin film layer, applying an electric field to the metal thin film layer, and heat treating the substrate to simultaneously heat the substrate. Crystallizing the crystal, forming the island-like semiconductor layer after crystallizing the amorphous silicon layer, forming a gate insulating film on the entire surface including the semiconductor layer, and forming a gate electrode at a predetermined portion on the gate insulating film. And forming a gate line, and doping a region of the semiconductor layer that does not overlap the gate electrode. / Forming a drain region, activating the semiconductor layer, forming a first insulating film on the semiconductor layer and the gate electrode, and then exposing the source / drain region, and the exposed source / Forming a source / drain electrode and data lines so as to be connected to the drain region, forming a pixel electrode electrically connected to the drain electrode, and forming a liquid crystal layer between the first substrate and the second substrate. Characterized in that comprises a.

이하, 도면을 참조하여 본 발명에 따른 다결정화 방법 및 그를 이용한 박막트랜지스터 제조방법을 상세히 설명한다.Hereinafter, a polycrystallization method and a method of manufacturing a thin film transistor using the same according to the present invention will be described in detail with reference to the drawings.

도 2a 내지 2d는 본 발명에 따른 다결정화 방법을 설명하기 위한 공정단면도이고, 도 3a 내지 3e는 본 발명의 다결정화 방법을 이용한 박막트랜지스터 제조방법을 설명하기 위한 공정단면도이다.2A through 2D are cross-sectional views illustrating a polycrystallization method according to the present invention, and FIGS. 3A through 3E are cross-sectional views illustrating a method of manufacturing a thin film transistor using the polycrystallization method of the present invention.

도 2a에 도시한 바와 같이, 절연기판(201) 상에 실리콘 산화막 또는 실리콘 질화막 재질의 버퍼층(202)을 화학기상증착법을 이용하여 형성한 후, 상기 버퍼층(202) 상에 SiH4와 H2혼합가스를 플라즈마 화학기상증착(Plasma Enhanced Chemical Vapor Deposition)법을 이용하여 비정질 실리콘(a-Si:H)층(203)을 형성한다.As shown in FIG. 2A, after forming a buffer layer 202 made of a silicon oxide film or a silicon nitride film on the insulating substrate 201 by chemical vapor deposition, SiH 4 and H 2 are mixed on the buffer layer 202. The gas is formed using a plasma enhanced chemical vapor deposition method to form an amorphous silicon (a-Si: H) layer 203.

여기서, 상기 버퍼층(202)은 유리기판(201)의 불순물 성분이 비정질 실리콘층(203)으로 확산되는 것을 방지하는 한편, 향후 결정화 공정시 유리기판(201)으로의 열유입을 차단하는 역할을 한다.Here, the buffer layer 202 prevents the impurity component of the glass substrate 201 from diffusing into the amorphous silicon layer 203, and blocks the heat inflow into the glass substrate 201 in a future crystallization process. .

이후, 상기 비정질 실리콘층(203) 상에 스퍼터링(Sputtering)법을 이용하여 금속 박막층(204)을 형성한다. 이때, 상기 금속박막층(204)으로는 크롬(Cr), 팔라듐(Pd), 니켈(Ni), 백금(Pt) 등이 사용하며, 그 증착량은 단위 체적당 원자개수로 환산하면 1×1018(원자개수)/cm3이상이다.Thereafter, the metal thin film layer 204 is formed on the amorphous silicon layer 203 by using a sputtering method. In this case, chromium (Cr), palladium (Pd), nickel (Ni), platinum (Pt), etc. are used as the metal thin film layer 204, and the deposition amount is 1 × 10 18 when converted into the number of atoms per unit volume. (Atomic number) / cm <3> or more.

상기 금속박막층(204) 상에 금속 포집층(204a)을 형성한다. 이때, 상기 금속 포집층(204a)은 인(P) 이온이 도핑된 비정질 실리콘으로 형성하거나 또는 SiH4과 PH3가스를 이용한 n+ 비정질 실리콘층으로 형성한다.The metal collecting layer 204a is formed on the metal thin film layer 204. In this case, the metal collection layer 204a is formed of amorphous silicon doped with phosphorus (P) ions or an n + amorphous silicon layer using SiH 4 and PH 3 gas.

도 2b에 도시한 바와 같이, 상기 금속 포집층(204a)의 좌우 소정부위를 식각하여 상기 금속박막층(204)이 드러나도록 한 다음, 상기 드러난 금속박막층(204) 상에 전계를 인가하기 위한 전극(205)을 부가한다. 이때, 상기 전극(205)용 물질로는 몰리브덴(Mo), 그라파이트(Graphite) 등을 사용한다As shown in FIG. 2B, the left and right predetermined portions of the metal collecting layer 204a are etched to expose the metal thin film layer 204, and then an electrode for applying an electric field on the exposed metal thin film layer 204 ( 205) is added. In this case, as the material for the electrode 205, molybdenum (Mo), graphite, or the like is used.

이후, 상기 전극(205)에 일정 조건의 전계를 인가하고 동시에 기판을 열처리하여 상기 비정질 실리콘층을 결정화시킨다. 이때, 인가 전압은 10∼500V/cm, 인가 시간은 15∼300분, 기판의 열처리 온도는 400∼600℃ 로 설정하는 것이 바람직하다.Thereafter, an electric field having a predetermined condition is applied to the electrode 205 and the substrate is heat-treated at the same time to crystallize the amorphous silicon layer. At this time, it is preferable that the applied voltage is set to 10 to 500 V / cm, the application time is 15 to 300 minutes, and the heat treatment temperature of the substrate is set to 400 to 600 ° C.

이와 같은 과정을 거치면 도 2d에 도시한 바와 같이, 상기 비정질 실리콘층(203)이 다결정 실리콘층(206)으로 결정화되는데, 그 결정화 과정은 다음과 같다.Through this process, as shown in FIG. 2D, the amorphous silicon layer 203 is crystallized into the polycrystalline silicon layer 206. The crystallization process is as follows.

상기 금속박막층이 비정질 실리콘층으로 고상 확산(Solid Phase Diffusion)하여 금속 실리사이드를 형성한다. 예를 들어, 니켈(Ni)의 경우 니켈 실리사이드(NiSi2)를 형성한다.The metal thin film layer is solid phase diffused to an amorphous silicon layer to form metal silicide. For example, nickel (Ni) forms nickel silicide (NiSi 2 ).

상기 금속 실리사이드는 비정질 실리콘의 결정화의 촉매 즉, 결정화핵으로 작용하게 되고 상기 결정화핵으로 인해 빠른 결정화 속도로 비정질 실리콘의 균일한 결정화가 진행된다.The metal silicide acts as a catalyst for crystallization of amorphous silicon, that is, a crystallization nucleus, and uniform crystallization of amorphous silicon proceeds at a high crystallization rate due to the crystallization nucleus.

한편, 결정화 공정 진행시, 일부 금속은 금속 포집층으로 이동하여 금속 포집층의 인(P)과 쌍을 이루게 된다.(도 2c 참조) 이러한 반응에 의해 전체적으로 실리콘층(203, 206) 내의 금속량과 금속포집층 내의 금속량은 결정화 온도에서의 금속 용해도에 대해 등가적인 농도로 포화되어 1×1014(원자개수)/cm3이하로 제어할 수 있게 된다.On the other hand, during the crystallization process, some of the metal moves to the metal collection layer and is paired with phosphorus (P) of the metal collection layer (see FIG. 2C). As a result, the amount of metal in the silicon layers 203 and 206 as a whole. And the amount of metal in the metal collection layer is saturated to an equivalent concentration with respect to the metal solubility at the crystallization temperature, and can be controlled to 1 × 10 14 (atomic number) / cm 3 or less.

이와 같은 다결정화 방법을 이용한 박막트랜지스터 제조방법을 설명하면 다음과 같다.Referring to the thin film transistor manufacturing method using the polycrystallization method as follows.

먼저, 도 3a에 도시한 바와 같이, 절연기판(201) 상에 화학기상증착법을 이용하여 실리콘 산화막(SiO2) 재질의 버퍼층(202)과 비정질 실리콘층(a-Si:H)(203)을 순차적으로 형성한다.First, as shown in FIG. 3A, the buffer layer 202 and the amorphous silicon layer (a-Si: H) 203 made of silicon oxide (SiO 2 ) material are formed on the insulating substrate 201 by chemical vapor deposition. Form sequentially.

이후, 상기 비정질 실리콘층(203) 상에 금속박막층(204)을 스퍼터링법으로 형성한다. 이때, 상기 금속박막층(204)으로는 크롬(Cr), 팔라듐(Pd), 니켈(Ni), 백금(Pt) 등이 사용하며, 그 증착량은 단위 체적당 원자개수로 환산하면 1×1018(원자개수)/cm3이상이다.Thereafter, the metal thin film layer 204 is formed on the amorphous silicon layer 203 by sputtering. In this case, chromium (Cr), palladium (Pd), nickel (Ni), platinum (Pt), etc. are used as the metal thin film layer 204, and the deposition amount is 1 × 10 18 when converted into the number of atoms per unit volume. (Atomic number) / cm <3> or more.

상기 금속박막층(204) 상에 금속 포집층을 형성한다. 이때, 상기 금속 포집층(204a)은 인(P) 이온이 도핑된 비정질 실리콘으로 형성하거나 또는 SiH4과 PH3가스를 이용한 n+ 비정질 실리콘층으로 형성한다.A metal collecting layer is formed on the metal thin film layer 204. In this case, the metal collection layer 204a is formed of amorphous silicon doped with phosphorus (P) ions or an n + amorphous silicon layer using SiH 4 and PH 3 gas.

이어서, 도 3b에 도시한 바와 같이, 상기 금속 포집층(204a)의 좌우 소정부위를 식각하여 상기 금속박막층(204)이 드러나도록 한 다음, 상기 드러난 금속박막층(204) 상에 전계를 인가하기 위한 전극(205)을 부가한다. 이때, 상기 전극(205)용 물질로는 몰리브덴(Mo), 그라파이트(Graphite) 등을 사용한다Subsequently, as shown in FIG. 3B, the left and right predetermined portions of the metal collecting layer 204a are etched to expose the metal thin film layer 204, and then an electric field is applied to the exposed metal thin film layer 204. An electrode 205 is added. In this case, as the material for the electrode 205, molybdenum (Mo), graphite, or the like is used.

이후, 상기 전극(205)에 일정 조건의 전계를 인가하고, 동시에 절연 기판을 열처리하여 상기 비정질 실리콘층(203)을 결정화시킨다. 이때, 상기 전극(205)에 인가되는 전압은 10∼500V/cm, 인가 시간은 약 15∼300분 정도로 하며, 열처리 온도는 400∼600℃ 로 설정하는 것이 바람직하다.Thereafter, an electric field having a predetermined condition is applied to the electrode 205, and at the same time, the insulating substrate is heat-treated to crystallize the amorphous silicon layer 203. At this time, the voltage applied to the electrode 205 is 10 to 500V / cm, the application time is about 15 to 300 minutes, the heat treatment temperature is preferably set to 400 to 600 ℃.

이와 같은 과정을 통해 비정질 실리콘층(203)을 다결정 실리콘층(206)으로 결정화한 후, 도 3c에 도시한 바와 같이, 상기 다결정 실리콘층(206)을 섬 모양으로 패터닝한 다음, 상기 다결정 실리콘층(206)을 포함한 기판 전면에 실리콘 산화막 또는 실리콘 질화막 재질의 게이트 절연막(207)을 형성한다. 이후, 상기 게이트 절연막(207) 상에 AlNd, Mo 의 이중의 금속층을 스퍼터링(Sputtering)법을 이용하여 차례로 적층한 후, 패터닝하여 이중막 구조의 게이트 전극(208)을 형성한다.After the crystallization of the amorphous silicon layer 203 into the polycrystalline silicon layer 206 through the above process, as shown in FIG. 3C, the polycrystalline silicon layer 206 is patterned into an island shape, and then the polycrystalline silicon layer is formed. A gate insulating film 207 made of silicon oxide film or silicon nitride film is formed on the entire surface of the substrate including 206. Subsequently, a double metal layer of AlNd and Mo is sequentially stacked on the gate insulating layer 207 by sputtering, and then patterned to form a gate electrode 208 having a double layer structure.

이어, 도 3d에 도시한 바와 같이, 상기 게이트 전극(208)을 마스크로 하는 이온주입 공정을 통해 상기 게이트 전극(208) 양측의 다결정 실리콘층(206)에 n+ 이온을 주입하여 소스/드레인 영역을 형성하고, 결정화 온도보다 낮은 온도에서 활성화시킨 다음, 상기 게이트 전극(208)을 포함한 기판 전면에 층간절연막(209)을 형성한다.3D, n + ions are implanted into the polycrystalline silicon layer 206 on both sides of the gate electrode 208 through an ion implantation process using the gate electrode 208 as a mask to form a source / drain region. After the formation and activation at a temperature lower than the crystallization temperature, an interlayer insulating film 209 is formed on the entire surface of the substrate including the gate electrode 208.

이어서, 도 3e에 도시한 바와 같이, 상기 n+ 이온이 도핑된 다결정 실리콘층(206)의 소정영역이 노출되도록 층간절연막(209)과 게이트 절연막(207)을 식각하여 비아 홀(Via hole)을 형성하고, 상기 비아 홀이 충분히 채워지도록 AlNd, Mo의 이중의 금속층을 차례로 적층한 후, 패터닝하여 소스/드레인 전극(210, 211)을 형성하면, 본 발명에 따른 다결정화 방법을 이용한 박막트랜지스터 제조공정이 완료된다.Subsequently, as shown in FIG. 3E, the interlayer insulating layer 209 and the gate insulating layer 207 are etched to expose a predetermined region of the n + ion-doped polycrystalline silicon layer 206 to form a via hole. After stacking the metal layers of AlNd and Mo in order to sufficiently fill the via holes, and forming the source / drain electrodes 210 and 211 by patterning, the thin film transistor manufacturing process using the polycrystallization method according to the present invention is performed. Is complete.

이하에서는 상기와 같은 박막트랜지스터 제조공정을 이용한 액정표시장치 제조방법을 설명하기로 한다.Hereinafter, a method of manufacturing a liquid crystal display using the above-described thin film transistor manufacturing process will be described.

도 4a 내지 4f는 본 발명에 따른 액정표시장치 제조방법을 설명하기 위한 공정단면도이다.4A to 4F are cross-sectional views illustrating a method of manufacturing a liquid crystal display device according to the present invention.

먼저, 도 4a에 도시한 바와 같이, 제 1 기판(201a) 상에 실리콘 산화막 재질의 버퍼층(202)을 형성한 후, 상기 버퍼층(202) 상에 SiH4와 H2혼합가스를 이용한 플라즈마 화학기상증착법으로 비정질 실리콘층(203)을 형성한다.First, as shown in FIG. 4A, after forming a buffer layer 202 made of a silicon oxide film on the first substrate 201a, a plasma chemical vapor phase using SiH 4 and H 2 mixed gas is formed on the buffer layer 202. An amorphous silicon layer 203 is formed by vapor deposition.

도면에 도시하지 않았지만, 상기 비정질 실리콘층 상에는 금속박막층과 금속포집층이 순차적으로 형성되어 있다.Although not shown in the drawings, a metal thin film layer and a metal collecting layer are sequentially formed on the amorphous silicon layer.

이후, 도 4b에 도시한 바와 같이, 상기 비정질 실리콘층(203)을 전술한 결정화공정을 통해 다결정 실리콘층(206) 결정화한 다음, 도 4c에 도시한 바와 같이,박막트랜지스터의 채널층으로 사용될 수 있도록 섬 모양으로 패터닝한다. 이후, 상기 섬 모양의 다결정 실리콘층(206)을 포함한 전면에 실리콘 질화막 또는 실리콘 산화막 재질의 게이트 절연막(207)을 형성한 후, 상기 게이트 절연막 상에 AlNd, Mo 의 이중의 금속층을 적층한 후, 패터닝하여 박막트랜지스터의 게이트 전극(208) 및 게이트 라인(도시하지 않음)을 형성한다.Thereafter, as shown in FIG. 4B, the amorphous silicon layer 203 is crystallized through the above-described crystallization process, and then, as shown in FIG. 4C, the amorphous silicon layer 203 may be used as a channel layer of a thin film transistor. Pattern it into island shapes so that it Thereafter, after forming the gate insulating film 207 made of silicon nitride film or silicon oxide film on the entire surface including the island-shaped polycrystalline silicon layer 206, after laminating a double metal layer of AlNd and Mo on the gate insulating film, Patterning forms a gate electrode 208 and a gate line (not shown) of the thin film transistor.

이후, 도 4d에 도시한 바와 같이, 상기 게이트 전극(208)을 마스크로 상기 다결정 실리콘층(206)에 n+ 이온을 주입하여 소스/드레인 영역을 형성하고 활성화시킨 후, 상기 게이트 전극(208) 및 게이트 라인을 포함한 전면에 층간절연막(209)을 형성한다.Thereafter, as shown in FIG. 4D, n + ions are implanted into the polycrystalline silicon layer 206 using the gate electrode 208 as a mask to form and activate a source / drain region, and then the gate electrode 208 and An interlayer insulating film 209 is formed on the entire surface including the gate line.

이어, 도 4e에 도시한 바와 같이, 상기 n+ 이온이 주입된 다결정 실리콘층(206)의 소스/드레인 영역의 소정부위가 노출되도록 층간절연막(209) 및 게이트 절연막(207)을 차례로 제거하여 비아 홀을 형성한 후, 상기 비아 홀이 충분히 채워지도록 AlNd, Mo의 이중의 금속막을 형성한 다음 패터닝하여 박막트랜지스터의 소스 전극(210)과 드레인 전극(211)을 형성한다.Subsequently, as shown in FIG. 4E, the interlayer insulating film 209 and the gate insulating film 207 are sequentially removed so that a predetermined portion of the source / drain region of the polysilicon layer 206 implanted with the n + ion is exposed. After the formation, the AlNd and Mo double metal films are formed to sufficiently fill the via holes, and then patterned to form the source electrode 210 and the drain electrode 211 of the thin film transistor.

이후, 도 4f에 도시한 바와 같이, 상기 소스/드레인 전극(210, 211)을 포함한 전면에 실리콘 질화막 재질의 제 1 보호막(212)과 BCB(Benzocyclobutene) 재질의 제 2 보호막(213을 차례로 적층한 후, 상기 드레인 전극(211)이 노출되도록 콘택홀을 형성한다.Thereafter, as shown in FIG. 4F, the first protective layer 212 made of silicon nitride and the second protective layer 213 made of BCB (Benzocyclobutene) are sequentially stacked on the entire surface including the source / drain electrodes 210 and 211. Thereafter, a contact hole is formed to expose the drain electrode 211.

이후, 상기 콘택홀을 포함한 기판 전면에 투명도전막 예컨대, ITO(Indium Tin Oxide)를 형성한 후, 패터닝하여 상기 콘택홀을 통해 드레인 전극(211)과 전기적으로 연결되는 화소전극(214)을 형성한다.Thereafter, a transparent conductive film such as indium tin oxide (ITO) is formed on the entire surface of the substrate including the contact hole, and then patterned to form a pixel electrode 214 electrically connected to the drain electrode 211 through the contact hole. .

이후, 도면에 도시되지 않았지만, 상기 제 1 기판(201a)과 대향되는 제 2 기판 사이에 액정층을 형성하면 본 발명에 따른 액정표시장치 제조공정이 완료된다.Subsequently, although not shown in the drawings, a liquid crystal layer is formed between the first substrate 201a and the second substrate opposite to the manufacturing process of the liquid crystal display device according to the present invention.

여기서, 상기 제 2 기판에는 색상을 표현하기 위한 칼라필터층이 형성되고, 상기 제 1 기판(201a) 상에 형성된 박막트랜지스터와 게이트 라인 및 데이터 라인으로 빛이 투과되는 것을 방지하기 위한 블랙매트릭스 패턴이 형성되며, 상기 화소전극(214)과 함께 액정층에 전기적 신호를 인가하는 공통전극이 형성된다.Here, a color filter layer for expressing color is formed on the second substrate, and a black matrix pattern is formed to prevent light from being transmitted to the thin film transistor, the gate line, and the data line formed on the first substrate 201a. The common electrode for applying an electrical signal to the liquid crystal layer is formed together with the pixel electrode 214.

이상 상술한 바와 같이, 본 발명의 다결정화 방법 및 이를 이용한 박막트랜지스터 및 액정표시장치 제조방법은 다음과 같은 효과가 있다.As described above, the polycrystallization method of the present invention and a method of manufacturing a thin film transistor and a liquid crystal display device using the same have the following effects.

금속 포집층을 이용하여 금속량을 제어할 수 있게 되어, 종래의 미반응 금속으로 인한 여러 문제점을 일소할 수 있는 장점 및 결정화 반응에 필요한 적정량의 금속을 제공할 수 있게 된다.It is possible to control the amount of metal using the metal collecting layer, it is possible to provide the advantages of eliminating various problems due to the conventional unreacted metal and the appropriate amount of metal required for the crystallization reaction.

Claims (12)

절연기판 상에 버퍼층을 형성하는 단계;Forming a buffer layer on the insulating substrate; 상기 버퍼층 상에 비정질 실리콘층을 형성하는 단계;Forming an amorphous silicon layer on the buffer layer; 상기 비정질 실리콘층 상에 금속박막층을 형성하는 단계;Forming a metal thin film layer on the amorphous silicon layer; 상기 금속박막층 상에 금속 포집층을 형성하는 단계;Forming a metal collecting layer on the metal thin film layer; 상기 금속박막층에 전계를 인가함과 동시에 기판을 열처리하여 상기 비정질 실리콘층을 다결정 실리콘으로 결정화하는 단계를 포함하여 이루어지는 것을 특징으로 하는 다결정화 방법.And applying an electric field to the metal thin film layer and simultaneously heat treating the substrate to crystallize the amorphous silicon layer into polycrystalline silicon. 제 1 항에 있어서, 상기 금속박막층의 증착량은 단위 체적당 원자개수로 환산하면 1×1018(원자개수)/cm3정도인 것을 특징으로 하는 다결정화 방법.The polycrystallization method according to claim 1, wherein the deposition amount of the metal thin film layer is about 1 × 10 18 (atomic number) / cm 3 in terms of the number of atoms per unit volume. 제 1 항에 있어서, 상기 금속박막층은 크롬(Cr), 팔라듐(Pd), 니켈(Ni), 백금(Pt) 중 어느 하나로 형성하는 것을 특징으로 하는 다결정화 방법.The polycrystallization method according to claim 1, wherein the metal thin film layer is formed of any one of chromium (Cr), palladium (Pd), nickel (Ni), and platinum (Pt). 제 1 항에 있어서, 상기 금속 포집층은 인(P) 이온이 도핑된 비정질 실리콘으로 형성하거나 또는 SiH4과 PH3가스를 이용한 n+ 비정질 실리콘층으로 형성하는 것을 특징으로 하는 다결정화 방법.The polycrystallization method of claim 1, wherein the metal collection layer is formed of amorphous silicon doped with phosphorus (P) ions or an n + amorphous silicon layer using SiH 4 and PH 3 gas. 제 1 항에 있어서, 상기 비정질 실리콘을 결정화하는 단계는,The method of claim 1, wherein crystallizing the amorphous silicon, 상기 금속박막층에 인가되는 전압이 약 10∼500V/cm , 인가하는 시간이 약 15∼300분, 열처리 온도는 400∼600℃의 범위에서 이루어지는 것을 특징으로 하는 다결정화 방법.The voltage applied to the metal thin film layer is about 10 to 500V / cm, the time to apply is about 15 to 300 minutes, the heat treatment temperature is in the range of 400 to 600 ℃ polycrystalline crystal method. 제 1 기판과 제 2 기판을 준비하는 공정과,Preparing a first substrate and a second substrate, 상기 제 1 기판 상에 버퍼층을 형성하는 공정과,Forming a buffer layer on the first substrate; 상기 버퍼층 상에 비정질 실리콘층을 형성하는 공정과,Forming an amorphous silicon layer on the buffer layer; 상기 비정질 실리콘층 상에 금속박막층을 형성하는 공정과,Forming a metal thin film layer on the amorphous silicon layer; 상기 금속박막층 상에 금속포집층을 형성하는 공정과,Forming a metal collecting layer on the metal thin film layer; 상기 금속박막층에 전계를 인가함과 동시에 기판을 열처리하여 상기 비정질 실리콘층을 결정화하는 공정과,Applying an electric field to the metal thin film layer and simultaneously heat treating the substrate to crystallize the amorphous silicon layer; 상기 비정질 실리콘층을 결정화한 후, 섬 모양의 반도체층을 형성하는 공정과,Crystallizing the amorphous silicon layer, and then forming an island-like semiconductor layer; 상기 반도체층을 포함한 전면에 게이트 절연막을 형성하는 공정과,Forming a gate insulating film on the entire surface including the semiconductor layer; 상기 게이트 절연막 상의 소정부위에 게이트 전극 및 게이트 라인들을 형성하는 공정과,Forming gate electrodes and gate lines at predetermined portions on the gate insulating film; 상기 반도체층에 이온을 도핑하여 소스/드레인 영역을 형성하는 공정과,Forming a source / drain region by doping ions in the semiconductor layer; 상기 반도체층을 활성화시키는 공정과,Activating the semiconductor layer; 상기 반도체층과 게이트 전극 상에 층간절연막을 형성한 후, 상기 소스/드레인 영역의 일부를 노출시키는 공정과,Forming an interlayer insulating film on the semiconductor layer and the gate electrode, and then exposing a portion of the source / drain region; 상기 노출된 반도체층과 연결되도록 소스/드레인 전극 및 데이터 라인들을 형성하는 공정과,Forming source / drain electrodes and data lines to be connected to the exposed semiconductor layer; 상기 드레인 전극과 전기적으로 연결되는 화소전극을 형성하는 공정과,Forming a pixel electrode electrically connected to the drain electrode; 상기 제 1 기판과 제 2 기판 사이에 액정층을 형성하는 공정을 포함하여 이루어지는 것을 특징으로 하는 액정표시장치 제조방법.And forming a liquid crystal layer between the first substrate and the second substrate. 제 6 항에 있어서, 상기 금속박막층은 크롬(Cr), 팔라듐(Pd), 니켈(Ni), 백금(Pt) 중 어느 하나로 형성하는 것을 특징으로 하는 액정표시장치 제조방법.The method of claim 6, wherein the metal thin film layer is formed of any one of chromium (Cr), palladium (Pd), nickel (Ni), and platinum (Pt). 제 6 항에 있어서, 상기 금속박막층의 증착량은 단위 체적당 원자개수로 환산하면 1×1018(원자개수)/cm3정도인 것을 특징으로 하는 액정표시장치 제조방법.The method of claim 6, wherein the deposition amount of the metal thin film layer is about 1 × 10 18 (atomic number) / cm 3 in terms of the number of atoms per unit volume. 제 6 항에 있어서, 상기 비정질 실리콘을 결정화하는 공정은,The method of claim 6, wherein the step of crystallizing the amorphous silicon, 상기 금속박막층에 인가되는 전압이 약 10∼500V/cm , 인가하는 시간이 약 15∼300분, 열처리 온도는 400∼600℃의 범위에서 이루어지는 것을 특징으로 하는 액정표시장치 제조방법.And a voltage applied to the metal thin film layer is about 10 to 500 V / cm, an application time is about 15 to 300 minutes, and a heat treatment temperature is in a range of 400 to 600 ° C. 제 6 항에 있어서, 상기 소스/드레인 전극은 AlNd, Mo의 이중층으로 형성하는 것을 특징으로 하는 액정표시장치 제조방법.The method of claim 6, wherein the source / drain electrodes are formed of a double layer of AlNd and Mo. 제 6 항에 있어서, 상기 금속 포집층은 인(P) 이온이 도핑된 비정질 실리콘으로 형성하거나 또는 SiH4과 PH3가스를 이용한 n+ 비정질 실리콘층으로 형성하는 것을 특징으로 하는 액정표시장치 제조방법.The method of claim 6, wherein the metal collecting layer is formed of amorphous silicon doped with phosphorus (P) ions or an n + amorphous silicon layer using SiH 4 and PH 3 gases. 제 6 항에 있어서,The method of claim 6, 상기 소스/드레인 전극을 포함한 전면에 실리콘 질화막과 BCB의 이중절연막을 형성하는 공정과,Forming a silicon nitride film and a double insulating film of BCB on the entire surface including the source / drain electrodes; 상기 이중절연막을 일부 식각하여 드레인 전극을 노출시켜서 상기 화소전극과 전기적으로 연결하는 공정을 더 포함하여 이루어지는 것을 특징으로 하는 액정표시장치 제조방법.And partially connecting the pixel electrode to the pixel electrode by partially etching the double insulating layer to expose the drain electrode.
KR10-2001-0028959A 2001-05-25 2001-05-25 Process for crystallizing amorphous silicon and its application - fabricating method of TFT-LCD KR100425156B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-2001-0028959A KR100425156B1 (en) 2001-05-25 2001-05-25 Process for crystallizing amorphous silicon and its application - fabricating method of TFT-LCD
US10/140,288 US6695955B2 (en) 2001-05-25 2002-05-08 Method of forming polycrystalline silicon for liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0028959A KR100425156B1 (en) 2001-05-25 2001-05-25 Process for crystallizing amorphous silicon and its application - fabricating method of TFT-LCD

Publications (2)

Publication Number Publication Date
KR20020090429A true KR20020090429A (en) 2002-12-05
KR100425156B1 KR100425156B1 (en) 2004-03-30

Family

ID=27706451

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0028959A KR100425156B1 (en) 2001-05-25 2001-05-25 Process for crystallizing amorphous silicon and its application - fabricating method of TFT-LCD

Country Status (1)

Country Link
KR (1) KR100425156B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488959B1 (en) * 2002-03-08 2005-05-11 비오이 하이디스 테크놀로지 주식회사 METHOD OF MANUFACTURE POLYCRYSTALLINE Si TFT
KR101012794B1 (en) * 2003-12-04 2011-02-08 삼성전자주식회사 Forming method of polycrystalline silicon
US8044401B2 (en) 2007-06-27 2011-10-25 Samsung Mobile Display Co., Ltd. Thin film transistor, method of fabricating the same, organic light emitting diode display device including the same and method of fabricating the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2830705B2 (en) * 1993-07-22 1998-12-02 日本電気株式会社 Method for manufacturing semiconductor device
KR0154195B1 (en) * 1994-12-23 1998-10-15 김주용 Storage electrode fabrication method of semiconductor device
JP2689935B2 (en) * 1995-02-01 1997-12-10 日本電気株式会社 Semiconductor thin film forming method
JP4180689B2 (en) * 1997-07-24 2008-11-12 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR100347519B1 (en) * 1999-10-22 2002-08-07 한국전자통신연구원 Method of low temperature growth of a semiconductor film
KR20020027775A (en) * 2000-10-05 2002-04-15 장 진 Metal induced crystallization method of P-doped amorphous silicon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488959B1 (en) * 2002-03-08 2005-05-11 비오이 하이디스 테크놀로지 주식회사 METHOD OF MANUFACTURE POLYCRYSTALLINE Si TFT
KR101012794B1 (en) * 2003-12-04 2011-02-08 삼성전자주식회사 Forming method of polycrystalline silicon
US8044401B2 (en) 2007-06-27 2011-10-25 Samsung Mobile Display Co., Ltd. Thin film transistor, method of fabricating the same, organic light emitting diode display device including the same and method of fabricating the same

Also Published As

Publication number Publication date
KR100425156B1 (en) 2004-03-30

Similar Documents

Publication Publication Date Title
US5424230A (en) Method of manufacturing a polysilicon thin film transistor
JP4802364B2 (en) Semiconductor layer doping method, thin film semiconductor device manufacturing method, and semiconductor layer resistance control method
US20030013278A1 (en) Method for crystallizing amorphous film and method for fabricating LCD by using the same
US20010000154A1 (en) Thin film type monolithic semiconductor device
US20030180990A1 (en) Method of fabricating polysilicon thin film transistor
JPH0758339A (en) Semiconductor device and its production
US6541323B2 (en) Method for fabricating polysilicon thin film transistor
US6695955B2 (en) Method of forming polycrystalline silicon for liquid crystal display device
KR100525436B1 (en) Process for crystallizing amorphous silicon and its application - fabricating method of TFT-LCD
KR100662492B1 (en) Crystallizatiion Method And Method For Fabricating Liquid Crystal Display Device By Using Said Method
KR100425156B1 (en) Process for crystallizing amorphous silicon and its application - fabricating method of TFT-LCD
KR100421907B1 (en) Process for crystallizing amorphous silicon and its application - fabricating method of TFT-LCD
KR100442289B1 (en) Process for crystallizing amorphous silicon and fabricating method of liquid crystal display device
KR100504538B1 (en) Method For Crystallizing Amorphous Layer And Method For Fabricating Liquid Crystal Display Device By Using Said Method
KR20000052006A (en) Thin film transistor with polycrystalline/amorphous double active layers
KR100525434B1 (en) Process for crystallizing amorphous silicon and its application - fabricating method of TFT-LCD
KR100525435B1 (en) Process for crystallizing amorphous silicon and its application - fabricating method of TFT-LCD
KR100421906B1 (en) Process for crystallizing amorphous silicon and its application - fabricating method of TFT-LCD
KR100434314B1 (en) Process for crystallizing amorphous silicon and its application - fabricating method of TFT-LCD
KR100489167B1 (en) Thin film transistor and its manufacturing method
KR100934328B1 (en) Polycrystalline silicon thin film transistor having a lower gate and manufacturing method thereof
KR101031702B1 (en) Fabrication method of liquid crystal display device using metal induced crystallization
KR100796613B1 (en) Poly silicon crystallization method using laser and fabricating method for thin film transistor using the same
KR100452443B1 (en) Method for fabricating of poly silicon Thin film transistor
KR0166910B1 (en) Method for fabricating lcd-tft

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121228

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131227

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150227

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160226

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180213

Year of fee payment: 15