KR20020055118A - A method for forming capacitor in semiconductor device - Google Patents

A method for forming capacitor in semiconductor device Download PDF

Info

Publication number
KR20020055118A
KR20020055118A KR1020000084475A KR20000084475A KR20020055118A KR 20020055118 A KR20020055118 A KR 20020055118A KR 1020000084475 A KR1020000084475 A KR 1020000084475A KR 20000084475 A KR20000084475 A KR 20000084475A KR 20020055118 A KR20020055118 A KR 20020055118A
Authority
KR
South Korea
Prior art keywords
capacitor
film
layer
lower electrode
forming
Prior art date
Application number
KR1020000084475A
Other languages
Korean (ko)
Other versions
KR100520447B1 (en
Inventor
정경철
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR10-2000-0084475A priority Critical patent/KR100520447B1/en
Publication of KR20020055118A publication Critical patent/KR20020055118A/en
Application granted granted Critical
Publication of KR100520447B1 publication Critical patent/KR100520447B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/84Electrodes with an enlarged surface, e.g. formed by texturisation being a rough surface, e.g. using hemispherical grains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/65Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/90Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions
    • H01L28/91Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions made by depositing layers, e.g. by depositing alternating conductive and insulating layers

Abstract

PURPOSE: A method for fabricating a capacitor of a semiconductor device is provided to maximize the surface area of the lower electrode of ruthenium without increasing the height of a capacitor structure, and to guarantee stable capacitance by preventing oxygen from being diffused from the lower electrode of ruthenium to a capacitor lower structure like a polysilicon plug and a barrier metal layer. CONSTITUTION: A lower layer having a predetermined conductive structure and a predetermined insulation structure is formed on a semiconductor substrate. A buffer layer is formed on the lower layer. A chemical vapor deposition(CVD) process is performed to form a ruthenium layer for a lower electrode on the buffer layer. A heat treatment process is performed to cause crystallization and conglomeration of the ruthenium layer for the lower electrode so that the ruthenium layer for the lower electrode is transformed into a hemispherical shape. A dielectric thin film(18) and an upper electrode are formed.

Description

반도체 소자의 캐패시터 형성방법{A method for forming capacitor in semiconductor device}A method for forming capacitor in semiconductor device

본 발명은 반도체 제조 기술에 관한 것으로, 특히 반도체 소자 제조 공정 중 캐패시터 형성 공정에 관한 것이며, 더 자세히는 Ru 하부전극을 사용한 반도체 소자의 캐패시터 형성 공정에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to semiconductor manufacturing technology, and more particularly, to a capacitor forming process in a semiconductor device manufacturing process, and more particularly, to a capacitor forming process of a semiconductor device using a Ru bottom electrode.

반도체 메모리 소자의 고집적화에 따라 동일 레이아웃 면적에서 보다 큰 캐패시턴스를 확보하기 위한 노력이 계속되고 있다.As semiconductor memory devices become more integrated, efforts have been made to secure larger capacitances in the same layout area.

캐패시터의 캐패시턴스는 유전율(ε) 및 전극의 유효 표면적에 비례하고, 전극간 거리에 반비례하기 때문에, 종래에는 주로 캐패시터 하부전극의 표면적을 확보하거나 유전체의 박막화로 전극간 거리를 최소화하는 방향으로 많은 연구가 진행되어 왔다. 그러나, 이 중 유전체의 박막화는 누설전류 증가를 수반하는 문제점이 있으며, 이에 따라 캐패시터 구조를 플라나 스택(Planar stack), 콘케이브(Concave), 실린더(cylinder)와 같은 3차원 구조로 형성하여 캐패시터의 유효 표면적을 증대시키는 방법을 주로 사용하여 왔다.Since the capacitance of the capacitor is proportional to the dielectric constant (ε) and the effective surface area of the electrode, and is inversely proportional to the distance between the electrodes, conventionally, many studies have been conducted mainly to secure the surface area of the capacitor lower electrode or to minimize the distance between electrodes by thinning the dielectric. Has been going on. However, thinning of the dielectric has a problem of increasing leakage current. Accordingly, the capacitor structure is formed into a three-dimensional structure such as a planar stack, a concave, and a cylinder to form a capacitor. The method of increasing the effective surface area has been mainly used.

그러나, 반도체 소자의 고집적화에 수반되는 디자인 룰의 축소에 따라 이러한 구조적인 개선을 통해 캐패시턴스를 확보하는 방법은 공정 상에 한계에 직면하게 되었다.However, with the reduction of design rules associated with high integration of semiconductor devices, the method of securing capacitance through such structural improvements has faced limitations in the process.

이에 따라, 현재는 기존의 유전체 재료인 NO(nitride/oxide) 박막을 Ta205, BST 등의 고유전체 박막이나 SBT,PZT, BLT와 같은 강유전체 박막으로 대체하는 방향으로 연구가 진행되고 있다.Accordingly, research is currently being conducted in the direction of replacing a conventional dielectric material NO (nitride / oxide) thin film with a high dielectric thin film such as Ta 2 O 5 , BST, or a ferroelectric thin film such as SBT, PZT, or BLT.

이와 같이 고유전체 박막이나 강유전체 박막을 사용하는 경우, 유전체 특성을 확보하기 위해서는 상/하부전극 및 주변 공정의 최적화가 이루어져야 하며, 이에 따라 상/하부전극 재료로 Ru, Pt, Ir 등의 노블 메탈(noble metal)을 사용하고 있다. 이 중에서도 Ru는 산화시에도 전도성을 유지하는 특성이 있어 대표적인 하부전극 재료로 사용되고 있다.As such, when using a high dielectric film or a ferroelectric thin film, top and bottom electrodes and peripheral processes should be optimized in order to secure dielectric properties. As a result, top and bottom electrode materials such as Ru, Pt, Ir, etc. noble metal) is used. Among these, Ru is used as a representative lower electrode material because it has a property of maintaining conductivity even during oxidation.

그런데, 상기와 같이 고유전율을 가지는 유전체 박막을 사용하더라도 향후의 초고집적 소자에 부응하는 캐패시턴스를 얻기 힘들어지게 될 것은 자명하며, 이를 위해 캐패시터 구조의 높이를 증가시키는 것은 후속 공정을 더욱 어렵게 만드는 문제를 수반한다.However, even when using a dielectric film having a high dielectric constant as described above, it is obvious that it will be difficult to obtain a capacitance that corresponds to future ultra-high density devices, and for this purpose, increasing the height of the capacitor structure makes the subsequent process more difficult. Entails.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 제안된 것으로, 특히 Ru 하부전극을 사용하여 캐패시터 구조의 높이를 증가시키지 않으면서 캐패시턴스를 확보할 수 있는 반도체 소자의 캐패시터 형성방법을 제공하는데 그 목적이 있다.The present invention has been proposed to solve the above problems of the prior art, and in particular, it provides a method of forming a capacitor of a semiconductor device capable of securing the capacitance without increasing the height of the capacitor structure using the Ru lower electrode. There is a purpose.

도 1a 내지 도 1e는 본 발명의 일 실시예에 따른 콘케이브(concave) 캐패시터 형성 공정도.1A-1E are process diagrams of forming a concave capacitor in accordance with one embodiment of the present invention.

도 2a는 증착 직후의 CVD Ru막의 주사전자현미경(SEM) 사진.2A is a scanning electron microscope (SEM) photograph of the CVD Ru film immediately after deposition.

도 2b는 후열처리에 의해 형성된 클러스터드 Ru막의 주사전자현미경 사진.2B is a scanning electron micrograph of a clustered Ru film formed by a post heat treatment.

도 3a는 증착 직후의 CVD Ru막의 AES 분석 결과를 나타낸 도면.3A shows the results of AES analysis of a CVD Ru film immediately after deposition.

도 3b는 산소 환원 분위기에서 후열처리를 실시한 후의 CVD Ru막의 AES 분석 결과를 나타낸 도면.Fig. 3B is a view showing the result of AES analysis of the CVD Ru film after the post heat treatment in an oxygen reducing atmosphere.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

16 : TiCl4-TiN막16: TiCl 4 -TiN film

17 : 클러스터드(clustered) Ru층17: Clustered Ru Layer

18 : 유전체 박막18: dielectric thin film

19 : 상부전극용 금속막19: metal film for the upper electrode

상기의 기술적 과제를 달성하기 위하여 본 발명은, 반도체 소자의 캐패시터 형성방법에 있어서, 반도체 기판 상에 소정의 도전 구조 및 절연 구조를 구비한 하부층을 형성하는 제1 단계; 상기 하부층 상부에 버퍼층을 형성하는 제2 단계; 화학기상증착 공정을 실시하여 상기 버퍼층 상에 하부전극용 Ru막을 형성하는 제3 단계; 상기 하부전극용 Ru막의 결정화와 응집을 유도하기 위한 열처리를 실시하여 상기 하부전극용 Ru막이 반구 형상으로 변화되도록 하는 제4 단계; 및 유전체 박막 및 상부전극을 형성하는 제5 단계를 포함하여 이루어진다.In order to achieve the above technical problem, the present invention provides a method of forming a capacitor of a semiconductor device, comprising: a first step of forming a lower layer having a predetermined conductive structure and an insulating structure on a semiconductor substrate; Forming a buffer layer on the lower layer; Performing a chemical vapor deposition process to form a Ru film for a lower electrode on the buffer layer; Performing a heat treatment to induce crystallization and agglomeration of the lower electrode Ru film to change the lower electrode Ru film into a hemispherical shape; And a fifth step of forming the dielectric thin film and the upper electrode.

또한, 상기 버퍼층으로 TiCl4-TiN막을 사용하는 것이 바람직하다.In addition, it is preferable to use a TiCl 4 -TiN film as the buffer layer.

또한, 상기 열처리는 500~650℃의 온도에서 급속열처리 방식으로 실시하는 것이 바람직하다.In addition, the heat treatment is preferably carried out in a rapid heat treatment method at a temperature of 500 ~ 650 ℃.

또한, 상기 열처리는 H2/Ar 분위기 또는 NH3분위기에서 실시하는 것이 바람직하다.Further, the heat treatment is preferably carried out in H 2 / Ar atmosphere or an NH 3 atmosphere.

또한, 상기 버퍼층은 100~200Å 두께로 형성하는 것이 바람직하다.In addition, the buffer layer is preferably formed to a thickness of 100 ~ 200Å.

이하, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자가 본 발명을 보다 용이하게 실시할 수 있도록 하기 위하여 본 발명의 바람직한 실시예를 소개하기로 한다.Hereinafter, preferred embodiments of the present invention will be introduced in order to enable those skilled in the art to more easily carry out the present invention.

첨부된 도면 도 1a 내지 도 1e는 본 발명의 일 실시예에 따른 콘케이브(concave) 캐패시터 형성 공정을 도시한 것으로, 이하 이를 참조하여 설명한다.1A to 1E illustrate a process of forming a concave capacitor according to an embodiment of the present invention, which will be described below with reference to the drawings.

우선, 도 1a에 도시된 바와 같이 실리콘 기판(10) 상에 소정의 절연 구조 및도전 구조를 가지는 하부층(11)을 형성한다. 하부층(11)에는 워드라인, 비트라인 및 다수의 층간절연막이 포함되며, 하부전극 콘택 마스크를 사용한 사진 공정 및 층간절연막 식각 공정을 통해 하부전극 콘택홀을 형성한다. 이어서, 전체 구조 상부에 폴리실리콘막을 증착하고, 이를 에치백하여 하부전극 콘택홀 내에 폴리실리콘 플러그(12)를 형성한 다음, 전체 구조 상부에 장벽금속막(13)을 증착하고, 이를 에치백하여 폴리실리콘 플러그(12) 상부에 잔류시킨다.First, as shown in FIG. 1A, the lower layer 11 having a predetermined insulating structure and a conductive structure is formed on the silicon substrate 10. The lower layer 11 includes a word line, a bit line, and a plurality of interlayer insulating layers, and forms a lower electrode contact hole through a photo process using a lower electrode contact mask and an interlayer insulating layer etching process. Subsequently, a polysilicon film is deposited on the entire structure and etched back to form a polysilicon plug 12 in the lower electrode contact hole, and then a barrier metal film 13 is deposited on the entire structure and etched back. The polysilicon plug 12 remains on top.

다음으로, 도 1b에 도시된 바와 같이 전체 구조 상부에 실리콘질화막(14) 및 희생산화막(15)을 증착한다.Next, as shown in FIG. 1B, a silicon nitride film 14 and a sacrificial oxide film 15 are deposited on the entire structure.

이어서, 도 1c에 도시된 바와 같이 전하저장 전극 마스크를 사용한 사진 공정 및 식각 공정을 실시하여 전하저장 전극 형성 영역을 디파인하고, 전체 구조 표면을 따라 TiCl4-TiN막(16)을 100~200Å 두께로 증착한다. 이때, TiCl4-TiN막(16)은 산화막과 후속 CVD Ru막 간의 접착성을 개선하고, 후속 CVD Ru막의 스텝 커버리지(step coverage)를 개선하고, 후속 CVD Ru막의 응집으로 생기는 포어(pore)에 대한 전극으로 작용하기 위한 버퍼층으로 증착된 것이다.Subsequently, as shown in FIG. 1C, a photolithography process and an etching process using a charge storage electrode mask are performed to define the charge storage electrode formation region, and the TiCl 4 -TiN film 16 is 100 to 200 Å thick along the entire structure surface. To be deposited. At this time, the TiCl 4 -TiN film 16 improves the adhesion between the oxide film and the subsequent CVD Ru film, improves step coverage of the subsequent CVD Ru film, and improves the pore resulting from aggregation of the subsequent CVD Ru film. It is deposited as a buffer layer to act as an electrode for the.

계속하여, 도 1d에 도시된 바와 같이 Ru(od)3, Ru(etcp)2등의 Ru 전구체를 사용한 화학기상증착 공정을 통해 500Å 정도의 Ru막을 증착하고, 급속열처리(RTP) 방식으로 500~650℃에서 후열처리를 실시하여 Ru막을 결정화와 동시에 응집시켜 반구 형상의 클러스터드(clustered) Ru층(17)을 형성한다. 이때, Ru막 증착 공정은 230~260℃의 저온의 O2분위기에서 수행하며, 후열처리를 NH3분위기 또는 Ar/H2분위기와 같은 산소 환원(reduction) 분위기에서 수행하는 것이 바람직하다.Subsequently, as shown in FIG. 1D, a Ru film of about 500 mV is deposited through a chemical vapor deposition process using Ru precursors such as Ru (od) 3 and Ru (etcp) 2 , and 500 to 500 by rapid thermal treatment (RTP). The post-heat treatment is performed at 650 ° C. to coagulate the Ru film simultaneously with crystallization to form a hemispherical clustered Ru layer 17. At this time, the Ru film deposition process is carried out in a low temperature O 2 atmosphere of 230 ~ 260 ℃, it is preferable to perform the post-heat treatment in an oxygen reduction atmosphere such as NH 3 atmosphere or Ar / H 2 atmosphere.

다음으로, 도 1e에 도시된 바와 같이 유전체 박막(18) 및 상부전극용 금속막(19)을 증착하고, 후속 공정을 진행한다.Next, as shown in FIG. 1E, the dielectric thin film 18 and the metal film 19 for the upper electrode are deposited, and a subsequent process is performed.

첨부된 도면 도 2a는 증착 직후의 CVD Ru막의 주사전자현미경(SEM) 사진이며, 도 2b는 후열처리에 의해 형성된 클러스터드 Ru막의 주사전자현미경 사진으로, 마치 반구형실리콘그레인(HSG)과 같은 형상의 표면 상태가 형성되어 하부전극 표면적이 증가됨을 확인할 수 있다.2A is a scanning electron microscope (SEM) photograph of a CVD Ru film immediately after deposition, and FIG. 2B is a scanning electron microscope photograph of a clustered Ru film formed by a post-heat treatment, and has a shape like a hemispherical silicon grain (HSG). It can be seen that the surface state is formed to increase the lower electrode surface area.

한편, 첨부된 도면 도 3a는 증착 직후의 CVD Ru막의 AES 분석 결과를 나타낸 도면이며, 도 3b는 산소 환원 분위기에서 후열처리를 실시한 후의 CVD Ru막의 AES 분석 결과를 나타낸 도면으로, 산소 환원 분위기에서의 후열처리에 의해 CVD Ru막 증착시 소오스 분해를 돕기 위해 첨가되어 박막 내에 잔류하는 산소가 제거됨을 확인할 수 있다. 이처럼 산소가 제거된 Ru막을 하부전극으로 사용함으로써 산소의 확산에 의한 장벽금속 또는 폴리실리콘 플러그의 산화를 방지할 수 있다.On the other hand, Figure 3a is a view showing the results of the AES analysis of the CVD Ru film immediately after the deposition, Figure 3b is a view showing the results of the AES analysis of the CVD Ru film after the post-heat treatment in the oxygen reduction atmosphere, By post-heat treatment, it is confirmed that the oxygen remaining in the thin film is added to aid source decomposition during CVD Ru film deposition. Thus, by using the oxygen-removed Ru film as the lower electrode, it is possible to prevent the oxidation of the barrier metal or polysilicon plug by the diffusion of oxygen.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes are possible in the art without departing from the technical spirit of the present invention. It will be clear to those of ordinary knowledge.

예컨대, 전술한 실시예에서는 콘케이브 구조의 캐패시터를 일례로 들어 설명하였으나, 본 발명은 단순 스택, 플라나 스택, 실린더 등의 다른 구조를 가지는 캐패시터 형성 공정에도 적용할 수 있다.For example, in the above-described embodiment, a capacitor having a concave structure has been described as an example, but the present invention can also be applied to a capacitor forming process having another structure such as a simple stack, a planar stack, a cylinder, and the like.

전술한 본 발명은 캐패시터 구조의 높이 증가 없이 Ru 하부전극의 표면적을 극대화하고, Ru 하부전극으로부터 캐패시터 하부 구조 즉, 폴리실리콘 플러그 및 장벽금속층으로 산소가 확산되는 것을 방지하여 안정된 캐패시턴스를 확보할 수 있는 효과가 있다.The present invention described above maximizes the surface area of the Ru lower electrode without increasing the height of the capacitor structure, and prevents the diffusion of oxygen from the Ru lower electrode to the capacitor lower structure, that is, the polysilicon plug and the barrier metal layer, thereby ensuring stable capacitance. It works.

Claims (5)

반도체 소자의 캐패시터 형성방법에 있어서,In the method of forming a capacitor of a semiconductor device, 반도체 기판 상에 소정의 도전 구조 및 절연 구조를 구비한 하부층을 형성하는 제1 단계;Forming a lower layer having a predetermined conductive structure and an insulating structure on the semiconductor substrate; 상기 하부층 상부에 버퍼층을 형성하는 제2 단계;Forming a buffer layer on the lower layer; 화학기상증착 공정을 실시하여 상기 버퍼층 상에 하부전극용 Ru막을 형성하는 제3 단계;Performing a chemical vapor deposition process to form a Ru film for a lower electrode on the buffer layer; 상기 하부전극용 Ru막의 결정화와 응집을 유도하기 위한 열처리를 실시하여 상기 하부전극용 Ru막이 반구 형상으로 변화되도록 하는 제4 단계; 및Performing a heat treatment to induce crystallization and agglomeration of the lower electrode Ru film to change the lower electrode Ru film into a hemispherical shape; And 유전체 박막 및 상부전극을 형성하는 제5 단계Fifth Step of Forming Dielectric Thin Film and Upper Electrode 를 포함하여 이루어진 반도체 소자의 캐패시터 형성방법.Capacitor formation method of a semiconductor device comprising a. 제1항에 있어서,The method of claim 1, 상기 버퍼층은,The buffer layer, TiCl4-TiN막인 것을 특징으로 하는 반도체 소자의 캐패시터 형성방법.A method of forming a capacitor of a semiconductor device, characterized in that the TiCl 4 -TiN film. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 상기 열처리는,The heat treatment is, 500~650℃의 온도에서 급속열처리 방식으로 실시하는 것을 특징으로 하는 반도체 소자의 캐패시터 형성방법.A method for forming a capacitor of a semiconductor device, characterized in that the rapid heat treatment at a temperature of 500 ~ 650 ℃. 제3항에 있어서,The method of claim 3, 상기 열처리는,The heat treatment is, H2/Ar 분위기 또는 NH3분위기에서 실시하는 것을 특징으로 하는 반도체 소자의 캐패시터 형성방법.A method of forming a capacitor of a semiconductor device, characterized in that carried out in H 2 / Ar atmosphere or NH 3 atmosphere. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 상기 버퍼층은,The buffer layer, 100~200Å 두께로 형성하는 것을 특징으로 하는 반도체 소자의 캐패시터 형성방법.A capacitor forming method of a semiconductor device, characterized in that formed to a thickness of 100 ~ 200Å.
KR10-2000-0084475A 2000-12-28 2000-12-28 A method for forming capacitor in semiconductor device KR100520447B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0084475A KR100520447B1 (en) 2000-12-28 2000-12-28 A method for forming capacitor in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0084475A KR100520447B1 (en) 2000-12-28 2000-12-28 A method for forming capacitor in semiconductor device

Publications (2)

Publication Number Publication Date
KR20020055118A true KR20020055118A (en) 2002-07-08
KR100520447B1 KR100520447B1 (en) 2005-10-11

Family

ID=27687869

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0084475A KR100520447B1 (en) 2000-12-28 2000-12-28 A method for forming capacitor in semiconductor device

Country Status (1)

Country Link
KR (1) KR100520447B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100510489B1 (en) * 2001-07-24 2005-08-26 삼성전자주식회사 Method of forming integrated circuit electrodes and capacitors by wrinkling a layer that includes a noble metal oxide, and integrated circuit electrodes and capacitors fabricated thereby
US7700454B2 (en) 2001-07-24 2010-04-20 Samsung Electronics Co., Ltd. Methods of forming integrated circuit electrodes and capacitors by wrinkling a layer that includes a high percentage of impurities

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3396131B2 (en) * 1996-06-28 2003-04-14 三菱電機株式会社 Semiconductor device and manufacturing method thereof
KR19980016024A (en) * 1996-08-26 1998-05-25 김주용 Method for forming capacitor of semiconductor device
KR19990001760A (en) * 1997-06-17 1999-01-15 윤종용 Capacitor and Method of Manufacturing the Same
JPH11121711A (en) * 1997-10-14 1999-04-30 Mitsubishi Electric Corp Manufacture of capacitor, manufacture of semiconductor device capacitor and semiconductor device capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100510489B1 (en) * 2001-07-24 2005-08-26 삼성전자주식회사 Method of forming integrated circuit electrodes and capacitors by wrinkling a layer that includes a noble metal oxide, and integrated circuit electrodes and capacitors fabricated thereby
US7700454B2 (en) 2001-07-24 2010-04-20 Samsung Electronics Co., Ltd. Methods of forming integrated circuit electrodes and capacitors by wrinkling a layer that includes a high percentage of impurities

Also Published As

Publication number Publication date
KR100520447B1 (en) 2005-10-11

Similar Documents

Publication Publication Date Title
KR100737192B1 (en) Method of manufacturing semiconductor devices utilizing under-layer dependency of deposition of capacitor electrode film and semiconductor device
KR0170308B1 (en) High dielectronics capacitor fabrication method
US6599794B2 (en) Method of manufacturing a semiconductor device and semiconductor device
US7732851B2 (en) Method for fabricating a three-dimensional capacitor
KR100227070B1 (en) Capacitor fabricating method
US20030059959A1 (en) Method for fabricating capacitor
US20030003641A1 (en) Method of forming memory device
US6743678B2 (en) Methods for manufacturing semiconductor memory devices
US6501113B2 (en) Semiconductor device with capacitor using high dielectric constant film or ferroelectric film
KR100520447B1 (en) A method for forming capacitor in semiconductor device
US7042034B2 (en) Capacitor
US6306666B1 (en) Method for fabricating ferroelectric memory device
KR100811255B1 (en) Method for fabricating capacitor in semiconductor device
KR100464938B1 (en) A method for forming capacitor using polysilicon plug structure in semiconductor device
KR100533991B1 (en) Manufacturing method of high dielectric capacitor of semiconductor device
KR100200709B1 (en) Ferroelectric capacitor of semiconductor device and method of manufacturing the same
KR100406547B1 (en) Method for fabricating capacitor in semiconductor memory device
KR0168339B1 (en) Capacitor fabrication method
US6670232B2 (en) Providing a conductive material in an opening
KR19980040654A (en) Capacitor Manufacturing Method of Semiconductor Device
KR20020052833A (en) A method for forming capacitor using polysilicon plug structure in semiconductor device
KR100376987B1 (en) Fabricating method for capacitor of semiconductor device
KR100265339B1 (en) Method for forming high dielectric capacitor of semiconductor device
KR20040003967A (en) Method for fabricating capacitor in semiconductor device
KR980012488A (en) Method for manufacturing capacitor with ferroelectric film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100920

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee