KR20020051530A - method of deoxidation of nickel alloy to improve cleanness - Google Patents

method of deoxidation of nickel alloy to improve cleanness Download PDF

Info

Publication number
KR20020051530A
KR20020051530A KR1020000080866A KR20000080866A KR20020051530A KR 20020051530 A KR20020051530 A KR 20020051530A KR 1020000080866 A KR1020000080866 A KR 1020000080866A KR 20000080866 A KR20000080866 A KR 20000080866A KR 20020051530 A KR20020051530 A KR 20020051530A
Authority
KR
South Korea
Prior art keywords
deoxidation
steel
inclusions
invar
titanium
Prior art date
Application number
KR1020000080866A
Other languages
Korean (ko)
Inventor
김동식
이용득
Original Assignee
이구택
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 주식회사 포스코 filed Critical 이구택
Priority to KR1020000080866A priority Critical patent/KR20020051530A/en
Publication of KR20020051530A publication Critical patent/KR20020051530A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0025Charging or loading melting furnaces with material in the solid state
    • F27D3/0026Introducing additives into the melt

Abstract

PURPOSE: A deoxidation method of an invar is provided to achieve the invar having good clearness by deoxidizing the invar with titanium only after a vacuum oxygen decarburization. CONSTITUTION: In the deoxidation method of an invar, namely a specific steel consisting of nickel of 36 percent by weight and iron, with improved clearness, after a decarbonization process in a vacuum oxygen decarburization line of an electric furnace is completed, molten steel is secondarily decarbonated and denitrated, and then the amount of titanium is adjusted in a range of 0.005 to 0.5 percent by weight.

Description

청정도가 개선된 니켈함유강의 탈산방법{method of deoxidation of nickel alloy to improve cleanness}Method for deoxidation of nickel alloy to improve cleanness

본 발명은 인바강(36%Ni-Fe강)중 각종 비금속 개재물(이하 개재물이라고 함)이 존재하거나, 또는 대형개재물(5mm 이상 크기)로 존재하므로서 강의 청정도를 저하시킬 뿐만 아니라, 제품의 물성을 열하시키는 문제를 해결하는 인바강의 탈산방법에 관한 것으로서, 특히 진공정련(VOD: Vacuum Oxygen Decarburization) 종료 후 탈산을 타이타늄만에 의해 실시하고, 그 농도를 0.005% 에서 0.5% 범위내로 조정함으로써 청정도가 우수한 인바강의 탈산방법에 관한 것이다.In the present invention, various non-metallic inclusions (hereinafter referred to as inclusions) in Inva steel (36% Ni-Fe steel) or large inclusions (5 mm or more in size) exist to not only reduce the cleanliness of the steel, but also to improve the physical properties of the product. The method for deoxidation of Inva steel, which solves the problem of deterioration, is particularly excellent in cleanliness by performing deoxidation with only titanium and adjusting its concentration within the range of 0.005% to 0.5% after completion of Vacuum Oxygen Decarburization (VOD). It relates to a deoxidation method of Inba River.

일반적으로 제강공정에서 탈산방법별 인바강 주편 및 그 냉연제품 중 개재물 크기 분포를 살펴보면 표 1과 같다. 표 1에서 알수 있듯이 탈탄후 용강중 존재하는 산소를 감소시키기 위해서 실시하는 탈산방법으로서 실리콘(Si) 탈산시에는실리카(SiO2) 개재물이 강중에 10-50μm 크기로 존재하며 이들은 연신성이 좋기 때문에 냉간 압연한 제품 중에는 20 - 1200 μm까지 대형 개재물로 늘어나서 각종 표면결함과 수요가 가공시 크랙을 발생시킨다. 또 Mn-Si으로 탈산한 강중에는 MnO-SiO2계로서 SiO2가 많은 MnO-SiO2가 많고, 이들은 역시 연신성이 좋기 때문에 냉간 압연시 늘어나서 5 - 300 μm 까지 대개 분포함으로써 냉연코일 표면의 크랙발생 등 각종 제강성 결함을 발생시킨다. 또한 Al 탈산의 경우는 연신성 개재물은 없으나 개재물 자체가 응집된 덩어리 알루미나 클러스터 (Alumina Cluster, Al2O3,융점:2020℃) 형태로 대개 강중에 존재하는데 이들은 너무 단단하여 압연시 크랙을 유발시키고 표면결함 등의 원인이 된다. 그러므로 알루미나 클러스터의 조성을 제어하기 위해 Ca에 의한 탈산을 하면 효과적이지만, 용강중 알루미나를 모두 조성 제어한다는 것은 실조업에서 대단히 어렵기 때문에 잔류하는 알루미나 개재물, 또한 칼슘 알루미네이트(Calcium aluminate; CaO-n Al2O3: 융점 > 1500 - 1900℃), 즉 알루미나 함량이 높은 칼슘알루미네이트로 존재한다. 이들 역시 고융점 개재물이기 때문에 문제가 되고 있다.In general, the distribution of inclusion size among Inba steel slabs and their cold rolled products by deoxidation method in the steelmaking process is shown in Table 1. As can be seen from Table 1, the deoxidation method is carried out to reduce the oxygen present in molten steel after decarburization. During deoxidation of silicon (Si), silica (SiO 2 ) inclusions are present in the steel in the size of 10-50 μm and they are cold because they have good stretchability. Among the rolled products, it is extended to large inclusions up to 20-1200 μm, so that various surface defects and demands cause cracks during processing. In the steel deoxidized with Mn-Si, MnO-SiO 2 containing much SiO 2 as MnO-SiO 2 type , which is also excellent in elongation, is stretched during cold rolling and usually distributed to 5-300 μm so that cracks on the surface of cold rolled coils Various steelmaking defects such as In addition, Al deoxidation does not have extensible inclusions, but the inclusions are usually present in steel in the form of aggregated alumina clusters (Alumina Cluster, Al 2 O 3 , melting point: 2020 ℃), which are too hard to cause cracks when rolling. This can cause surface defects. Therefore, although deoxidation by Ca is effective to control the composition of the alumina cluster, it is effective to control the composition of all the alumina in the molten steel. Therefore, the remaining alumina inclusions and calcium aluminate (Calcium aluminate; CaO-n Al 2) O 3 : melting point> 1500-1900 ° C.), ie, calcium aluminate with high alumina content. These are also problematic because they are high melting point inclusions.

또한 어느 탈산 방법의 경우도 공통적으로 존재하는 CaO- Al2O3-MgO계는 강중에 존재하는 경향을 보이고 있다. 왜냐하면 이들 개재물의 기원이 슬래그성으로서 개스 버블링 등에 의한 슬래그 혼입에 의해 강중에 주로 존재하며 개스 버벌링 공정은 어떤 탈산방법의 경우도 공통적으로 그 공정을 거치기 때문이며 이들은 제품의 청정도에 문제를 발생시킨다.In addition, the CaO-Al 2 O 3 -MgO system, which is common in all deoxidation methods, tends to exist in steel. Because the origin of these inclusions are slag properties, they are mainly present in the steel by slag incorporation by gas bubbling, and the gas bubbling process is common to any deoxidation method, which causes problems in product cleanliness. .

따라서 인바강중에 개재물이 5 μm 이하의 크기만으로 존재해야하는 아주 우수한 극청정성이 요구되는 강의 제조에는 많은 어려움이 있다.Therefore, there are a lot of difficulties in the production of steel, which requires very good ultra-cleanness, the inclusion of only 5 μm or less in the Invar steel.

이와 같은 문제를 해결하기 위해 최근에 공지된 한 일본특허(95-289775, 일본야금공업, 공개정보 97-111329) 기술을 보면 슬래그 조성을 CaO-SiO2- Al2O3계로 하고 Al2O3조성을 4% 이상 함유하는 인공슬래그를 사용하는 방법이다. 이 방법은 효과적이기는 하지만 Al, Si 등에 의한 탈산 생성물이 모두 부상해야만 슬래그/용강 계면에서 이들 개재물 흡수가 용이하기 때문에 용강 내부에 이미 존재하는 탈산 생성물의 제거에는 한계가 있다.In order to solve this problem, a recently known Japanese patent (95-289775, Japanese metallurgical industry, Published Information 97-111329) describes the slag composition as CaO-SiO 2 -Al 2 O 3 system and the Al 2 O 3 composition. It is a method of using artificial slag containing 4% or more. Although this method is effective, there is a limit to the removal of the deoxidation products already present in the molten steel since the absorption of these inclusions at the slag / molten steel interface is easy only when all of the deoxidation products by Al, Si, etc. have to rise.

또한 일본 스미토모금속이 출원한 일본특허(95-268124) 내용은 Si, Mn 탈산후 Al 탈산을 하고, La, Ce 등 희토류 원소를 이용하여 탈산을 하는 방법이다. 이 기술도 Al 및 Ca 탈산 처리를 하듯이 효과적이지만, 용강중 잔류하는 모든 알루미나 개재물의 조성제어에는 한계가 있다. 즉, 희토류 원소로 처리를 하더라도 강중에 알루미나가 잔류하고, 또 Ce(La)O- Al2O3-SiO2계중 Al2O3가 많은 개재물인 경우는 역시 냉연시 표면결함의 원인이 되고, 최종제품의 허용기준인 5 - 20 μm 크기의 개재물이 잔류하여 수요가 불만의 원인이 될 수 있다는 문제를 가지고 있다.In addition, Japanese Patent (95-268124) filed by Sumitomo Metal, Japan, is a method of deoxidizing Al after deoxidation of Si and Mn, and deoxidation using rare earth elements such as La and Ce. This technique is as effective as Al and Ca deoxidation, but there is a limit to the composition control of all alumina inclusions remaining in the molten steel. That is, even when treated with rare earth elements, alumina remains in the steel, and in the case of inclusions containing a large amount of Al 2 O 3 in the Ce (La) O—Al 2 O 3 —SiO 2 system, it is also a cause of surface defects during cold rolling. The problem is that demand can be a source of dissatisfaction because of the inclusion of 5-20 μm of inclusions, which is the limit for the final product.

본 발명은 상기의 문제점을 해결하기 위하여 안출된 것으로서, 종래의 기술, 즉 36% 니켈을 함유한 용강중에 존재하는 각종 탈산생성물이 냉연 표면제품의 크랙을 일으키거나, 수요가 제품 물성요구에 개재물성으로 인해 문제가 되는 점을 해결하기 위하여 36% 니켈을 함유한 용강을 진공정련(VOD; Vacuum Oxygen Decarburization)한 후에 타이타늄(Ti)으로 탈산하여 청정도가 우수한 인바강을 정련하는 방법을 제공하는 것을 그 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and the prior art, that is, various deoxidation products present in molten steel containing 36% nickel cause cracks in cold-rolled surface products, or the demand is included in product property requirements. In order to solve the problem caused by the VOD (Vacuum Oxygen Decarburization) after the vacuum Oxygen Decarburization (VOD) to provide a method for refining Inva steel with excellent cleanliness by deoxidizing with titanium (Ti) The purpose.

도 1은 탈산방법별 인바강 청정도 지수를 나타낸 그래프도.1 is a graph showing the Inva river cleanliness index by deoxidation method.

도 2는 탈산방법별 인바강 냉연재 중 개재물 크기를 나타낸 그래프도.Figure 2 is a graph showing the size of inclusions in Invar steel cold rolled material for each deoxidation method.

도 3은 탈산방법별 인바강 냉연재의 개재물 지수를 도시한 그래프도.3 is a graph showing the inclusion index of the Inba steel cold rolled material according to the deoxidation method.

이하 본 발명을 도면을 참조하여 더욱 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.

본 발명은 1전기로의 AOD 정련로에서 탈탄이 종료한후 용강을 출강하여 VOD 정련로에서 2차로 탈탄 및 탈질화처리를 실시한 후 타이타늄을 중량%로 0.005 - 0.5%로 조정하여 탈산처리를 실시하는 청정도가 개선된 니켈 함유강의 탈산방법을 제공한다. 본 발명에서는 Fe-36Ni계 기본 성분중 Si:0.2% Al:0.003%인 경우 Ti첨가로서 미세한 TiO2 산화물 생성이 될려면 최소 약 0.005%이상은 되어야 하며, 이때 강중 TiO2 산화물양은 전체 개재물 중 분포비가 너무 적기 때문에 대부분의 개재물 조성을 TiO2 로 존재하게 하려면 적어도 약 0.5% 정도는 되어야 하며, 바람직하기로는 0.2%가 최적이다.In the present invention, after decarburization is completed in an AOD refining furnace in one electric furnace, the molten steel is pulled out and subjected to decarburization and denitrification treatment in a VOD refining furnace for the second time, and the titanium is adjusted to 0.005-0.5% by weight% to perform deoxidation. Provided is a deoxidation method of nickel-containing steel with improved cleanliness. In the present invention, in the case of Si: 0.2% Al: 0.003% of the basic component of Fe-36Ni, at least about 0.005% of TiO2 oxide should be formed in order to generate fine TiO2 oxide as Ti addition, wherein the amount of TiO2 oxide in the steel is too small in the total inclusions. For most inclusion compositions to be present as TiO2, it should be at least about 0.5%, preferably 0.2%.

표 2는 100kg 진공 유도 용해로를 이용하여 용해한 다음, 탈산방법에 따른 응고휴 강괴내 존재하는 개재물의 크기와 청정도 그리고 냉간압연후 냉연재에서의 청정도 지수를 평가한 결과를 보여주고 있다.Table 2 shows the results of evaluating the size and cleanliness of the inclusions in the solidified ingot and the cleanliness index of the cold rolled material after cold rolling after melting using 100kg vacuum induction furnace.

탈산방법별 인바강 주편중 청정도 지수를 나타내면 표 1과 같고 이데이타를 이용하여 탈산방법별 주편 청정도 지수를 비교하면 도 1과 같다. 강번 17, 18번 즉 타이타늄으로 탈산한 경우가 강번 10, 11(Si 탈산), 강번 12, 13(Mn-Si 탈산), 강번 15, 16(Al 탈산)에 비해 강중의 청정도 지수가 우수한 것을 알 수 있다.The cleanliness index of the Inba steel cast steels by deoxidation method is shown in Table 1, and the cleanliness index of the cast iron by deoxidation method is shown in FIG. 1 using this data. The steel deoxidation of steel Nos. 17 and 18, that is, titanium, was superior to steel Nos. 10 and 11 (Si deoxidation), steels 12 and 13 (Mn-Si deoxidation) and steels 15 and 16 (Al deoxidation). Able to know.

도 2는 탈산방법별 냉연재중 개재물 최대크기 분포를 나타내고 있다. 도면에서 알수 있듯이 Si 탈산(강번 10,11)한 경우는 최대 220μm까지 존재하고 있으며, Mn-Si탈산(강번 13,14)의 경우도 최대 150 μm 까지 분포하고 있으며, Al탈산(강번 15,16)한 경우도 클러스터로 존재하여 220 μm까지 분포하므로서 인바강의 허용기준인 5μm 이하의 개재물 분포로 제어하는 데 그 한계가 있음을 보여주고 있다.2 shows the maximum size distribution of inclusions in the cold rolled material according to the deoxidation method. As can be seen from the diagram, Si deoxidation (Gal 10,11) exists up to 220μm, and Mn-Si deoxygenation (Gal 13,14) is also distributed up to 150 μm, Al deoxidation (Gal 15,16) In this case, it exists as a cluster and distributes up to 220 μm, which shows that there is a limit to controlling the inclusion distribution below 5 μm, which is the limit of Invar steel.

그러나 타이타늄으로 탈산(강번 17,18)한 경우는 거의 개재물들이 5μm 이하 분포로서 아주 우수한 청정도 수준을 보이고 있다.However, in the case of deoxidation (thickness 17,18) with titanium, the inclusions show very good cleanliness level with distribution of 5μm or less.

도 3은 탈산방법별 인바강 냉연재의 결함등급 지수를 비교한 것으로서 타이타늄 탈산재(강번 17, 18)가 Si, Mn-Si, Al 탈산재에 비해 가장 낮은 1등급으로서 Ti로 탈산한 대단히 우수한 제품의 청정도 수준을 보여주고 있음을 알 수 있다.Figure 3 is a comparison of the defect grade index of Inba steel cold rolled material by deoxidation method, titanium deoxidizers (Gang 17, 18) is the lowest grade 1 compared to Si, Mn-Si, Al deoxidizers, very excellent deoxidized with Ti It can be seen that the product shows the level of cleanliness.

이와 같이 36%Ni을 함유한 인바강의 청정강 제조를 위해서는 그 탈산방법이 타이타늄을 첨가한 경우가 주편의 청정도 지수와 주편의 개재물 크기 분포, 그리고 냉연제품의 결함발생 등급에 있어서도 가장 우수한 결과를 보여주었다.As such, for the production of clean steel of Inva steel containing 36% Ni, the addition of titanium is the best in terms of cleanliness index of cast steel, inclusion size distribution of cast steel and defect occurrence grade of cold rolled products. Showed.

표 1은 주편 및 냉연제품 중 개재물의 일반적 크기 분포이고, 표 2는 탈산방법에 따른 주편 및 냉연제품 중 청정도 지수를 나타낸 것이다.Table 1 shows the general size distribution of inclusions in cast steel and cold rolled products, and Table 2 shows the cleanliness index in cast steel and cold rolled products according to the deoxidation method.

탈산방법Deoxidation Method 개재물 조성Inclusion Composition 주편중 대형개재물 크기Large inclusion size in cast steel 냉연후 제품중개재물 크기Product mediation size after cold rolling 제품결함발생최대허용크기Maximum allowable size of product defect SiSi -SiO2-CaO-Al2O3-MgO-SiO2-CaO-Al2O3-MgO 10~5010-50 20~120020-1200 55 Mn-SiMn-Si -MnO--SiO2CaO-Al2O3-MgO-MnO--SiO2CaO-Al2O3-MgO 5~305-30 5~3005 to 300 AlAl -Al2O3CaO-Al2O3-MgO-CaO-Al2O3-MgO-Al2O3CaO-Al2O3-MgO-CaO-Al2O3-MgO 5~2005 ~ 200 20~30020-300

구분division 강 번River times 주편중 대형개재물 크기(μm)Large inclusion size in cast steel (μm) 주편 청정도지수(mm2/5×10cm2)Cast Cleanliness Index (mm2 / 5 × 10cm2) 냉연제품청정도 지수Cold Rolled Product Cleanliness Index Si 탈산Si deoxidation 1010 10~16010-160 0.0220.022 77 Si 탈산Si deoxidation 1111 17~22017-220 0.0380.038 99 Si 탈산Si deoxidation 1212 10~12010-120 0.0080.008 66 Mn-Si 탈산Mn-Si Deoxidation 1313 20~15020-150 0.0240.024 77 Mn-Si 탈산Mn-Si Deoxidation 1414 15~7015-70 0.0110.011 66 Al 탈산Al deoxidation 1515 5~1805 to 180 0.0090.009 55 Al 탈산Al deoxidation 1616 5~2205 ~ 220 0.0150.015 66 Ti 탈산Ti deoxidation 1717 <5<5 0.00240.0024 1One Ti 탈산Ti deoxidation 1818 <5<5 0.00270.0027 1One

상술한 바와 같이, 본 발명에 의하면, 36% 니켈을 함유한 용강을 진공정련(VOD; Vacuum Oxygen Decarburization)한 후에 타이타늄(Ti)으로 탈산하여 청정도가 우수한 인바강을 얻을 수 있다.As described above, according to the present invention, molten steel containing 36% nickel can be deoxidized to titanium (Ti) after vacuum refining (VOD; Vacuum Oxygen Decarburization) to obtain inva steel having excellent cleanliness.

Claims (1)

전기로의 AOD 정련로에서 탈탄이 종료한후 용강을 출강하여 VOD 정련로에서 2차로 탈탄 및 탈질화처리를 실시한 후 타이타늄을 중량%로 0.005 - 0.5%로 조정하여 탈산처리를 실시하는 것을 특징으로 하는 청정도가 개선된 니켈 함유강의 탈산방법.After decarburization is completed in the AOD refining furnace of the electric furnace, the molten steel is pulled out and subjected to decarburization and denitrification treatment in the VOD refining furnace for the second time, and the titanium is adjusted to 0.005-0.5% by weight to perform deoxidation treatment. Deoxidation method of nickel-containing steel with improved cleanliness.
KR1020000080866A 2000-12-22 2000-12-22 method of deoxidation of nickel alloy to improve cleanness KR20020051530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000080866A KR20020051530A (en) 2000-12-22 2000-12-22 method of deoxidation of nickel alloy to improve cleanness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000080866A KR20020051530A (en) 2000-12-22 2000-12-22 method of deoxidation of nickel alloy to improve cleanness

Publications (1)

Publication Number Publication Date
KR20020051530A true KR20020051530A (en) 2002-06-29

Family

ID=27685071

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000080866A KR20020051530A (en) 2000-12-22 2000-12-22 method of deoxidation of nickel alloy to improve cleanness

Country Status (1)

Country Link
KR (1) KR20020051530A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100554142B1 (en) * 2001-12-07 2006-02-20 주식회사 포스코 Refining process of invar steel
KR100558058B1 (en) * 2001-12-21 2006-03-07 주식회사 포스코 Method for refining of high-nickel alloy of AOD

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100554142B1 (en) * 2001-12-07 2006-02-20 주식회사 포스코 Refining process of invar steel
KR100558058B1 (en) * 2001-12-21 2006-03-07 주식회사 포스코 Method for refining of high-nickel alloy of AOD

Similar Documents

Publication Publication Date Title
CN115074604B (en) Spring steel wire rod and production method thereof
US11655512B2 (en) Rare-earth microalloyed steel and control method
KR100889685B1 (en) A method for refining with high purity of stainless steel
CN115244199B (en) Stainless steel, stainless steel material, and method for producing stainless steel
KR100711410B1 (en) Highly Ductile Steel Sheet and Method of Manufacturing the Same
KR100886046B1 (en) Method for producing extremely low carbon steel sheet and extremely low carbon cast piece having excellent surface characteristics, workability and formability
KR100889686B1 (en) Method for manufacturing the ferritic stainless steel improved the equiaxed structure ratio thereof
KR20020051530A (en) method of deoxidation of nickel alloy to improve cleanness
JPH05140649A (en) Manufacture of now-oriented silicon steel sheet excellent in magnetic property
KR100729123B1 (en) Method of manufacturing for low-carbon austenite stainless steel
CN110923405B (en) Process control method for reducing hydrogen hazard in steel rail
CN114561598A (en) 2200 MPa-grade wire rod for steel wire and manufacturing method thereof
KR100844794B1 (en) A method for refining with high purity of austenitic stainless steel
JP4510787B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP3416858B2 (en) Stainless steel manufacturing method
KR100429158B1 (en) Method for decarburizing austenite stainless steel
JP7261345B1 (en) Austenitic Ni-Cr-Fe alloy excellent in oxidation resistance and its production method
JPH0333777B2 (en)
KR20010009041A (en) Method of refining ferritic stainless steel for deep drawing
JP2004204252A (en) Ti-CONTAINING HIGH-WORKABILITY FERRITIC CHROMIUM STEEL SHEET SUPERIOR IN RIDGING RESISTANCE, AND MANUFACTURING METHOD THEREFOR
JP3881626B2 (en) Refining method of Fe-Ni alloy
JP7158618B1 (en) Austenitic Fe-Ni-Cr alloy with excellent oxidation resistance and method for producing the same
JP3554283B2 (en) Fe-Ni alloy excellent in surface properties and method for producing the same
KR101064364B1 (en) Method for manufacturing the ferritic stainless steel having superior formability
JP4608148B2 (en) Manufacturing method of highly clean thin steel plate and steel plate

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination