KR100376987B1 - Fabricating method for capacitor of semiconductor device - Google Patents

Fabricating method for capacitor of semiconductor device Download PDF

Info

Publication number
KR100376987B1
KR100376987B1 KR10-1999-0063572A KR19990063572A KR100376987B1 KR 100376987 B1 KR100376987 B1 KR 100376987B1 KR 19990063572 A KR19990063572 A KR 19990063572A KR 100376987 B1 KR100376987 B1 KR 100376987B1
Authority
KR
South Korea
Prior art keywords
film
bst
bst film
capacitor
semiconductor device
Prior art date
Application number
KR10-1999-0063572A
Other languages
Korean (ko)
Other versions
KR20010061088A (en
Inventor
김유성
장성근
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR10-1999-0063572A priority Critical patent/KR100376987B1/en
Priority to US09/739,742 priority patent/US20010046716A1/en
Publication of KR20010061088A publication Critical patent/KR20010061088A/en
Application granted granted Critical
Publication of KR100376987B1 publication Critical patent/KR100376987B1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/65Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

본 발명은 반도체 소자의 캐패시터 제조방법에 관한 것으로, 고집적 소자의 캐패시터 제조공정시 고유전율을 갖는 BST((Ba1-xSrx)TiO3)막을 유전체막으로 형성하되, 상기 BST막을 화학기상증착방법으로 2단계에 거쳐 실시하되, 각 증착단계후 저온열처리공정 중의 하나인 UV/O3처리공정을 실시하여 상기 BST막 내에 함유되어 있는 유기물을 제거하고, 상기 BST막 내에 산소를 공급하여 유전 특성이 우수한 BST막을 형성함으로써 캐패시터의 누설전류특성을 향상시키고 충분한 캐패시터의 정전용량을 확보하는 기술이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a capacitor of a semiconductor device, wherein a BST ((Ba 1-x Sr x ) TiO 3 ) film having a high dielectric constant is formed as a dielectric film during a capacitor manufacturing process of a highly integrated device, and the BST film is chemical vapor deposited. The method is carried out in two steps, and after each deposition step, a UV / O 3 treatment process, which is one of low temperature heat treatment processes, is used to remove organic matter contained in the BST film, and oxygen is supplied to the BST film to provide dielectric properties. By forming this excellent BST film, it is a technique of improving the leakage current characteristic of a capacitor and ensuring the capacitance of a sufficient capacitor.

Description

반도체소자의 캐패시터 제조방법{Fabricating method for capacitor of semiconductor device}Fabrication method for capacitor of semiconductor device

본 발명은 반도체 소자의 캐패시터 제조방법에 관한 것으로, 특히 고유전율을 갖는 유전막인 BST((Ba1-xSrx)TiO3)막을 2단계로 증착하고, 증착된 각각의 BST막을 저온열처리하여 BST막의 전기적 특성을 향상시키는 반도체소자의 캐패시터 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a capacitor of a semiconductor device, and in particular, a BST ((Ba 1-x Sr x ) TiO 3 ) film, which is a dielectric film having a high dielectric constant, is deposited in two steps, and each of the deposited BST films is subjected to low temperature heat treatment to BST. A method of manufacturing a capacitor of a semiconductor device for improving the electrical properties of the film.

반도체소자가 고집적화됨에 따라 소자의 동작에 필요한 최소한의 저장전극의 용량은 줄어드는데 한계가 있다. 이에 작은 면적에 최소한의 저장전극 용량(C)을 확보하기 위하여 많은 노력을 기울이고 있다. 저장전극 용량은 유전율(ε)과 저장전극 표면적(A)에 비례하고 유전막 두께(d)에 반비례하므로 저장전극의 용량을 증가시키는 방법으로는 여러가지가 있을 수 있지만, 그 중에서 유전율이 큰 물질인 BST((Ba1-xSrx)TiO3, 이하 BST 라 함 ), PZT(Pb(ZrTi1-x)O3), Ta2O5등을 이용하여 저장전극 용량을 증가시키는 방법이 현재 많이 연구되고 있다.As semiconductor devices are highly integrated, the capacity of the minimum storage electrode required for the operation of the device is limited. In order to secure a minimum storage electrode capacity (C) in a small area has been put a lot of effort. Since the storage electrode capacity is proportional to the dielectric constant (ε) and the storage electrode surface area (A) and inversely proportional to the dielectric film thickness (d), there are various ways to increase the capacity of the storage electrode. ((Ba 1-x Sr x ) TiO 3 , hereinafter referred to as BST), PZT (Pb (ZrTi 1-x ) O 3 ), Ta 2 O 5, etc. to increase storage electrode capacity It is becoming.

상기 유전율이 큰 물질중에서도 상기 BST막은 기존의 DRAM용 유전체물질인 ONO막보다 20배 이상, Ta2O5막 보다는 약 10배 정도의 유전율을 가지므로 4G 이상의 고집적도가 요구되는 DRAM의 유전체물질로 유리하다.Among the materials having a high dielectric constant, the BST film has a dielectric constant of 20 times or more than an ONO film, which is a conventional dielectric material for DRAM, and about 10 times that of a Ta 2 O 5 film, and thus is a dielectric material of DRAM requiring high density of 4G or more. It is advantageous.

상기와 같은 BST막의 제조방법은 물리기상증착(physical vapor deposition, 이하 PVD 라 함)방법과 화학기상증착(chemical vapor deposition, 이하 CVD 라 함)방법으로 크게 나누어지고, 상기 PVD방법으로는 플라즈마 스퍼터링(plasma sputtering)방법이 주로 사용되는 이렇게 형성된 박막은 조성비가 우수하고, 조밀한 성질을 갖는다. 그러나, 상기 플라즈마 스퍼터링방법은 강한 직진성을 가진 플럭스(flux)를 형성하기 때문에 스텝커버리지(step coverage)가 매우 불량하다.The BST film manufacturing method is classified into physical vapor deposition (PVD) method and chemical vapor deposition (CVD) method, and plasma sputtering (PVD) method is used as the PVD method. The thin film thus formed, which is mainly used for the plasma sputtering method, has an excellent composition ratio and has dense properties. However, the plasma sputtering method has very poor step coverage because it forms a flux having a strong straightness.

이에 비하여 상기 CVD방법은 액체나 고체 소오스(source)를 기화(vaporization)시켜 박막을 제조하는 방법으로서 상기 PVD방법에 비하여 스텝커버리지가 양호한 특성을 가지고, 이렇게 형성된 BST막은 후속 열처리공정에 의해 유전특성과 누설전류특성이 매우 향상된다.In contrast, the CVD method is a method of manufacturing a thin film by vaporizing a liquid or solid source, and has better step coverage than that of the PVD method. Leakage current characteristics are greatly improved.

상기 BST막을 캐패시터에 적용하기 위해서는 Tox(effective oxide thickness)가 5 ∼ 10Å으로 형성되고, 누설전류는 0.1fA/㎛2이하가 되어야 한다. 그러나 CVD방법으로 BST막을 증착하는 경우 금속(metal-organic) 소오스에 탄소, 수소와 같은 유기물이 다량 포함되어 있고, 박막의 결정성도 나빠 소자에 적용하기 위해서는 반드시 열처리공정을 거쳐야 한다.이러한 후속 열처리공정은 450℃ 이하에서 실시되는 저온열공정으로 산화분위기 하에서 하는 UV/O3처리 또는 플라즈마처리공정과 500℃ 이상에서 하는 고온열처리공정으로 급속열처리(rapidly thermal process, 이하 RTP 라 함)공정 또는 퍼니스(furcace) 열처리공정이 있다.In order to apply the BST film on the capacitor is formed with the 5 ~ 10Å (effective oxide thickness) T ox, the leakage current must be less than 0.1fA / ㎛ 2. However, when depositing a BST film by CVD, a metal-organic source contains a large amount of organic substances such as carbon and hydrogen, and the crystallinity of the thin film is also poor, so that it must be heat-treated to be applied to the device. Is a low temperature heat process carried out at 450 ° C. or lower, and is a UV / O 3 or plasma process under an oxidizing atmosphere and a high temperature heat process at 500 ° C. or higher. furcace) heat treatment process.

상기 UV/O3처리는 산화성이 강한 오존을 이용하여 MOCVD(metal organic chemical mechanical polishing)방법으로 증착된 박막내에 유기물을 제거하고, 박막 내에 산소를 공급해주는 방법이다. 오존은 대단히 불안정한 물질이기 때문에 쉽게 산소로 변하는데 UV는 오존 농도를 최대화시키는 역할을 하게 된다. UV/O3처리는 플라즈마처리에 비해서 공정이 안정적이므로 재현성 측면에서 유리하다.The UV / O 3 treatment is a method of removing organic matter from a thin film deposited by metal organic chemical mechanical polishing (MOCVD) using oxidizing ozone and supplying oxygen into the thin film. Because ozone is a very unstable substance, it easily turns into oxygen, and UV plays a role in maximizing ozone concentration. UV / O 3 treatment is advantageous in terms of reproducibility because the process is more stable than plasma treatment.

한편, DRAM 캐패시터에 사용되는 CVD BST막의 두께는 보통 200 ∼ 400Å 이지만, BST막을 1단계로 증착하고 나서 UV/O3처리를 할 때 BST막의 두께가 300Å 이상 두꺼운 경우에는 UV/O3효과가 떨어져 막 하부에 있는 유기물이 효과적으로 제거되지 않는다.On the other hand, the thickness of the CVD BST film used in the DRAM capacitor is usually 200 to 400 mW, but when the BST film is thicker than 300 mW when UV / O 3 treatment is performed after the BST film is deposited in one step, the UV / O 3 effect is inferior. Organics under the membrane are not effectively removed.

상기 BST막의 저온열처리공정이 끝나면 박막을 치밀하게 하기 위하여 RTP처리공정과 같은 고온열처리공정이 진행된다. 이때, 상기 BST막의 열처리온도가 너무 높으면 금속으로 형성된 하부전극과 BST막의 계면에 금속산화물이 형성되거나 확산방지막이 산화되는 현상이 발생한다. 이렇게 되면 BST를 이용한 캐패시터의 전기적성질의 열화가 나타나고 이로 인하여 동작 전압에서 충분한 정전용량을 확보할 수 없기 때문에 데이터(data)를 저장하는 캐패시터로서 사용하기 어려운 문제점이 있다.After the low temperature heat treatment process of the BST film is finished, a high temperature heat treatment process such as an RTP treatment process is performed to make the thin film. At this time, if the heat treatment temperature of the BST film is too high, a metal oxide is formed at the interface between the lower electrode formed of metal and the BST film, or the diffusion barrier is oxidized. This results in deterioration of the electrical properties of the capacitor using the BST, which is difficult to use as a capacitor for storing data because sufficient capacitance cannot be secured at the operating voltage.

본 발명은 상기한 문제점을 해결하기 위하여, 유전체막인 BST막을 MOCVD방법으로 2단계에 거쳐 증착하되, 각 단계가 끝난 후 UV/O3처리공정을 실시하여 상기 BST막 내에 유기물을 제거하며 산소를 효과적으로 공급함으로써 전기적 특성이 우수한 BST막을 형성하는 반도체소자의 캐패시터 제조방법을 제공하는 데 그 목적이 있다.In order to solve the above problems, the BST film, which is a dielectric film, is deposited in two steps by MOCVD method, and after each step, a UV / O 3 treatment process is performed to remove organic matter and remove oxygen from the BST film. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a capacitor of a semiconductor device in which a BST film having excellent electrical characteristics is formed by supplying effectively.

도 1 은 본 발명에 따른 반도체소자의 캐패시터 제조방법을 도시한 단면도.1 is a cross-sectional view showing a capacitor manufacturing method of a semiconductor device according to the present invention.

< 도면의 주요부분에 대한 부호 설명 ><Explanation of Signs of Major Parts of Drawings>

11 : 저장전극 콘택플러그 13 : 확산방지막11: storage electrode contact plug 13: diffusion barrier

15 : 하부전극 17 : 제1BST막15: lower electrode 17: first BST film

19 : 제2BST막 21 : 상부전극19: second BST film 21: upper electrode

상기 목적을 달성하기 위해 본 발명에 따른 반도체소자의 캐패시터 제조방법은,반도체기판 상의 저장전극 콘택플러그에 접속되는 확산방지막과 하부전극을 형성하는 공정과,전체표면 상부에 제1BST막을 MOCVD 방법으로 형성하는 공정과,상기 제1BST막을 제1UV/O3처리하여 상기 제1BST막 내의 유기물을 제거하며 산소를 제공하는 공정과,상기 제1BST막 상부에 제2BST막을 MOCVD 방법으로 형성하는 공정과,상기 제2BST막을 제2UV/O3처리하여 상기 제2BST막 내의 유기물을 제거하며 산소를 제공하는 공정과,상기 제2BST막과 제1BST막을 급속열처리하여 치밀화된 제1BST막과 제2BST막 적층구조의 유전체막을 형성하는 공정과,상기 유전체막 상부에 상부전극을 형성하는 공정을 포함하는 것과,상기 확산방지막은 TiN/TiSix막의 적층구조로 형성되는 것과,상기 하부전극은 Pt막, Ru막, Ru계 화합물, Ir막, Ir계 화합물 및 도전성을 갖는 산화막으로 이루어지는 군에서 선택되는 임의의 하나로 형성되는 것과,상기 제1BST막과 제2BST막은 400 ∼ 420℃의 온도와 1 ∼ 2 torr의 압력하에서 300 ∼ 1000sccm의 O2또는 N2O를 산화제(oxidant)로 사용하는 MOCVD 방법으로 각각 100 ∼ 200Å 두께 형성되는 것과,상기 제1BST막과 제2BST막은 Ba : Sr : Ti = 0.5 : 0.5 :1의 조성비로 형성되는 것과,상기 제1, 제2UV/O3처리공정은 350 ∼ 450℃에서 100 ∼ 150mW의 UV파워 및 20 ∼ 30mg/Nm의 O3를 이용하여 5 ∼ 20 분간 실시되는 것과,상기 급속열처리공정은 500 ∼ 1000℃의 질소 또는 산소분위기에서 실시되는 것을 특징으로 한다.이하, 첨부된 도면을 참조하여 본 발명에 따른 반도체 소자의 캐패시터 제조방법에 대하여 상세히 설명을 하기로 한다.In order to achieve the above object, a method of manufacturing a capacitor of a semiconductor device according to the present invention includes forming a diffusion barrier layer and a lower electrode connected to a storage electrode contact plug on a semiconductor substrate, and forming a first BST layer on the entire surface of the semiconductor substrate by MOCVD. And removing the organic matter in the first BST film by treating the first BST film with a first UV / O 3 process to provide oxygen, and forming a second BST film on the first BST film by MOCVD. Treating the 2BST film with a second UV / O 3 to remove organic matter in the second BST film and providing oxygen; and rapidly compressing the second BST film and the first BST film to obtain a densified dielectric film of the first BST film and the second BST film stacked structure. Forming a top electrode on the dielectric film, wherein the diffusion barrier layer is formed of a stacked structure of a TiN / TiSi x film, and the bottom electrode is a Pt layer. , Ru film, Ru-based compound, Ir film, Ir-based compound and any one selected from the group consisting of an oxide film having conductivity, wherein the first BST film and the second BST film is a temperature of 400 ~ 420 ℃ and 1-2 The MOCVD method using 300 to 1000 sccm of O 2 or N 2 O as an oxidant under a pressure of torr, respectively, was formed in a thickness of 100 to 200 μm, and the first and second BST films were Ba: Sr: Ti = 0.5: It is formed at a composition ratio of 0.5: 1, and the first and second UV / O 3 treatment steps are performed at 350 to 450 ° C. for 5 to 20 minutes using 100 to 150 mW of UV power and 20 to 30 mg / Nm of O 3 . And, the rapid heat treatment process is characterized in that carried out in a nitrogen or oxygen atmosphere of 500 ~ 1000 ℃. Hereinafter, a method of manufacturing a capacitor of a semiconductor device according to the present invention with reference to the accompanying drawings will be described in detail. do.

도 1 은 본 발명에 따른 반도체소자의 캐패시터 제조방법을 도시한 단면도로서, 저장전극 콘택플러그로부터 상부전극까지의 적층구조를 개략적으로 도시한 것이다.1 is a cross-sectional view illustrating a method of manufacturing a capacitor of a semiconductor device according to the present invention, and schematically illustrates a lamination structure from a storage electrode contact plug to an upper electrode.

먼저, 반도체기판에 소자분리 절연막, 게이트산화막을 형성하고, 게이트 전극 및 소오스/드레인영역을 구비하는 모스 트랜지스터, 비트라인 및 저장전극콘택플러그(11) 등의 하부구조물을 형성한다. 이때, 상기 저장전극콘택플러그(11)는 다결정실리콘층으로 형성된다.First, an isolation layer and a gate oxide layer are formed on a semiconductor substrate, and lower structures such as a MOS transistor, a bit line, and a storage electrode contact plug 11 having a gate electrode and a source / drain region are formed. In this case, the storage electrode contact plug 11 is formed of a polysilicon layer.

다음, 상기 저장전극콘택플러그(11)에 접속되는 확산방지막(13)과 하부전극(15)을 형성한다. 이때, 상기 확산방지막(13)은 상기 하부전극(15)이 상기 저장전극 콘택플러그(11)와 반응하는 것을 방지하기 위하여 TiN막으로 형성하되, 상기 TiN막과 상기 저장전극 콘택플러그의 접촉특성을 향상시키기 위하여 TiN/TiSix막의 적층구조로 형성한다. 상기 하부전극(15)은 Pt막, Ru막, Ru계 화합물, Ir막, Ir계 화합물 또는 도전성을 갖는 산화막을 이용하여 형성한다.Next, the diffusion barrier 13 and the lower electrode 15 connected to the storage electrode contact plug 11 are formed. At this time, the diffusion barrier 13 is formed of a TiN film to prevent the lower electrode 15 from reacting with the storage electrode contact plug 11, and the contact characteristics between the TiN film and the storage electrode contact plug are defined. In order to improve, a TiN / TiSi x film is formed in a laminated structure. The lower electrode 15 is formed using a Pt film, a Ru film, a Ru-based compound, an Ir film, an Ir-based compound, or an oxide film having conductivity.

다음, 상기 하부전극(15) 상부에 유전체막으로 BST막을 형성하되, 상기 BST막은 400 ∼ 420℃의 온도와 1 ∼ 2 torr의 압력하에서 300 ∼ 1000sccm의 O2또는 N2O를 산화제(oxidant)로 사용하여 2단계의 MOCVD방법으로 증착한다. 이때, 상기 BST막의 조성비는 Ba : Sr : Ti = 0.5 : 0.5 :1이 되도록 한다.Next, a BST film is formed as a dielectric film on the lower electrode 15, wherein the BST film is oxidant of 300 to 1000 sccm of O 2 or N 2 O at a temperature of 400 to 420 ° C. and a pressure of 1 to 2 torr. It is deposited using a two-step MOCVD method. At this time, the composition ratio of the BST film is set to Ba: Sr: Ti = 0.5: 0.5: 1.

먼저, 1단계로 상기 하부전극(15) 상부에 제1BST막(17)을 100 ∼ 200Å 두께로 형성한다.First, the first BST film 17 is formed to have a thickness of 100 to 200 Å on the lower electrode 15 in one step.

그 다음, 상기 제1BST막(17)을 UV/O3처리하여 상기 제1BST막(17) 내에 함유되어 있는 유기물을 제거하며 상기 제1BST막(17) 내로 산소를 공급한다.Next, the first BST film 17 is UV / O 3 treated to remove organic matter contained in the first BST film 17 and oxygen is supplied into the first BST film 17.

다음, 2단계로 상기 제1BST막(17) 상부에 제2BST막(19)을 100 ∼ 200Å 두께로 형성하고, 상기 제2BST막(19)을 UV/O3처리하여 박막 내의 유기물을 제거하며 상기 제1BST막(17) 내로 산소를 공급한다.Next, a second BST film 19 is formed on the first BST film 17 to a thickness of 100 to 200 Å in two steps, and the organic matter in the thin film is removed by UV / O 3 treatment of the second BST film 19. Oxygen is supplied into the first BST film 17.

이때, 상기 제1BST막(17) 및 제2BST막(19)에 실시된 UV/O3처리공정은 350 ∼ 450℃에서 100 ∼ 150mW의 UV파워 및 20 ∼ 30mg/Nm의 O3농도를 이용하여 5 ∼ 20 분간 실시한다.In this case, the UV / O 3 treatment process performed on the first BST film 17 and the second BST film 19 is performed using a UV power of 100 to 150 mW and an O 3 concentration of 20 to 30 mg / Nm at 350 to 450 ° C. 5 to 20 minutes.

그 다음, 상기 제1, 제2BST막(17, 19)을 치밀하기 위해서 질소 또는 산소분위기에서 500 ∼ 1000℃의 온도로 급속열처리(RTP)한다.Then, in order to compact the first and second BST films 17 and 19, rapid heat treatment (RTP) is performed at a temperature of 500 to 1000 ° C. in a nitrogen or oxygen atmosphere.

그 후, 상기 제2BST막(19) 상부에 상부전극(21)을 형성한다. 이때, 상기 상부전극(21)은 상기 하부전극(15)과 같은 물질을 사용하여 형성할 수 있다.Thereafter, an upper electrode 21 is formed on the second BST layer 19. In this case, the upper electrode 21 may be formed using the same material as the lower electrode 15.

상기한 바와 같이 본 발명에 따른 반도체 소자의 캐패시터 제조방법은, 고집적 소자의 캐패시터 제조공정 시 고유전율을 갖는 BST막을 유전체막으로 형성하되, 상기 BST막을 화학기상증착방법으로 2단계에 거쳐 실시하되, 각 증착단계후 저온열처리공정 중의 하나인 UV/O3처리공정을 실시하여 상기 BST막 내에 함유되어 있는 유기물을 제거하고, 상기 BST막 내에 산소를 공급하여 유전 특성이 우수한 BST막을 형성함으로써 캐패시터의 누설전류특성을 향상시키고 충분한 캐패시터의 정전용량을 확보하는 이점이 있다.As described above, the method of manufacturing a capacitor of a semiconductor device according to the present invention includes forming a BST film having a high dielectric constant as a dielectric film during a capacitor manufacturing process of a highly integrated device, and performing the BST film through a chemical vapor deposition method in two steps. After each deposition step, a UV / O 3 treatment process, one of the low temperature heat treatment processes, is performed to remove organic substances contained in the BST film, and oxygen is supplied to the BST film to form a BST film having excellent dielectric properties, thereby causing leakage of the capacitor. There is an advantage of improving the current characteristics and ensuring a sufficient capacitance of the capacitor.

Claims (7)

반도체기판 상의 저장전극 콘택플러그에 접속되는 확산방지막과 하부전극을 형성하는 공정과,Forming a diffusion barrier and a lower electrode connected to the storage electrode contact plug on the semiconductor substrate; 전체표면 상부에 제1BST막을 MOCVD 방법으로 형성하는 공정과,Forming a first BST film on the entire surface by MOCVD; 상기 제1BST막을 제1UV/O3처리하여 상기 제1BST막 내의 유기물을 제거하며 산소를 제공하는 공정과,Treating the first BST film with a first UV / O 3 to remove organic matter in the first BST film and providing oxygen; 상기 제1BST막 상부에 제2BST막을 MOCVD 방법으로 형성하는 공정과,Forming a second BST film on the first BST film by MOCVD; 상기 제2BST막을 제2UV/O3처리하여 상기 제2BST막 내의 유기물을 제거하며 산소를 제공하는 공정과,Treating the second BST film with a second UV / O 3 to remove organic matter in the second BST film and providing oxygen; 상기 제2BST막과 제1BST막을 급속열처리하여 치밀화된 제1BST막과 제2BST막 적층구조의 유전체막을 형성하는 공정과,Rapidly heat treating the second BST film and the first BST film to form a densified dielectric film of the first BST film and the second BST film; 상기 유전체막 상부에 상부전극을 형성하는 공정을 포함하는 반도체소자의 캐패시터 제조방법.A method of manufacturing a capacitor of a semiconductor device comprising the step of forming an upper electrode on the dielectric film. 제 1 항에 있어서,The method of claim 1, 상기 확산방지막은 TiN/TiSix막의 적층구조로 형성되는 것을 특징으로 하는 반도체소자의 캐패시터 제조방법.The diffusion barrier is a capacitor manufacturing method of a semiconductor device, characterized in that formed in a stacked structure of TiN / TiSi x film. 제 1 항에 있어서,The method of claim 1, 상기 하부전극은 Pt막, Ru막, Ru계 화합물, Ir막, Ir계 화합물 및 도전성을 갖는 산화막으로 이루어지는 군에서 선택되는 임의의 하나로 형성되는 것을 특징으로 하는 반도체소자의 캐패시터 제조방법.Wherein the lower electrode is formed of any one selected from the group consisting of a Pt film, a Ru film, a Ru-based compound, an Ir film, an Ir-based compound, and an oxide film having conductivity. 제 1 항에 있어서,The method of claim 1, 상기 제1BST막과 제2BST막은 400 ∼ 420℃의 온도와 1 ∼ 2 torr의 압력하에서 300 ∼ 1000sccm의 O2또는 N2O를 산화제(oxidant)로 사용하는 MOCVD 방법으로 각각 100 ∼ 200Å 두께 형성되는 것을 특징으로 하는 반도체소자의 캐패시터 제조방법.The first BST film and the second BST film are each formed by a MOCVD method using 300 to 1000 sccm of O 2 or N 2 O as an oxidant at a temperature of 400 to 420 ° C. and a pressure of 1 to 2 torr. A method for manufacturing a capacitor of a semiconductor device, characterized in that. 제 1 항에 있어서,The method of claim 1, 상기 제1BST막과 제2BST막은 Ba : Sr : Ti = 0.5 : 0.5 :1의 조성비로 형성되는 것을 특징으로 하는 반도체소자의 캐패시터 제조방법.Wherein the first BST film and the second BST film are formed at a composition ratio of Ba: Sr: Ti = 0.5: 0.5: 1. 제 1 항에 있어서,The method of claim 1, 상기 제1, 제2UV/O3처리공정은 350 ∼ 450℃에서 100 ∼ 150mW의 UV파워 및 20 ∼ 30mg/Nm의 O3를 이용하여 5 ∼ 20 분간 실시되는 것을 특징으로 하는 반도체소자의 캐패시터 제조방법.The first and second UV / O 3 treatment steps are performed for 5 to 20 minutes at 350 to 450 ° C. using 100 to 150 mW of UV power and 20 to 30 mg / Nm of O 3 . Way. 제 1 항에 있어서,The method of claim 1, 상기 급속열처리공정은 500 ∼ 1000℃의 질소 또는 산소분위기에서 실시되는 것을 특징으로 하는 반도체소자의 캐패시터 제조방법.The rapid heat treatment process is a capacitor manufacturing method of a semiconductor device, characterized in that carried out in a nitrogen or oxygen atmosphere of 500 ~ 1000 ℃.
KR10-1999-0063572A 1999-12-28 1999-12-28 Fabricating method for capacitor of semiconductor device KR100376987B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-1999-0063572A KR100376987B1 (en) 1999-12-28 1999-12-28 Fabricating method for capacitor of semiconductor device
US09/739,742 US20010046716A1 (en) 1999-12-28 2000-12-20 Method for manufacturing a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0063572A KR100376987B1 (en) 1999-12-28 1999-12-28 Fabricating method for capacitor of semiconductor device

Publications (2)

Publication Number Publication Date
KR20010061088A KR20010061088A (en) 2001-07-07
KR100376987B1 true KR100376987B1 (en) 2003-03-26

Family

ID=19630897

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0063572A KR100376987B1 (en) 1999-12-28 1999-12-28 Fabricating method for capacitor of semiconductor device

Country Status (1)

Country Link
KR (1) KR100376987B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864763A (en) * 1994-08-18 1996-03-08 Oki Electric Ind Co Ltd Capacitor and manufacture thereof
US5605858A (en) * 1994-08-01 1997-02-25 Texas Instruments Incorporated Method of forming high-dielectric-constant material electrodes comprising conductive sidewall spacers of same material as electrodes
JPH1020069A (en) * 1996-06-28 1998-01-23 Ishikawajima Harima Heavy Ind Co Ltd Main steam line plug attaching/removing device
US5731220A (en) * 1994-09-30 1998-03-24 Texas Instruments Incorporated Method of making barium strontium titanate (BST) thin film by erbium donor doping
JPH1098169A (en) * 1996-09-07 1998-04-14 Lg Semicon Co Ltd Manufacture of high-dielectric film and manufacture of capacitor using the same
JPH10200069A (en) * 1997-01-07 1998-07-31 Nec Corp Thin film capacitor
JPH11186509A (en) * 1997-12-18 1999-07-09 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605858A (en) * 1994-08-01 1997-02-25 Texas Instruments Incorporated Method of forming high-dielectric-constant material electrodes comprising conductive sidewall spacers of same material as electrodes
JPH0864763A (en) * 1994-08-18 1996-03-08 Oki Electric Ind Co Ltd Capacitor and manufacture thereof
US5731220A (en) * 1994-09-30 1998-03-24 Texas Instruments Incorporated Method of making barium strontium titanate (BST) thin film by erbium donor doping
JPH1020069A (en) * 1996-06-28 1998-01-23 Ishikawajima Harima Heavy Ind Co Ltd Main steam line plug attaching/removing device
JPH1098169A (en) * 1996-09-07 1998-04-14 Lg Semicon Co Ltd Manufacture of high-dielectric film and manufacture of capacitor using the same
JPH10200069A (en) * 1997-01-07 1998-07-31 Nec Corp Thin film capacitor
JPH11186509A (en) * 1997-12-18 1999-07-09 Hitachi Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
KR20010061088A (en) 2001-07-07

Similar Documents

Publication Publication Date Title
US5440157A (en) Semiconductor integrated-circuit capacitor having a carbon film electrode
KR100269306B1 (en) Integrate circuit device having buffer layer containing metal oxide stabilized by low temperature treatment and fabricating method thereof
USRE41625E1 (en) Semiconductor device and method of fabricating the same
US20020192896A1 (en) Method of manufacturing semiconductor devices utilizing underlayer-dependency of deposition of capacitor electrode film, and semiconductor device
KR20040060443A (en) Capacitor of a semiconductor device and manufacturing method whereof
KR0147655B1 (en) Manufacturing method for capacitor of semiconductor device
JP2001210799A (en) Manufacturing method for capacitor of semiconductor device
KR100417855B1 (en) capacitor of semiconductor device and method for fabricating the same
KR100319171B1 (en) Manufacturing method for capacitor of semiconductor device
KR100505397B1 (en) Method for fabricating capacitor of semiconductor device
KR100405146B1 (en) Process for producing a structured metal oxide-containing layer
US6579755B2 (en) High dielectric capacitor and method of manufacturing the same
KR100376987B1 (en) Fabricating method for capacitor of semiconductor device
KR100607163B1 (en) Ferroelectric Memory Device and Fabrication Method Thereof
KR100282459B1 (en) Manufacturing method of ferroelectric ram capacitor
KR100546151B1 (en) Capacitor Manufacturing Method of Semiconductor Device
KR100614576B1 (en) Method for forming capacitor
KR100268792B1 (en) Capacitor forming method of semiconductor device
KR100464938B1 (en) A method for forming capacitor using polysilicon plug structure in semiconductor device
KR100335773B1 (en) Method of manufacturing a capacitor in a semiconductor device
KR100772685B1 (en) A fabricating method of capacitor
KR20000043578A (en) Manufacturing method of capacitor
KR100580747B1 (en) Method of manufacturing a high dielectric capacitor
KR100347534B1 (en) Method of manufacturing a capacitor in a semiconductor device
KR100265339B1 (en) Method for forming high dielectric capacitor of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090223

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee