JP7158618B1 - Austenitic Fe-Ni-Cr alloy with excellent oxidation resistance and method for producing the same - Google Patents
Austenitic Fe-Ni-Cr alloy with excellent oxidation resistance and method for producing the same Download PDFInfo
- Publication number
- JP7158618B1 JP7158618B1 JP2022086913A JP2022086913A JP7158618B1 JP 7158618 B1 JP7158618 B1 JP 7158618B1 JP 2022086913 A JP2022086913 A JP 2022086913A JP 2022086913 A JP2022086913 A JP 2022086913A JP 7158618 B1 JP7158618 B1 JP 7158618B1
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- mass
- rem
- austenitic
- oxidation resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 55
- 239000000956 alloy Substances 0.000 title claims description 55
- 229910018487 Ni—Cr Inorganic materials 0.000 title claims description 6
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000007254 oxidation reaction Methods 0.000 title abstract description 86
- 230000003647 oxidation Effects 0.000 title abstract description 85
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 46
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 31
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 29
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 26
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 25
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 25
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 25
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 17
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 16
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 14
- 229910000599 Cr alloy Inorganic materials 0.000 claims abstract description 13
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 21
- 239000001301 oxygen Substances 0.000 claims description 21
- 239000007789 gas Substances 0.000 claims description 19
- 239000002893 slag Substances 0.000 claims description 19
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 12
- 239000002994 raw material Substances 0.000 claims description 9
- 238000007670 refining Methods 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 4
- 239000010436 fluorite Substances 0.000 claims description 4
- 238000005098 hot rolling Methods 0.000 claims description 3
- 235000019738 Limestone Nutrition 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 238000005266 casting Methods 0.000 claims description 2
- 239000006028 limestone Substances 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 150000002910 rare earth metals Chemical class 0.000 abstract description 34
- 229910052717 sulfur Inorganic materials 0.000 abstract description 14
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 6
- 229910052796 boron Inorganic materials 0.000 abstract description 5
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 4
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 229910052698 phosphorus Inorganic materials 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 37
- 229910000831 Steel Inorganic materials 0.000 description 36
- 239000010959 steel Substances 0.000 description 36
- 239000010410 layer Substances 0.000 description 31
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 22
- 239000000463 material Substances 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 16
- 229910000990 Ni alloy Inorganic materials 0.000 description 11
- 235000012255 calcium oxide Nutrition 0.000 description 11
- 239000000292 calcium oxide Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- 238000009749 continuous casting Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 230000007547 defect Effects 0.000 description 7
- 229910001566 austenite Inorganic materials 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 229910000765 intermetallic Inorganic materials 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 238000000988 reflection electron microscopy Methods 0.000 description 5
- 230000004580 weight loss Effects 0.000 description 5
- 238000005261 decarburization Methods 0.000 description 4
- 238000006477 desulfuration reaction Methods 0.000 description 4
- 230000023556 desulfurization Effects 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000000611 regression analysis Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 description 3
- 229910017082 Fe-Si Inorganic materials 0.000 description 2
- 229910000604 Ferrochrome Inorganic materials 0.000 description 2
- 229910000863 Ferronickel Inorganic materials 0.000 description 2
- 229910017133 Fe—Si Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001325 element alloy Inorganic materials 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
- C23C8/16—Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
- C23C8/18—Oxidising of ferrous surfaces
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
【課題】過酷な高温下においても耐酸化性に優れたオーステナイト系Fe-Ni-Cr合金を提供する。【解決手段】質量%で、C:0.004~0.13%、Si:0.15~1.0%、Mn:0.03~2.0%、P:≦0.040%、S:≦0.003%、Ni:20.0~38.0%、Cr:18.0~28.0%、Mo:≦1.0%、Cu:≦1.0%、N:≦0.03%、B:≦0.01%、Al:0.10~1.0%、Ti、Zrの少なくとも一方をTi:0.10~1.0%、Zr:0.01~0.6%、O:0.0002~0.0030%、Ca:≦0.002%、希土類(REM)のLa、Ce、Yのいずれか一種または二種以上の総重量:0.001~0.010%を含有し、残部がFeおよび不可避的な不純物からなる成分組成からなり、各元素の質量%が特定の式で定められる関係を満足するオーステナイト系Fe-Ni-Cr合金。【選択図】図1An object of the present invention is to provide an austenitic Fe--Ni--Cr alloy having excellent oxidation resistance even under severe high temperatures. [Solution] Mass% C: 0.004-0.13% Si: 0.15-1.0% Mn: 0.03-2.0% P: ≤0.040% S: ≤0.003% Ni: 20.0-38.0% Cr: 18.0-28.0%, Mo: ≤1.0%, Cu: ≤1.0%, N: ≤0.03%, B: ≤0.01%, Al: 0.10-1.0%, at least one of Ti and Zr: 0.10-1.0%, Zr: 0.01 to 0.6%, O: 0.0002 to 0.0030%, Ca: ≤ 0.002%, one or more of rare earth (REM) La, Ce, and Y total weight: 0.001 to 0.010%, An austenitic Fe--Ni--Cr alloy having a chemical composition with the balance being Fe and unavoidable impurities, wherein the mass % of each element satisfies the relationship defined by a specific formula. [Selection drawing] Fig. 1
Description
本発明はオーステナイト系Fe-Ni-Cr合金に関し、高温環境下における耐酸化性に優れるオーステナイト系Fe-Ni-Cr合金に関するものである。 TECHNICAL FIELD The present invention relates to an austenitic Fe--Ni--Cr alloy, and more particularly to an austenitic Fe--Ni--Cr alloy having excellent oxidation resistance in a high temperature environment.
火力発電ボイラや化学プラント、ポリシリコン精製用反応炉は、700~900℃の過酷な高温環境下にて使用されることから、これらに適用される材料には、高温強度や耐高温腐食性、耐酸化性に優れることが求められる。特に、耐酸化性に関しては、上記高温環境下において材料表面に形成するCr2O3を主体とした保護性の表面酸化スケールが緻密であり、かつ材料との密着性が高いことが要求特性の一つとして挙げられる。上記高温環境下にて使用される設備等に用いられる材料として、Fe-Cr-Ni合金が着目されている。このうち、SUS304やSUS316、SUS347といった18-8系ステンレス鋼では上記の使用環境において十分な特性を有していないため、NiやCrの含有量をさらに高めたSUS310SやNCF800などが一般的に用いられている。 Thermal power boilers, chemical plants, and polysilicon refining reactors are used in harsh high-temperature environments of 700 to 900°C. Excellent oxidation resistance is required. In particular, with respect to oxidation resistance, the required properties are that the protective surface oxide scale, mainly composed of Cr 2 O 3 , formed on the material surface in the above-mentioned high-temperature environment is dense and has high adhesion to the material. It is mentioned as one. Fe--Cr--Ni alloys are attracting attention as a material to be used for equipment and the like used in the high-temperature environment. Of these, 18-8 stainless steels such as SUS304, SUS316, and SUS347 do not have sufficient properties in the above usage environment, so SUS310S and NCF800, which have higher Ni and Cr contents, are generally used. It is
このような過酷な使用環境で用いられる材料の高温諸特性を改善する技術として、例えば、特許文献1には、ステンレス鋼にREM(Rare Earth Metal、希土類金属)を微量添加し、加えてNi含有量、REM添加量に応じてMn含有量の上限を規定することで鋼板表面に生成するCr2O3酸化皮膜の成長速度を抑制するオーステナイト系ステンレス鋼板が提案されている。また、特許文献2には、鋼材中のCr、Ni含有量に対応したSiの含有量を規定することで鋼材表面に生成するCr2O3の密着性を高めた改質器用耐熱鋼材が提案されている。
As a technique for improving the high-temperature properties of materials used in such harsh usage environments, for example,
しかしながら、上記特許文献に開示された技術において、いずれも材料中のREM、またはCrと化合物を形成しうるSの影響に関する検討がなされておらず、優れた耐酸化性が求められる上記高温環境下への適用は不十分と考えられる。なおかつ、REMの中には各種元素があり、そのいずれが効果を発揮するかについても言及がなく、現実的には実行は困難であった。 However, none of the techniques disclosed in the above patent documents have studied the effects of REM in the material or S that can form a compound with Cr, and in the above-described high-temperature environment where excellent oxidation resistance is required. It is considered that the application to In addition, there are various elements in REM, and there is no mention of which of them exerts an effect, and it was practically difficult to implement.
加えて、上記特許文献のいずれにおいても耐酸化性における内部酸化物層の影響に関する検討もなされていないため、上記の過酷な高温環境下で適用される技術においては不十分と考えられる。 In addition, none of the above patent documents discusses the effect of the inner oxide layer on the oxidation resistance, so it is considered that the technology applied in the above severe high temperature environment is insufficient.
さらに近年では、Ti、Al、REMの複合添加によるクリープ強度と、耐応力緩和割れ性とに優れたNi-Cr-Fe合金が提案されている(例えば、特許文献3参照)。しかしながら、本合金は実験室的に高周波誘導炉にて成分を整え、鋼塊を得て熱延工程に供するといった製法であり、到底60トン規模を代表とするような大量生産は出来ないものであった。さらに、REMは全て効果的であると述べているに対して、Ndの添加が主体であり、その他ではCe、La、Yを一部の合金で添加したのみである。さらに大きな課題として、S、Oを除去する工程を持たず、原料を厳選せねば達成できなかった。そのため、場合によってはREMが酸化や硫化してしまい、元々の目的をも達成しがたい工業的には脆弱性を拭えない提案であった。したがって、REMを添加してクリープ強度を向上させた合金を迅速かつ的確に、工業的な規模で提供できるとは言い難かった。 Furthermore, in recent years, a Ni--Cr--Fe alloy has been proposed which is excellent in creep strength and resistance to stress relaxation cracking due to combined addition of Ti, Al, and REM (see, for example, Patent Document 3). However, the composition of this alloy is adjusted in a high-frequency induction furnace in a laboratory, and a steel ingot is obtained and subjected to the hot rolling process. there were. Furthermore, although REM states that all REMs are effective, Nd is mainly added, and Ce, La, and Y are only added to some alloys. As a further big problem, there was no process for removing S and O, and it could not be achieved without careful selection of raw materials. Therefore, in some cases, the REM is oxidized or sulfurized, making it difficult to achieve the original purpose of the proposal, which is industrially fragile. Therefore, it is difficult to say that it is possible to quickly and accurately provide an alloy with improved creep strength by adding REM on an industrial scale.
本発明は上記事情に鑑みてなされたものであり、その目的は、過酷な高温環境下においても耐酸化性に優れたオーステナイト系Fe-Ni-Cr合金を提案することにある。 The present invention has been made in view of the above circumstances, and its object is to propose an austenitic Fe--Ni--Cr alloy which is excellent in oxidation resistance even in a severe high-temperature environment.
発明者らは、上記の課題を解決するために鋭意検討を重ねた。これまでにREMのうちLa、Ce、Yの添加によって高温環境下で合金表面に生成する表面酸化スケールの密着性が改善されることは知見として得られていたが、7%O2―16%H2O―10%CO2―0.5%CO―0.1%NO2―bal.N2からなる混合ガス雰囲気中で 室温から700~900℃を繰り返すサイクル試験にて評価する耐酸化性への寄与に関しては十分な知見が得られていなかった。そこで、La、Ce、Yと合金中に含まれるその他の含有元素の相関関係を詳細に調査した。その結果、耐酸化性向上のためにはLa、Ce、Yの添加が極めて有効であること、その他の元素としてSi、Ni、Cr、Al、Ti、Zrも有効であることが明らかとなった。一方、S、Mo、Bの含有によって上記耐酸化性向上の作用が阻害されることが明らかとなった。これより、REM添加の作用を十分に確保するためにはSi、Ni、Cr、Al、Ti、Zr、S、Mo、Bの制御が必要であることを見出した。 The inventors have made intensive studies to solve the above problems. Until now, it has been known that the addition of La, Ce, and Y among REMs improves the adhesion of surface oxide scale formed on the alloy surface in a high-temperature environment. H2O -10%CO2-0.5%CO - 0.1%NO2 - bal. Sufficient knowledge has not been obtained regarding the contribution to oxidation resistance evaluated by a cycle test in which the temperature is repeated from room temperature to 700 to 900° C. in a mixed gas atmosphere of N 2 . Therefore, the correlation between La, Ce, Y and other elements contained in the alloy was investigated in detail. As a result, it was found that the addition of La, Ce, and Y is extremely effective for improving oxidation resistance, and that Si, Ni, Cr, Al, Ti, and Zr are also effective as other elements. . On the other hand, it was found that the inclusion of S, Mo, and B inhibits the oxidation resistance-improving action. From this, it was found that Si, Ni, Cr, Al, Ti, Zr, S, Mo, and B must be controlled in order to sufficiently ensure the effect of adding REM.
加えて、高温環境下において表面に形成する保護性の酸化スケールの直下にてCr、Si、Mn、Al、Ti、La、Ce、Yの酸化物からなる内部酸化物層が形成するが、内部酸化物層の形成挙動を詳細に調査した結果、内部酸化物層の面積率が高温酸化試験における酸化減量と良い相関関係があることを見出した。具体的には、表面酸化スケール直下の内部酸化物層内の0.005mm2において、内部酸化物の面積率が30%以上を占めた場合に耐酸化性の向上が見られた。これら内部酸化物層の形成挙動と合金元素との関係を調査したところ、La、Ce、Y、Si、Cr、Al、Tiが有効であり、一方でS、Mn、Nの含有は上記内部酸化物層の形成挙動を阻害することが明らかとなった。これより、内部酸化物層制御による耐酸化性向上の作用を得るためには、La、Ce、Y、Si、Cr、Al、Ti、S、Mn、Nを制御する必要があることを見出した。 In addition, an internal oxide layer consisting of oxides of Cr, Si, Mn, Al, Ti, La, Ce, and Y is formed directly under the protective oxide scale that forms on the surface in a high-temperature environment. As a result of investigating the formation behavior of the oxide layer in detail, it was found that the area ratio of the inner oxide layer had a good correlation with the weight loss due to oxidation in the high-temperature oxidation test. Specifically, an improvement in oxidation resistance was observed when the area ratio of the internal oxide was 30% or more in 0.005 mm 2 in the internal oxide layer immediately below the surface oxide scale. When the relationship between the formation behavior of these internal oxide layers and the alloying elements was investigated, La, Ce, Y, Si, Cr, Al, and Ti were effective, while the inclusion of S, Mn, and N was effective for the above-mentioned internal oxidation. It became clear that the formation behavior of the monolayer was inhibited. From this, it was found that it is necessary to control La, Ce, Y, Si, Cr, Al, Ti, S, Mn, and N in order to obtain the effect of improving oxidation resistance by controlling the internal oxide layer. .
さらに、合金元素合金中に含有されたREMであるLa、Ce、Yいずれかの一種または二種以上の総重量(mass%)に、合金中に含まれるSの含有量(mass%)を除した値が、高温酸化試験における酸化減量と良い相関関係にあることを見出し、これにより得られる特性式が3.2≦REM/Sであることを明らかにした。 Furthermore, the content (mass%) of S contained in the alloy is subtracted from the total weight (mass%) of one or more of the REMs La, Ce, and Y contained in the alloy element alloy. It was found that the value obtained by this method has a good correlation with the oxidation weight loss in the high-temperature oxidation test, and the characteristic formula obtained by this is 3.2≦REM/S.
また、高温環境下で形成する表面酸化スケール形態に着目して検討を重ねたところ、7%O2―16%H2O―10%CO2―0.5%CO―0.1%NO2―bal.N2からなる混合ガス雰囲気中で 室温から700~900℃を繰り返すサイクル試験において形成した表面酸化スケールの厚みが10~100μmの範囲で形成された場合に表面酸化スケールが緻密に形成され、密着性が優れており、試験後の酸化減量においても良好な結果を示した。 In addition, as a result of repeated studies focusing on the form of surface oxide scale formed in a high-temperature environment, 7% O 2 -16% H 2 O-10% CO 2 -0.5% CO-0.1% NO 2 - bal. When the thickness of the surface oxide scale formed in the range of 10 to 100 μm is formed in a cycle test in which the temperature is repeated from room temperature to 700 to 900° C. in a mixed gas atmosphere of N 2 , the surface oxide scale is densely formed and adhesion is improved. was excellent, and showed good results in terms of oxidation weight loss after the test.
すなわち、本発明のオーステナイト系Fe-Ni-Cr合金は、質量%でC:0.004~0.13%、Si:0.15~1.0%、Mn:0.03~2.0%、P:≦0.040%、S:≦0.003%、Ni:20.0~38.0%、Cr:18.0~28.0%、Mo:≦1.0%、Cu:≦1.0%、N:≦0.03%、B:≦0.01%、Al:0.10~1.0%、Ti、Zrの少なくとも一方をTi:0.10~1.0%、Zr:0.01~0.6%、さらに、O:0.0002~0.0030%、Ca:≦0.002%、希土類元素(REM)であるLa、Ce、Yのいずれか一種または二種以上の総重量:0.001~0.010%を含有し、残部がFeおよび不可避的な不純物からなる成分組成からなり、かつ下記の(1)、(2)式を満足することを特徴としている。
85≧0.3×Si+1.5×Ni+1.3×Cr+5.8×Al+7.7×Zr+2.7×Ti+2173×REM―3582×S―32.9×Mo―2448×B≧47 …(1)
40≧0.6×Si+1.3×Cr+23.53×Al+5.88×Ti+3074×REM―5067×S―0.8×Mn―816×N≧0 …(2)
That is, the austenitic Fe-Ni-Cr alloy of the present invention has C: 0.004 to 0.13%, Si: 0.15 to 1.0%, Mn: 0.03 to 2.0% in mass%. , P: ≤ 0.040%, S: ≤ 0.003%, Ni: 20.0 to 38.0%, Cr: 18.0 to 28.0%, Mo: ≤ 1.0%, Cu: ≤ 1.0%, N: ≤0.03%, B: ≤0.01%, Al: 0.10 to 1.0%, at least one of Ti and Zr, Ti: 0.10 to 1.0%, Zr: 0.01 to 0.6%, O: 0.0002 to 0.0030%, Ca: ≤ 0.002%, one or two of rare earth elements (REM) La, Ce, Y Total weight of seeds and above: 0.001 to 0.010%, the balance being composed of Fe and inevitable impurities, and satisfying the following formulas (1) and (2) and
85≧0.3×Si+1.5×Ni+1.3×Cr+5.8×Al+7.7×Zr+2.7×Ti+2173×REM-3582×S-32.9×Mo-2448×B≧47 (1)
40≧0.6×Si+1.3×Cr+23.53×Al+5.88×Ti+3074×REM-5067×S-0.8×Mn-816×N≧0 (2)
また、本発明のオーステナイト系Fe-Ni-Cr合金は、上記希土類元素(REM)であるLa、Ce、Yのいずれか一種または二種類以上が下記の(3)式を満足することを特徴としている。
3.2≦ REM(La、Ce、Y) / S …(3)
Further, in the austenitic Fe—Ni—Cr alloy of the present invention, one or more of the rare earth elements (REM) La, Ce, and Y satisfies the following formula (3). there is
3.2≦REM(La, Ce, Y)/S (3)
本発明のオーステナイト系Fe-Ni-Cr合金においては、上記の成分組成に加えて、7%O2―16%H2O―10%CO2―0.5%CO―0.1%NO2―bal.N2からなる混合ガス雰囲気中で室温から700~900℃を繰り返すサイクル試験にて形成される表面酸化スケールの組成が、質量%でCr:40%以上、Fe:10~20%、Ni:0~10%、O:10~40%、REM:0.05~0.5%、残部は不可避的元素としてMn、Si、Tiを含有しており、スケール厚みが10~100μmの厚さを有することを特徴としている。 In the austenitic Fe--Ni--Cr alloy of the present invention, in addition to the above composition, 7% O 2 -16% H 2 O-10% CO 2 -0.5% CO-0.1% NO 2 - bal. The composition of the surface oxide scale formed in a cycle test in which the temperature is repeated from room temperature to 700 to 900°C in a mixed gas atmosphere consisting of N 2 is, in terms of mass%, Cr: 40% or more, Fe: 10 to 20%, and Ni: 0. ~10%, O: 10 to 40%, REM: 0.05 to 0.5%, the balance contains Mn, Si, and Ti as unavoidable elements, and the scale has a thickness of 10 to 100 µm It is characterized by
さらに、上記表面酸化スケールの直下に形成する内部酸化物層がCr、Si、Mn、Al、Ti、REMを少なくとも一種類以上含有した内部酸化物で構成されており、このときの内部酸化物層の面積率が表面酸化スケールの直下0.005mm2あたり30%以上を有していることを特徴とする。 Furthermore, the internal oxide layer formed directly under the surface oxide scale is composed of an internal oxide containing at least one of Cr, Si, Mn, Al, Ti, and REM, and the internal oxide layer at this time has an area ratio of 30% or more per 0.005 mm 2 immediately below the surface oxide scale.
また、本発明は、上記オーステナイト系Fe-Ni-Cr合金の製造方法も提案する。すなわち、合金組成は、合金原料を溶解した後、精錬を行うことによって調整を行い、精錬では溶解させた合金原料(溶融合金)に酸素およびアルゴンの混合ガスを吹き込み脱炭し、窒素濃度を0.03%以下に制御した後、Cr還元し、その後、アルミニウム、石灰石および蛍石を溶融合金に添加して、CaO-SiO2-Al2O3-MgO-F系スラグを形成し、溶融合金中の酸素濃度を0.0002~0.0030mass%とし、その後にLa、Ce、Yのいずれか一種または二種以上含んだ原料を添加し成分を整えて、鋳造を行い、スラブを得てから熱間圧延工程にてコイルを製造するものである。 The present invention also proposes a method for producing the austenitic Fe--Ni--Cr alloy. That is, the alloy composition is adjusted by refining after melting the alloy raw material, and in the refining, a mixed gas of oxygen and argon is blown into the melted alloy raw material (molten alloy) to decarburize, and the nitrogen concentration is reduced to 0. After controlling to .03% or less, Cr reduction is performed, and then aluminum, limestone and fluorite are added to the molten alloy to form CaO—SiO 2 —Al 2 O 3 —MgO—F system slag, and the molten alloy The oxygen concentration in the slab is set to 0.0002 to 0.0030 mass%, and then a raw material containing one or more of La, Ce, and Y is added to adjust the composition, and casting is performed to obtain a slab. A coil is manufactured in a hot rolling process.
本発明によれば、高温環境下における優れた耐酸化性を有しており、製品の高寿命化にも大いに寄与することができる。 According to the present invention, it has excellent oxidation resistance in a high-temperature environment, and can greatly contribute to extending the life of products.
次に本発明のオーステナイト系Fe-Ni-Cr合金が有すべき組成成分について説明する。
C:0.004~0.13mass%
Cはオーステナイト相の安定化に寄与する元素である。しかし、多量に添加した場合は、CrおよびMo等と結合して炭化物を形成し、その近傍の固溶Crの量が低下し、耐酸化性を低下させる。一方、Cは固溶強化によって合金強度を高める効果を有することから、下限値を0.004mass%とする。よって、Cは0.004~0.13mass%に制限する。好ましくは0.005~0.080mass%であり、より好ましくは0.006~0.070mass%である。
Next, compositional components that should be included in the austenitic Fe--Ni--Cr alloy of the present invention will be described.
C: 0.004 to 0.13 mass%
C is an element that contributes to stabilization of the austenite phase. However, when added in a large amount, it combines with Cr, Mo, etc. to form carbides, and the amount of solid solution Cr in the vicinity thereof decreases, resulting in a decrease in oxidation resistance. On the other hand, C has the effect of increasing the alloy strength by solid solution strengthening, so the lower limit is made 0.004 mass%. Therefore, C is limited to 0.004 to 0.13 mass%. It is preferably 0.005 to 0.080 mass%, more preferably 0.006 to 0.070 mass%.
Si:0.15~1.0mass%
Siは耐酸化性の向上、酸化皮膜の剥離防止に有効な元素であり、上記効果は0.15mass%以上の添加により得られる。しかし、Siの過剰な添加はσ相などの金属間化合物の析出を促進し、金属間化合物起因の表面疵を発生させる原因ともなるので、0.15~1.0mass%とする。好ましくは0.16~0.8mass%以下であり、より好ましくは0.17~0.6mass%以下である。
Si: 0.15 to 1.0 mass%
Si is an element effective in improving oxidation resistance and preventing peeling of an oxide film, and the above effect can be obtained by adding 0.15 mass % or more. However, excessive addition of Si promotes the precipitation of intermetallic compounds such as the σ phase and may cause surface flaws caused by the intermetallic compounds. It is preferably 0.16 to 0.8 mass% or less, more preferably 0.17 to 0.6 mass% or less.
Mn:0.03~2.0mass%
Mnはオーステナイト相安定化元素であり、また、脱酸作用を有する元素でもあるため、その効果を得るためには少なくとも0.03mass%以上は必要である。しかし、MnもSiと同様にσ相などの金属間化合物の析出を招き、また、耐酸化性の低下を招くため、必要以上の添加は好ましくない。そのため、0.03~2.0mass%にする必要がある。好ましくは0.03~1.50mass%、より好ましくは0.03~1.00mass%である。
Mn: 0.03-2.0 mass%
Mn is an austenite phase stabilizing element, and is also an element having a deoxidizing effect, so its content should be at least 0.03 mass % or more to obtain that effect. However, as with Si, Mn also causes precipitation of intermetallic compounds such as the σ phase and lowers the oxidation resistance. Therefore, it is necessary to make it 0.03 to 2.0 mass%. It is preferably 0.03 to 1.50 mass%, more preferably 0.03 to 1.00 mass%.
P:0.040mass%以下
Pは不純物として不可避的に混入してくる元素であり、リン化物として結晶粒界に偏析するため熱間加工性を害する元素である。従って、極力低減することが望ましい。しかしながら、Pの含有量を極端に低減させることは製造コストの増加を招く。よって本発明においては、Pは0.040mass%以下に制限する。好ましくは0.030mass%以下であり、より好ましくは0.020mass%以下である。
P: 0.040 mass % or less P is an element that is inevitably mixed as an impurity, and is an element that impairs hot workability because it segregates as a phosphide at grain boundaries. Therefore, it is desirable to reduce it as much as possible. However, extremely reducing the P content invites an increase in manufacturing costs. Therefore, in the present invention, P is limited to 0.040 mass% or less. It is preferably 0.030 mass% or less, more preferably 0.020 mass% or less.
S:0.003mass%以下
SはPと同様に不純物として不可避的に混入してくる元素であり、結晶粒界に偏析し易く、特に熱間加工性を著しく阻害する。さらに、後述の耐酸化性に寄与するCrと化合物を形成することにより表面酸化スケール形成に必要なCrが消費されてしまい、酸化皮膜と母材の密着性を低下させることで酸化皮膜を脱落させ、酸化を促進させてしまうことから、耐酸化性に有害な元素である。0.003mass%を超えて含有するとその有害性が顕著に現れるため、0.003mass%以下に制御する必要がある。好ましくは0.002mass%以下、より好ましくは0.001mass%以下である。Sの低下には後述する通り、Alの添加とスラグ成分の間での反応により低下することが可能である。
S: 0.003 mass% or less S, like P, is an element that is unavoidably mixed as an impurity. Furthermore, by forming a compound with Cr that contributes to oxidation resistance, which will be described later, the Cr necessary for forming a surface oxide scale is consumed, and the adhesion between the oxide film and the base material is reduced, causing the oxide film to come off. , is an element harmful to oxidation resistance because it promotes oxidation. When the content exceeds 0.003 mass%, the harmfulness appears remarkably, so it is necessary to control the content to 0.003 mass% or less. It is preferably 0.002 mass% or less, more preferably 0.001 mass% or less. As will be described later, the S content can be reduced by the addition of Al and the reaction between the slag components.
Ni:20.0~38.0mass%
Niはオーステナイト相安定化元素であり、σ相などの金属間化合物の析出を抑制させる働きがある。また、耐熱性や高温強度を向上させる作用も有している。上記の効果を十分に作用させるため、20mass%以上添加させる。一方、過剰な添加は熱間加工性の劣化や熱間変形抵抗の増大、更にはコストの増加を招く。よって、Ni含有量は20.0~38.0mass%である。好ましくは21.0~36.0mass%、より好ましくは22.0~35.0mass%である。
Ni: 20.0 to 38.0 mass%
Ni is an austenite phase stabilizing element and has the function of suppressing the precipitation of intermetallic compounds such as the σ phase. It also has the effect of improving heat resistance and high-temperature strength. In order to sufficiently exert the above effects, it is added in an amount of 20 mass% or more. On the other hand, excessive addition causes deterioration of hot workability, increase in hot deformation resistance, and further increase in cost. Therefore, the Ni content is 20.0 to 38.0 mass%. It is preferably 21.0 to 36.0 mass%, more preferably 22.0 to 35.0 mass%.
Cr:18.0~28.0mass%
Crは高温環境下における腐食の抑制に寄与する元素であり、また、高温環境下で合金表面に保護性の酸化皮膜を形成し、高温酸化を抑制する効果もある。上記のような効果を十分得るには18.0mass%以上含有する必要がある。しかしながら、Crの過剰な添加は、表面酸化スケールが過大に形成されてしまい、かえって密着性が乏しく耐酸化性が悪化してしまう。加えて、オーステナイト相の安定性が低下し、Niを多量に添加する必要がでてくるので、18.0~28.0mass%とした。好ましくは19.0~26.0mass%、より好ましくは20.0~25.0mass%である。
Cr: 18.0-28.0 mass%
Cr is an element that contributes to suppressing corrosion in a high-temperature environment, and also has the effect of suppressing high-temperature oxidation by forming a protective oxide film on the alloy surface in a high-temperature environment. In order to sufficiently obtain the above effects, it is necessary to contain 18.0 mass% or more. However, excessive addition of Cr results in the formation of an excessively large surface oxide scale, resulting in rather poor adhesion and deterioration in oxidation resistance. In addition, the stability of the austenite phase deteriorates, and it becomes necessary to add a large amount of Ni, so the Ni content was made 18.0 to 28.0 mass%. It is preferably 19.0 to 26.0 mass%, more preferably 20.0 to 25.0 mass%.
Mo:1.0mass%以下
Moは少量の添加でも合金中に固溶して、高温強度を高める効果がある。しかし、Moを多量に添加した材料では、高温環境下でかつ表面の酸素ポテンシャルが少ない場合において、Moが優先酸化を起こして酸化スケールの剥離が生じるため、むしろ悪影響となる。そのため、保護性の表面酸化スケールの密着性確保の観点から、Moは1.0mass%以下に制限する。好ましくは0.8mass%以下であり、より好ましくは0.6mass%以下である。
Mo: 1.0% by mass or less Mo dissolves in the alloy even when added in a small amount, and has the effect of increasing high-temperature strength. However, in a material to which a large amount of Mo is added, in a high-temperature environment and when the oxygen potential on the surface is low, Mo causes preferential oxidation and peels off the oxide scale, which rather adversely affects the material. Therefore, Mo is limited to 1.0 mass% or less from the viewpoint of ensuring the adhesion of the protective surface oxide scale. It is preferably 0.8 mass% or less, more preferably 0.6 mass% or less.
Cu:1.0mass%以下
Cuは湿潤環境下における耐食性を向上させる元素として添加される場合はあるが、本発明のように高温環境下においては、その効果はほとんど認められない。一方、過剰な添加は材料表面に斑状の模様を有した不均一な被膜を形成して、耐食性を低下させる。従って、Cuの添加量は1.0mass%以下に制限する。好ましくは0.8mass%以下、より好ましくは0.6mass%以下である。
Cu: 1.0 mass% or less Cu is sometimes added as an element for improving corrosion resistance in a wet environment, but its effect is hardly recognized in a high-temperature environment as in the present invention. On the other hand, excessive addition forms a non-uniform film with a mottled pattern on the surface of the material, which reduces corrosion resistance. Therefore, the amount of Cu to be added is limited to 1.0 mass% or less. It is preferably 0.8 mass% or less, more preferably 0.6 mass% or less.
N:0.03mass%以下
Nは不純物として不可避的に混入してくる元素であるが、オーステナイト相生成元素でもあるため、組織安定化に寄与する。しかし、本発明のようにAlやTi、Zrなどを添加する場合、Nはこれらの元素と結合して窒化物の析出し、また熱間変形抵抗が極めて増加し、熱間加工性を阻害する。また、上記窒化物の形成により、表面酸化スケール直下に形成する内部酸化物の構成元素であるAlやTiが消費されしまうため、内部酸化物層の面積率を低下させてしまう。そこで、本発明では、Nの含有量は0.03mass%以下とした。好ましくは0.02mass%以下、より好ましくは0.01mass%以下である。
N: 0.03 mass % or less N is an element that is inevitably mixed as an impurity, but it is also an austenite phase forming element, so it contributes to structure stabilization. However, when adding Al, Ti, Zr, etc. as in the present invention, N combines with these elements to precipitate nitrides, and the hot deformation resistance is greatly increased, impairing hot workability. . In addition, the formation of the nitrides consumes Al and Ti, which are the constituent elements of the internal oxide formed directly under the surface oxide scale, thereby reducing the area ratio of the internal oxide layer. Therefore, in the present invention, the content of N is set to 0.03 mass% or less. It is preferably 0.02 mass% or less, more preferably 0.01 mass% or less.
脱炭を行う際に酸素を吹精するが、その際、Nは、COガス気泡に窒素ガスとして移行し系外へと除去することで本願発明の範囲に制御することが可能である。 Oxygen is blown during decarburization, and at that time, N can be controlled within the scope of the present invention by moving to CO gas bubbles as nitrogen gas and removing it out of the system.
B:0.01mass%以下
Bは粒界偏析により希土類元素(REM)の効果を補助する効果があり、高温強度にも寄与する元素である。しかし、多量の添加は表面酸化スケールのポーラス化による密着性低下や合金の溶接性、熱間加工性が低下する。本発明では、Bの含有量は0.01mass%以下とした。好ましくは0.008mass%以下、より好ましくは0.006mass%以下である。
B: 0.01 mass % or less B has an effect of assisting the effect of rare earth elements (REM) by grain boundary segregation, and is an element that also contributes to high-temperature strength. However, if added in a large amount, the oxidized scale on the surface becomes porous, resulting in a decrease in adhesion, weldability of the alloy, and hot workability. In the present invention, the content of B is 0.01 mass% or less. It is preferably 0.008 mass% or less, more preferably 0.006 mass% or less.
Al:0.10~1.0mass%
Alは緻密な黒色皮膜の形成を促し、耐酸化性を向上させる元素であり、その効果はそれぞれ0.10mass%以上の添加で得ることができる。また、脱酸材として添加される元素であり、(a)式に従って酸素濃度を本願発明の範囲:0.0002~0.0030mass%に制御する重要な元素である。
2Al + 3O = (Al2O3) …(a)
下線は溶鋼中元素を表し、括弧はスラグ中成分を示す。
本願発明合金の精錬時にCaO-SiO2-Al2O3-MgO-F系スラグを用いることで、生成したAl2O3を効果的に吸収して酸素濃度を制御することが可能である。また、脱酸が進行することで、(b)式に従い溶鋼中のS濃度も低下する。
2Al + 3S + 3(CaO) = 3(CaS) + (Al2O3) …(b)
これによって、S濃度を本願発明の範囲である0.003mass%以下に制御できる。これより、Alは0.10mass%以上が必要である。しかし、過剰な添加は(c)式が著しく右辺に向かって進行してしまい、Ca濃度が0.002mass%を超えてしまい、Ca-Al酸化物系介在物を多く形成し、合金中のAlを消費することにより耐酸化性を低下させてしまう。
3(CaO) + 2Al= 3Ca + (Al2O3) …(c)
これより、Alの上限は1.0mass%とした。好ましくは0.10~0.80mass%、より好ましくは0.10~0.60mass%である。
Al: 0.10-1.0 mass%
Al is an element that promotes formation of a dense black film and improves oxidation resistance, and the effect can be obtained by adding 0.10 mass % or more of each. Further, it is an element added as a deoxidizing agent, and is an important element for controlling the oxygen concentration within the range of the present invention: 0.0002 to 0.0030 mass% according to the formula (a).
2Al+ 3O = ( Al2O3 ) ( a)
Underlines represent elements in molten steel, and parentheses represent elements in slag.
By using CaO-- SiO.sub.2 --Al.sub.2O.sub.3-- MgO --F system slag during refining of the alloy of the present invention , it is possible to effectively absorb the produced Al.sub.2O.sub.3 and control the oxygen concentration. In addition, as deoxidation progresses, the S concentration in the molten steel also decreases according to the formula (b).
2Al +3S+3(CaO)= 3 (CaS)+( Al2O3 ) ( b )
As a result, the S concentration can be controlled to 0.003 mass% or less, which is the range of the present invention. From this, 0.10 mass% or more of Al is required. However, excessive addition causes the equation (c) to proceed remarkably toward the right side, causing the Ca concentration to exceed 0.002 mass%, forming a large amount of Ca—Al oxide inclusions, and Al in the alloy. is consumed, the oxidation resistance is lowered.
3 (CaO)+2Al= 3Ca + ( Al2O3 ) (c)
From this, the upper limit of Al was set to 1.0 mass%. It is preferably 0.10 to 0.80 mass%, more preferably 0.10 to 0.60 mass%.
上述のAlと同様、Ti、Zrは緻密な黒色皮膜の形成や耐酸化性向上に有効に作用するため、1種または2種の添加が必要である。 As with Al described above, Ti and Zr effectively act to form a dense black film and improve oxidation resistance, so it is necessary to add one or two of them.
Ti:0.10~1.0mass%
Tiは緻密な黒色皮膜の形成を促し、耐酸化性を向上させる元素であり、その効果は0.10mass%以上の添加で得ることができる。しかし、過剰な添加は多量の炭窒化物(TiN、TiC、TiCN)形成による表面疵の発生原因となるため、Tiの上限は1.0mass%とした。好ましくは0.10~0.80mass%、より好ましくは0.10~0.60mass%である。さらに、CとN濃度を上記の通り本願発明の範囲に制御することも効果的に炭窒化物を抑制する手段である。
Ti: 0.10 to 1.0 mass%
Ti is an element that promotes formation of a dense black film and improves oxidation resistance, and this effect can be obtained by adding 0.10 mass% or more. However, excessive addition causes surface flaws due to the formation of a large amount of carbonitrides (TiN, TiC, TiCN), so the upper limit of Ti is set to 1.0 mass%. It is preferably 0.10 to 0.80 mass%, more preferably 0.10 to 0.60 mass%. Furthermore, controlling the C and N concentrations within the range of the present invention as described above is also a means for effectively suppressing carbonitrides.
Zr:0.01~0.6mass%
ZrはTiの同族元素であり、Tiと同様、緻密な黒色皮膜の形成や耐酸化性向上に 有効に作用するので、Tiの代替元素としても使用できる。その効果は、Tiよりも優れているため少量の添加でも効果があるが、過剰な添加は多量の炭窒化物形成による表面疵の発生の原因となるため、上限は0.6mass%に制限する。好ましくは0.01~0.4mass%、より好ましくは0.05~0.3mass%の範囲である。
Zr: 0.01 to 0.6 mass%
Zr is an element of the same group as Ti, and like Ti, it effectively acts to form a dense black film and improve oxidation resistance, so it can be used as a substitute element for Ti. The effect is superior to Ti, so even a small amount of addition is effective, but excessive addition causes surface defects due to the formation of a large amount of carbonitride, so the upper limit is limited to 0.6 mass%. . The range is preferably 0.01 to 0.4 mass%, more preferably 0.05 to 0.3 mass%.
O:0.0002~0.0030mass%
合金中のOは溶鋼中でAl、Ti、Zr、Si、La、Ce、Yと結合し、酸化物を形成することにより、それら元素の有用な効果、耐酸化性などを損なう原因となる。また、アルミナ系の酸化物系非金属介在物が多く形成し、連続鋳造機のタンディッシュから鋳型に溶鋼を注ぐ浸漬ノズル内に付着し、それらが脱落することにより表面疵の原因となる。これより、酸素濃度は0.0030mass%以下と低いほうが望ましい。この範囲を達成するには、Alを上述の通りに本願発明の濃度に制御して脱酸すれば良い。一方で合金中のOを低減しすぎると、(c)式に従い、Ca濃度が0.002mass%を超えて高くなってしまう。これより、下限は0.0002mass%とする。好ましくは0.0003~0.0027mass%、より好ましくは0.0005~0.0025mass%である。
O: 0.0002 to 0.0030 mass%
O in the alloy combines with Al, Ti, Zr, Si, La, Ce, and Y in molten steel to form oxides, which impairs the useful effects of these elements, such as oxidation resistance. In addition, a large amount of alumina-based oxide-based non-metallic inclusions are formed and adhere to the inside of the submerged nozzle for pouring molten steel from the tundish of the continuous casting machine into the mold. Therefore, it is desirable that the oxygen concentration is as low as 0.0030 mass% or less. In order to achieve this range, Al should be deoxidized by controlling the Al concentration according to the present invention as described above. On the other hand, if the O content in the alloy is reduced too much, the Ca concentration will exceed 0.002 mass% and increase according to the formula (c). Therefore, the lower limit is set to 0.0002 mass%. It is preferably 0.0003 to 0.0027 mass%, more preferably 0.0005 to 0.0025 mass%.
Ca:0.002mass%以下
Caは本発明合金において、上述の通りスラグ中CaOから混入する元素である。CaはCa-Al酸化物系介在物を多く形成し、合金中のAlを消費することにより耐酸化性を低下させるため低く抑える必要がある。そのためには、Al濃度は0.10~1.00mass%に制御して、酸素濃度を0.0002~0.0030mass%にする必要がある。これより、Caは0.002mass%以下にする必要がある。
Ca: 0.002 mass % or less Ca is an element mixed from CaO in the slag in the alloy of the present invention, as described above. Ca forms a large amount of Ca—Al oxide-based inclusions and consumes Al in the alloy to lower the oxidation resistance, so it must be kept low. For that purpose, it is necessary to control the Al concentration to 0.10 to 1.00 mass% and the oxygen concentration to 0.0002 to 0.0030 mass%. Therefore, Ca should be 0.002 mass% or less.
希土類元素(REM)であるLa、Ce、Yいずれかの一種または二種以上の総重量:0.001~0.010mass%
REM(La、Ce、Y)は合金の熱間加工性や表面酸化スケールと母材表面の密着性を高め、耐酸化性を向上させる効果があり、微量でも顕著な効果が得られる。さらに、合金中に固溶しているSと化合物を形成することにより、表面酸化スケールの構成元素であるCrとSとの化合物の形成を抑制、局所的なCr量低減を防止できる効果が期待できる。また、REMは一般的に複数のREMを含有した合金であるミッシュメタルとして原料に使用されるが、REMのいずれか一種を含有したFe-Ni合金を使用する場合もある。しかし、過剰な添加は合金の熱間加工性および溶接性が低下し、REM系介在物が過剰に形成することによりかえって表面酸化スケールの密着性が低下する。さらに、連続鋳造時にイマースノズルの閉塞を引き起こし製造性が著しく悪化する。これより本発明では、REMの添加量は0.001~0.010mass%とした。好ましくは0.002~0.009mass%、より好ましくは0.003~0.008mass%である。
Total weight of one or more of La, Ce, and Y that are rare earth elements (REM): 0.001 to 0.010 mass%
REM (La, Ce, Y) has the effect of enhancing the hot workability of the alloy and the adhesion between the surface oxide scale and the surface of the base material, and improving the oxidation resistance. Furthermore, by forming a compound with S that is dissolved in the alloy, it is expected that the formation of a compound of Cr and S, which is a constituent element of the surface oxide scale, can be suppressed, and the effect of preventing a local decrease in the amount of Cr can be expected. can. REM is generally used as a raw material as a misch metal, which is an alloy containing a plurality of REMs, but an Fe--Ni alloy containing any one of REMs may be used. Excessive addition, however, lowers the hot workability and weldability of the alloy, and excessive formation of REM inclusions lowers the adhesion of surface oxide scale. Furthermore, during continuous casting, clogging of the immerse nozzle is caused, and the productivity is remarkably deteriorated. Accordingly, in the present invention, the amount of REM added is set to 0.001 to 0.010 mass%. It is preferably 0.002 to 0.009 mass%, more preferably 0.003 to 0.008 mass%.
85≧0.3×Si+1.5×Ni+1.3×Cr+5.8×Al+7.7×Zr+2.7×Ti+2173×REM―3582×S―32.9×Mo―2448×B≧47…(1)
(1)式は、Fe-Cr-Ni合金の耐酸化性において、合金表面に形成する表面酸化スケールに影響する元素について、その影響の程度を重回帰分析により式として表したものである。Si、Ni、Cr、Al、TI、Zr、REM(La、Ce、Y)は7%O2―16%H2O―10%CO2―0.5%CO―0.1%NO2―bal.N2からなる混合ガス雰囲気中で室温と700~900℃程度の高温を繰り返すようなサイクル試験で評価される耐酸化性を向上させる。一方でSは酸化皮膜と母材の密着性を低下させることで酸化皮膜を脱落させ、酸化を促進させてしまう。Moは含有量が多い場合に高温環境下でかつ表面の酸素ポテンシャルが少ない場合において、Moが優先酸化を起こして酸化スケールの剥離が生じてしまう。またBは含有量が多い場合、合金の酸化スケールをポーラス状とするため、高温時における酸化速度が増大し、スケールの増大と剥離を促進させてしまう。加えて、耐酸化性向上に寄与する合金元素の過剰な添加は表面酸化スケールの成長過多によりかえって密着性が低下し、表面疵発生の原因となる介在物が多量に生成されるため好ましくない。そのため、これら元素は(1)式に基づいて下限を47以上、上限を85以下とする。好ましくは48以上、84以下であり、より好ましくは50以上、83以下である。
85≧0.3×Si+1.5×Ni+1.3×Cr+5.8×Al+7.7×Zr+2.7×Ti+2173×REM-3582×S-32.9×Mo-2448×B≧47 (1)
The formula (1) expresses the degree of influence of the elements that affect the surface oxide scale formed on the alloy surface in the oxidation resistance of the Fe--Cr--Ni alloy by multiple regression analysis. Si, Ni, Cr, Al, TI, Zr, and REM (La, Ce, Y) are 7% O 2 -16% H 2 O-10% CO 2 -0.5% CO-0.1% NO 2 - bal. It improves oxidation resistance evaluated by a cycle test in which room temperature and high temperature of about 700 to 900° C. are repeated in a mixed gas atmosphere of N 2 . On the other hand, S degrades the adhesion between the oxide film and the base material, causing the oxide film to come off and promotes oxidation. When the Mo content is high, in a high-temperature environment and when the oxygen potential on the surface is low, Mo causes preferential oxidation, resulting in peeling of the oxide scale. In addition, when the B content is large, the oxidized scale of the alloy becomes porous, so that the oxidation rate increases at high temperatures, which promotes scale growth and exfoliation. In addition, excessive addition of alloying elements that contribute to the improvement of oxidation resistance is not preferable because the excessive growth of surface oxidized scales reduces the adhesion and produces a large amount of inclusions that cause surface defects. Therefore, the lower limit of these elements is 47 or more and the upper limit is 85 or less based on the formula (1). It is preferably 48 or more and 84 or less, more preferably 50 or more and 83 or less.
40≧0.6×Si+1.3×Cr+23.53×Al+5.88×Ti+3074×REM―5067×S―0.8×Mn―816×N≧0…(2)
(2)式は、Fe-Cr-Ni合金の耐酸化性において、表面酸化スケールの直下に形成する内部酸化物層の形成挙動に影響する元素について、その影響の程度を回帰分析により式として表したものである。REM、Si、Cr、Al、Tiは7%O2―16%H2O―10%CO2―0.5%CO―0.1%NO2―bal.N2からなる混合ガス雰囲気中で室温と700~900℃程度の高温を繰り返すようなサイクル試験で合金表面に形成する酸化スケールの直下に形成する内部酸化物層においてそれぞれ内部酸化物を密に形成し、酸素の内方拡散抑制による酸化速度低減および耐酸化性を向上させる。一方でSはCrと化合物を形成することにより、内部酸化物およびそれが遷移して表面酸化スケールを形成する際に必要なCrが消費されてしまう。またMnは同様に内部酸化物を形成するが、多量に含有量が多い場合はかえって耐酸化性が低下してしまう。Nは耐酸化性向上に寄与するAlとTiとAlN、TiNをそれぞれ形成し、Al、Tiの効果を減じてしまう。加えて、耐酸化性向上に寄与する合金元素の過剰な添加は表面疵発生の原因となる介在物が多量に生成されるため好ましくない。そのため、これら元素は(2)式に基づいて下限を0以上、上限を40以下とする。好ましくは10以上、39以下であり、より好ましくは20以上、38以下である。
40≧0.6×Si+1.3×Cr+23.53×Al+5.88×Ti+3074×REM-5067×S-0.8×Mn-816×N≧0 (2)
Formula (2) expresses the degree of influence of elements that affect the formation behavior of the internal oxide layer formed directly under the surface oxide scale in the oxidation resistance of the Fe--Cr--Ni alloy by regression analysis. It is what I did. REM, Si, Cr, Al, and Ti are 7%O2-16% H2O - 10%CO2-0.5%CO - 0.1%NO2 - bal. In the internal oxide layer formed directly under the oxide scale formed on the alloy surface in a cycle test that repeats room temperature and high temperature of about 700 to 900 ° C in a mixed gas atmosphere consisting of N 2 , internal oxides are formed densely. It reduces the oxidation rate and improves the oxidation resistance by suppressing the inward diffusion of oxygen. On the other hand, by forming a compound with Cr, S consumes the internal oxide and the Cr required when it transitions to form a surface oxide scale. Mn likewise forms an internal oxide, but if the content is too large, the oxidation resistance rather decreases. N forms Al, Ti, AlN, and TiN, respectively, which contribute to improving oxidation resistance, and reduces the effects of Al and Ti. In addition, excessive addition of alloying elements that contribute to the improvement of oxidation resistance is not preferable because it produces a large amount of inclusions that cause surface defects. Therefore, these elements have a lower limit of 0 or more and an upper limit of 40 or less based on the formula (2). It is preferably 10 or more and 39 or less, more preferably 20 or more and 38 or less.
3.2≦ REM / S…(3)
合金の熱間加工性および耐酸化性を向上させる効果を十分に得るための指標として、希土類元素(REM)と化合物を形成するSとの含有量の関係が、3.2≦REM/Sを満足することにより、Sを介在物として固定するのに十分なREM含有量を有し、上記の効果を得ることができる。一方、3.2未満ではREMの効果が十分に得られないため望ましくない。
3.2≦REM/S (3)
As an index for sufficiently obtaining the effect of improving the hot workability and oxidation resistance of the alloy, the relationship between the content of the rare earth element (REM) and the S that forms the compound is 3.2 ≤ REM / S By satisfying the requirements, the REM content is sufficient to fix S as inclusions, and the above effect can be obtained. On the other hand, if it is less than 3.2, the effect of REM cannot be sufficiently obtained, which is undesirable.
表面酸化スケールとその直下に形成する内部酸化物層の定義
図1に示すように、本発明の一実施形態に係るFe-Cr-Ni合金板は上記(1)式、(2)式、および(3)式を満足する成分組成を有するFe-Cr-Ni合金を素地BMとしている。7%O2―16%H2O―10%CO2―0.5%CO―0.1%NO2―bal.N2からなる混合ガス雰囲気中で室温から700~900℃を繰り返すサイクル試験において本発明のFe-Cr-Ni合金母材の表面にCr酸化物を主体とした酸化スケールが、併せてスケール/合金界面直下にはCr、Si、Mn、Al、Ti、REMを少なくとも一種類以上含有した内部酸化物層がそれぞれ形成する。このとき、同図において表面酸化スケールの厚みは上記試験後の断面ミクロ組織観察において、表面酸化スケールの最表層からスケール/合金界面までの領域LEを示し、内部酸化物層の厚みはGDS分析において酸素強度がスケール/合金界面での強度ピークに対して1/4となる位置までの領域LIを示す。また、後述の内部酸化物層面積率の測定範囲は上記スケール/合金界面を上端とした界面方向0.05mmと深さ方向0.1mmの範囲で囲った0.005mm2内におけるCr、Si、Mn、Al、Ti、REMを少なくとも一種類以上含有した内部酸化物の面積率を測定する。
Definition of Surface Oxide Scale and Internal Oxide Layer Formed Immediately Below As shown in FIG. An Fe--Cr--Ni alloy having a composition satisfying the formula (3) is used as the base BM. 7%O2-16% H2O - 10%CO2-0.5%CO - 0.1%NO2 - bal. In a cycle test that repeats from room temperature to 700 to 900 ° C in a mixed gas atmosphere consisting of N2 , an oxide scale mainly composed of Cr oxide is formed on the surface of the Fe-Cr-Ni alloy base material of the present invention. An internal oxide layer containing at least one of Cr, Si, Mn, Al, Ti and REM is formed directly under the interface. At this time, in the same figure, the thickness of the surface oxide scale indicates the region LE from the outermost layer of the surface oxide scale to the scale/alloy interface in the cross-sectional microstructure observation after the test, and the thickness of the internal oxide layer in the GDS analysis. Region LI is shown up to the position where the oxygen intensity is 1/4 of the intensity peak at the scale/alloy interface. In addition, the measurement range of the internal oxide layer area ratio described later is Cr, Si, The area ratio of internal oxides containing at least one of Mn, Al, Ti and REM is measured.
7%O 2 ―16%H 2 O―10%CO 2 ―0.5%CO―0.1%NO 2 ―bal.N 2 からなる混合ガス雰囲気中で室温から700~900℃を繰り返すサイクル試験にて形成される表面酸化スケールが10~100μmの厚さを有すること
本発明のFe-Cr-Ni合金においては7%O2―16%H2O―10%CO2―0.5%CO―0.1%NO2―bal.N2からなる混合ガス雰囲気中で室温から700~900℃を繰り返すサイクル試験において合金母材の表面にCr酸化物を主体とした酸化スケールを形成し、上記高温環境中における耐酸化性を得る。このとき、表面酸化スケールの厚みが10μm未満の場合は十分な耐酸化性が得られず、一方で100μmを上回ると表面酸化スケールの剥離性が増加してしまい、表面酸化スケールと母材表面の密着性が損なわれる。これより、上記高温環境中において形成する保護性の表面酸化スケールは10~100μmの厚さが必要となる。好ましくは12~90μm、より好ましくは12~80μmである。
7% O2-16 % H2O - 10% CO2-0.5%CO - 0.1%NO2- bal . The thickness of the surface oxide scale formed in a cycle test in a mixed gas atmosphere consisting of N2 from room temperature to 700 to 900° C has a thickness of 10 to 100 µm. O2-16% H2O - 10%CO2-0.5%CO - 0.1%NO2 - bal. In a cycle test in which temperatures from room temperature to 700°C to 900°C are repeated in a mixed gas atmosphere of N2 , an oxide scale mainly composed of Cr oxide is formed on the surface of the alloy base metal to obtain oxidation resistance in the high-temperature environment. At this time, if the thickness of the surface oxide scale is less than 10 μm, sufficient oxidation resistance cannot be obtained, while if it exceeds 100 μm, the peelability of the surface oxide scale increases, and the surface oxide scale and the base material surface are separated. Adhesion is impaired. Therefore, the protective surface oxide scale formed in the high temperature environment must have a thickness of 10 to 100 μm. It is preferably 12 to 90 μm, more preferably 12 to 80 μm.
[表面酸化スケール直下の内部酸化物層面積率]:≧30%/0.005mm 2
高温環境下に暴露された際、合金表面には層状の表面酸化スケールが、併せてスケール/合金界面直下には内部酸化物層がそれぞれ形成する。内部酸化物層は外層の表面酸化スケールに遷移する前のCr系酸化物および、Si、Mn、Al、Ti、REMを少なくとも一種類以上含んだ酸化物で構成される。酸化反応において、高温環境下に存在する酸素が合金内部へと拡散する際に内部酸化物中を通る場合と合金母材を通る場合では酸化物中を通るほうが遅い。これより、内部酸化物層の面積率が十分に確保されれば酸素の内方への拡散を抑制できる。本発明では、内部酸化物層0.005mm2内における内部酸化物の面積率が30%以上となることで上記の効果が十分に得ることができる。一方、面積率が30%未満の場合では上記の効果が十分に得られないため望ましくない。
[Internal oxide layer area ratio immediately below surface oxide scale]: ≧30%/0.005 mm 2
When exposed to a high-temperature environment, a layered surface oxide scale is formed on the alloy surface, and an internal oxide layer is formed immediately below the scale/alloy interface. The inner oxide layer is composed of a Cr-based oxide before transitioning to the surface oxide scale of the outer layer and an oxide containing at least one of Si, Mn, Al, Ti and REM. In the oxidation reaction, when oxygen present in a high-temperature environment diffuses into the alloy, it is slower to pass through the oxide than through the inner oxide and through the alloy base material. Thus, if the area ratio of the internal oxide layer is sufficiently ensured, the inward diffusion of oxygen can be suppressed. In the present invention, the above effect can be sufficiently obtained by setting the area ratio of the internal oxide in the internal oxide layer of 0.005 mm 2 to 30% or more. On the other hand, if the area ratio is less than 30%, the above effect cannot be obtained sufficiently, which is undesirable.
上記(1)式の限定式の特定方法は、以下の通りである。
Fe-30%NI-20%Cr―0.8%Mnを基本組成とし、これのSi、Ni、Cr、Al、Ti、Zr、La、Ce、Y、B、Mo、Sの添加量を変化させた各種合金を真空溶解炉で溶製し、熱間鍛造の後、8mmt×80mmwの熱間鍛造板を作製した。得られた熱間鍛造板を1200℃×10分の条件で固溶化熱処理、表面研削後に冷間圧延にて2mmtとした後、1150℃×1分の条件で固溶化熱処理を行った。その後、20mm×30mmに切断し、表面を湿式研磨#320で仕上げて試験片とした。得られた試験片を7%O2―16%H2O―10%CO2―0.5%CO―0.1%NO2―bal.N2からなる混合ガス雰囲気中で900℃×10分、700℃×10分、900℃×10分、室温×20分を1サイクルとした繰り返し酸化試験を行った。200サイクル後の試験片について、剥離したスケール重量を除いた質量変化を試験前の表面積で除した値で評価した。
A method of specifying the limiting formula of the above formula (1) is as follows.
The basic composition is Fe-30%Ni-20%Cr-0.8%Mn, and the amount of Si, Ni, Cr, Al, Ti, Zr, La, Ce, Y, B, Mo, and S added is changed. The various alloys obtained were melted in a vacuum melting furnace, hot forged, and then hot forged plates of 8 mmt×80 mmw were produced. The resulting hot forged plate was subjected to solution heat treatment under conditions of 1200° C.×10 minutes, surface grinding, cold rolling to 2 mmt, and solution heat treatment under conditions of 1150° C.×1 minute. After that, it was cut into a size of 20 mm×30 mm, and the surface was finished by wet polishing #320 to obtain a test piece. The resulting test piece was subjected to 7% O 2 -16% H 2 O-10% CO 2 -0.5% CO-0.1% NO 2 -bal. A repeated oxidation test was performed in a mixed gas atmosphere of N2 , with one cycle of 900°C x 10 minutes, 700°C x 10 minutes, 900°C x 10 minutes, and room temperature x 20 minutes. The test piece after 200 cycles was evaluated by the value obtained by dividing the change in mass excluding the weight of the peeled scale by the surface area before the test.
上記試験結果から、Fe-Cr-Ni合金の耐酸化性への添加元素の影響度合いが明らかとなり、重回帰分析により求めたのが、(1)式で表される成分組成の関係式であり、47以上85以下とすることで、十分な耐酸化性を有することがわかる。 From the above test results, the degree of influence of the additive elements on the oxidation resistance of the Fe—Cr—Ni alloy was clarified, and the relational expression of the component composition represented by the formula (1) was obtained by multiple regression analysis. , 47 or more and 85 or less, the oxidation resistance is sufficient.
上記(2)式の限定式の特定方法は、以下の通りである。
Fe-30%Ni-20%Cr―0.2%Zrを基本組成とし、これのSi、Cr、Al、Ti、La、Ce、Y、N、Mn、Sの添加量を変化させた各種合金を真空溶解炉で溶製し、熱間鍛造の後、8mmt×80mmwの熱間鍛造板を作製した。得られた熱間鍛造板を1200℃×10分の条件で固溶化熱処理、表面研削後に冷間圧延にて2mmtとした後、1150℃×1分の条件で固溶化熱処理を行った。その後、20mm×30mmに切断し、表面を湿式研磨#320で仕上げて試験片とした。得られた試験片を7%O2―16%H2O―10%CO2―0.5%CO―0.1%NO2―bal.N2からなる混合ガス雰囲気中で900℃×20分、700℃×10分、900℃×10分、室温×20分を1サイクルとした繰り返し酸化試験を行った。200サイクル後の試験片を切断し断面を観察できるようCuメッキ処理を施した後に埋没試料を作製、湿式研磨を行い、最終的にバフ研磨で仕上げ鏡面とし観察に供した。これをFE-SEMで断面ミクロ組織観察、付属のEDSで酸化物の同定と内部酸化物層の面積率を測定した。面積率は表面酸化スケール直下の内部酸化物層内の0.005mm2において×2000倍で観察したSEM像から求めた。塊状の酸化物は2辺の長さを測定し円近似しその面積を求めた。線状の酸化物は長辺、短辺を測定し、長方形として面積を求めた。これにより、表面酸化スケール直下の観察面積0.005mm2における内部酸化物層の面積率として評価した。面積率は30%以上であることが好ましい様態としている。
A method of specifying the limiting formula of the above formula (2) is as follows.
Various alloys having a basic composition of Fe-30%Ni-20%Cr-0.2%Zr with varying amounts of Si, Cr, Al, Ti, La, Ce, Y, N, Mn and S added. was melted in a vacuum melting furnace, and after hot forging, a hot forged plate of 8 mmt × 80 mmw was produced. The resulting hot forged plate was subjected to solution heat treatment under conditions of 1200° C.×10 minutes, surface grinding, cold rolling to 2 mmt, and solution heat treatment under conditions of 1150° C.×1 minute. After that, it was cut into a size of 20 mm×30 mm, and the surface was finished by wet polishing #320 to obtain a test piece. The resulting test piece was subjected to 7% O 2 -16% H 2 O-10% CO 2 -0.5% CO-0.1% NO 2 -bal. A repeated oxidation test was performed in a mixed gas atmosphere of N2 , with one cycle of 900°C x 20 minutes, 700°C x 10 minutes, 900°C x 10 minutes, and room temperature x 20 minutes. After 200 cycles, the test piece was cut and Cu-plated so that the cross section could be observed, then a buried sample was prepared, wet-polished, and finally buffed to a mirror finish for observation. The cross-sectional microstructure of this was observed by FE-SEM, and the oxide was identified and the area ratio of the inner oxide layer was measured by the attached EDS. The area ratio was obtained from an SEM image observed at a magnification of ×2000 at 0.005 mm 2 in the internal oxide layer immediately below the surface oxide scale. The area of the massive oxide was obtained by measuring the length of two sides and approximating it to a circle. The long side and short side of the linear oxide were measured, and the area was determined as a rectangle. This was evaluated as the area ratio of the inner oxide layer in the observed area of 0.005 mm 2 immediately below the surface oxide scale. It is preferable that the area ratio is 30% or more.
上記試験結果から、Fe-Cr-Ni合金の耐酸化性における内部酸化物層の形成挙動に対する添加元素の影響度合いが明らかとなり、重回帰分析により求めたのが、(2)式で表される成分組成の関係式であり、0以上40以下とすることで、十分な耐酸化性を有することがわかる。 From the above test results, the degree of influence of the additive element on the formation behavior of the internal oxide layer in the oxidation resistance of the Fe—Cr—Ni alloy was clarified, and the result obtained by multiple regression analysis was expressed by the formula (2). It is a relational expression of the component composition, and it can be seen that sufficient oxidation resistance is obtained by making it 0 or more and 40 or less.
次に、本発明のオーステナイト系Fe-Cr-Ni合金の製造方法について説明する。
本発明のオーステナイト系Fe-Cr-Ni合金は、鉄屑、ステンレス屑、フェロニッケル、フェロクロムなどの原料を電気炉で溶解し、AOD(Argon Oxygen Decarburization)炉またはVOD(Vacuum Oxygen Decarbutization)炉にて、酸素および希ガスの混合ガスを吹錬して脱炭精錬し、生石灰、Fe-Si合金、Al等を添加してスラグ中のCr酸化物を還元処理した後、蛍石を添加してCaO-SiO2-Al2O3-MgO-F系スラグを形成して脱酸および脱硫し、その後La、Ce、Yのいずれか一種を含有したNi基合金を添加した。CaO-SiO2-Al2O3-MgO-F系スラグを用いる理由は、上記の通り、脱酸、脱硫を効果的に実行できるためであり、さらにREM添加時にREMが酸化、硫化させずに効果的に添加できる点にある。この際、スラグ中CaO濃度は、40~80%の範囲が望ましい。つまり、40%未満では上記の脱硫反応が進行しない。80%以上ではCaが溶鋼中に0.002%を超えて混入させてしまう。また、Al2O3濃度は50%以下が望ましい。その理由は、スラグ中のアルミナ活量が低くないと脱酸が進行し難く、ひいては脱硫も困難となるからである。精錬後、連続鋳造機にてスラブを製造し、その後、上記鋼片を、熱間圧延し、あるいは、さらに冷間圧延して、薄鋼板、厚鋼板、形鋼、棒鋼、線材等の各種鋼材とするのが好ましい。連続鋳造機に限定されるものではなく、造塊-分塊圧延法で鋼片としても良い。
Next, a method for producing an austenitic Fe--Cr--Ni alloy according to the present invention will be described.
The austenitic Fe--Cr--Ni alloy of the present invention is produced by melting raw materials such as iron scraps, stainless steel scraps, ferronickel, and ferrochromium in an electric furnace, followed by an AOD (Argon Oxygen Decarburization) furnace or a VOD (Vacuum Oxygen Decarburization) furnace. , A mixed gas of oxygen and rare gas is blown for decarburization refining, quicklime, Fe—Si alloy, Al, etc. are added to reduce Cr oxide in the slag, and then fluorite is added to CaO A --SiO 2 --Al 2 O 3 --MgO--F system slag was formed, deoxidized and desulfurized, and then a Ni-based alloy containing any one of La, Ce and Y was added. The reason for using CaO-- SiO.sub.2 --Al.sub.2O.sub.3--MgO--F - based slag is that, as described above , deoxidation and desulfurization can be effectively carried out. The point is that it can be added effectively. At this time, the CaO concentration in the slag is preferably in the range of 40-80%. That is, if the content is less than 40%, the above desulfurization reaction does not proceed. If the content is 80% or more, more than 0.002% of Ca is mixed into the molten steel. Also, the Al 2 O 3 concentration is desirably 50% or less. The reason for this is that if the alumina activity in the slag is not low, deoxidation will be difficult to proceed, and desulfurization will also be difficult. After refining, a slab is produced by a continuous casting machine, and then the billet is hot-rolled or further cold-rolled into various steel materials such as thin steel plate, thick steel plate, shaped steel, bar steel, wire rod, etc. is preferable. It is not limited to a continuous casting machine, and a steel slab may be produced by an ingot casting-blooming rolling method.
スクラップ、フェロクロム、フェロニッケル、ステンレス屑などを所定の比率に調整した原料を、70トン規模の電気炉にて溶解し、AOD炉またはVOD炉にて酸素および希ガスの混合ガスを吹錬して脱炭精錬した。その後、生石灰、Fe-Si合金、Al等を添加してスラグ中のCr酸化物を還元処理した後、蛍石を添加してCaO-SiO2-Al2O3-MgO-F系スラグを形成して脱酸および脱硫した。その後、Ni―20%La、Ni―20%Ce、ならびにNi―20%Yのいずれか一種または二種以上を所定量添加し、連続鋳造法で鋳片とした。表1に示した種々の成分組成に調整した後、連続鋳造して鋼片(スラブ)とした。表1中に示した各成分は以下の通り測定した。 Scrap, ferrochromium, ferronickel, stainless steel scrap, etc. are melted in a 70-ton scale electric furnace, and a mixed gas of oxygen and rare gas is blown in an AOD furnace or a VOD furnace. Decarburized and refined. Thereafter, quicklime, Fe—Si alloy, Al, etc. are added to reduce Cr oxide in the slag, and then fluorite is added to form CaO—SiO 2 —Al 2 O 3 —MgO—F system slag. was deoxidized and desulfurized. Thereafter, one or more of Ni-20% La, Ni-20% Ce, and Ni-20% Y were added in predetermined amounts, and cast slabs were obtained by continuous casting. After adjusting to various chemical compositions shown in Table 1, steel slabs were obtained by continuous casting. Each component shown in Table 1 was measured as follows.
(1)C、Sの組成は、炭素・硫黄同時分析装置(酸素気流中燃焼-赤外線吸収法)を用いて測定した。
(2)Nの組成は、酸素・窒素同時分析装置(不活性ガス-インパルス加熱溶融法)を用いて分析した。
(3)C、S、N以外の組成、ならびにスラグ成分は蛍光X線分析を用いた検量線法により分析した。
(1) The composition of C and S was measured using a carbon/sulfur simultaneous analyzer (combustion in an oxygen stream-infrared absorption method).
(2) The composition of N was analyzed using an oxygen/nitrogen simultaneous analyzer (inert gas-impulse heat melting method).
(3) Compositions other than C, S and N and slag components were analyzed by a calibration curve method using fluorescent X-ray analysis.
次いで、上記鋼片(スラブ)を8mmまで熱間圧延し、冷間圧延、熱処理および酸洗を繰り返して板厚2~3mmの冷延コイルを製造した。最終焼鈍温度は1150℃で1分間行った。その板より幅:20mm、長さ:30mm、厚さ:2mmの試験片を採取した。 Next, the billet (slab) was hot-rolled to 8 mm, and cold-rolled, heat-treated, and pickled repeatedly to produce a cold-rolled coil having a thickness of 2 to 3 mm. The final annealing temperature was 1150° C. for 1 minute. A test piece having a width of 20 mm, a length of 30 mm, and a thickness of 2 mm was taken from the plate.
<高温酸化試験>
高温環境下の耐酸化性を評価するため、上記試験片の表面を#320のエメリー紙で湿式研磨したものを用意し、高真空雰囲気熱処理炉を用いて5.0×10―3Paまで真空引きを行ったのち7%O2―16%H2O―10%CO2―0.5%CO―0.1%NO2―bal.N2からなる混合ガス雰囲気中で900℃×10分、40℃/minの降温速度で温度調整した後700℃×10分、40℃/minの昇温速度で温度調整した後900℃×10分、その後室温×20分を1サイクルとした繰り返し酸化試験を行った。200サイクル後の試験片について、剥離したスケール重量を除いた質量変化を試験前の表面積で除した値(mg/cm2)を酸化減量として評価した。酸化減量が50mg/cm2未満のものを耐酸化性良好(○)、50mg/cm2以上のものを耐酸化性不良(×)と判定した。併せて、試験後の断面ミクロ組織観察を行い表面酸化スケールの厚みと直下に形成した内部酸化物層の面積率を測定した。
<High temperature oxidation test>
In order to evaluate the oxidation resistance in a high-temperature environment, the surface of the test piece was wet-polished with #320 emery paper, and a high-vacuum atmosphere heat treatment furnace was used to evacuate to 5.0 × 10 -3 Pa. After drawing, 7% O 2 -16% H 2 O-10% CO 2 -0.5% CO-0.1% NO 2 -bal. 900 ° C. x 10 minutes in a mixed gas atmosphere consisting of N 2 , after temperature adjustment at a temperature decrease rate of 40 ° C./min, 700 ° C. x 10 minutes, after temperature adjustment at a temperature increase rate of 40 ° C./min, 900 ° C. x 10 minutes minutes, and then room temperature x 20 minutes as one cycle. For the test piece after 200 cycles, the value (mg/cm 2 ) obtained by dividing the change in mass excluding the weight of the exfoliated scale by the surface area before the test was evaluated as the weight loss due to oxidation. Those with an oxidation weight loss of less than 50 mg/cm 2 were judged to have good oxidation resistance (○), and those of 50 mg/cm 2 or more were judged to have poor oxidation resistance (×). In addition, cross-sectional microstructure observation was performed after the test, and the thickness of the surface oxide scale and the area ratio of the internal oxide layer formed immediately below were measured.
表1、2に示したNo.1~17までの鋼板は本発明の条件を満たす発明例であり、優れた耐酸化性を有していた。一方、No.18~37までの鋼板は比較例である。
No.18の鋼板はAlの含有量が低かったため(2)式を満足せず、スラグ中アルミナ濃度も54%と高く脱酸も弱くなってしまったことにより酸素濃度が高くなり、耐酸化性に有用な元素が酸化物を形成することから耐酸化性に劣った。またC含有量も高いため表面疵の原因となる介在物が形成されてしまい、表面品質に劣ってしまった。
No.19の鋼板はSiの含有量が高くなってしまったためσ相などの金属間化合物起因による表面疵が発生し、さらにMnの含有量が高いことから(2)式を満足せず、耐酸化性に劣ってしまった。
No.20の鋼板はNi含有量が低かったため(1)式を満足しない。また、Alの含有量が高いため、表面疵の原因となる多量の炭窒化物が形成されてしまい、表面品質に劣った。さらに、スラグ中CaO濃度も85%と高かったことと、酸素濃度が低すぎた結果、Ca濃度が高くなりCa-Al酸化物系介在物を多く形成してしまい、Alの効果を失ってしまった。
No.21の鋼板はB含有量が高かったため、(1)式を満足せず耐酸化性に劣った。また、スラグ中Al2O3濃度が52%と高く、CaO濃度が28%と低くなってしまったため、O含有量が高くなり浸漬ノズル中にアルミナ系介在物が付着して、それらが脱落することで表面疵が多くなってしまった。
No.22の鋼板はCr含有量が高かったため、(1)式を満足せず表面酸化スケールが過剰に成長して密着性の乏しいスケールを形成し、耐酸化性がかえって悪くなった。また表面疵の原因となるCr窒化物が生成されるため、表面品質に劣った。
No.23の鋼鈑はTiの含有量が高かったため(1)式を満足せず、表面疵の原因となる炭窒化物が形成されてしまい、表面品質に劣った。
No.24の鋼鈑はREMの含有量が低かったため(3)式を満足せず、耐酸化性を向上させる効果や耐酸化性を阻害するSを介在物として固定する効果が十分に得られなかった。
No.25の鋼板はZr含有量が高いため(1)式を満足せず、多量の炭窒化物形成を原因とした表面疵が発生し、表面品質に劣った。
No.26の鋼鈑は(1)式を満足しなかった。また、Mo含有量が高いためスケールの密着性が低下し、耐酸化性に劣ってしまった。
No.27の鋼鈑Cr含有量が低く、(1)式および(2)式を満足しなかったため、耐酸化性に劣った。また、(3)式を満足しないため耐酸化性を向上させる効果や耐酸化性を阻害するSを介在物として固定する効果が十分に得られない。
No.28の鋼板はREM含有量が高いため、(1)式および(2)式を満足しない。また、熱間加工性および溶接性が低下し、連続鋳造時にイマースノズルの閉塞を引き起こし製造性が著しく悪化することから製造性に劣る。
No.29の鋼板はスラグ中のCaO濃度が35%と低かったことから、脱硫反応が進行しなかった。そのため、Sの含有量が高くなってしまったため、(1)式および(2)式を満足せず、多量の介在物が形成され、表面酸化スケール形成に必要なCrが消費されてしまうことから、耐酸化性に劣った。
No.30の鋼板はNi含有量が高かったため(1)式を満足せず、熱間加工性の劣化や熱間変形抵抗の増大、更に製造コストが高くなってしまったため、予定の原価を達成できなかった。また、Mnの含有量が低かったため、脱酸作用やオーステナイト相安定化といった効果が十分に得られない結果となった。また、(3)式を満足しなかったため耐酸化性を向上させる効果や耐酸化性を阻害するSを介在物として固定する効果が十分に得られなかった。
No.31の鋼板は(1)式を満足せず、また、スラグ中CaO濃度が83%と高くなってしまったため、Caの含有量が高くなってしまった。Ca-Al酸化物系介在物を多く形成し、合金中のAlが消費されてしまい有効なAlが低下してしまったことから耐酸化性に劣った。
No.32の鋼板はNの含有量が高かったため(2)式を満足せず、耐酸化性に寄与するCr、Al、およびTiが窒化物として析出してしまい、十分な内部酸化物層が形成できず、耐酸化性に劣ってしまった。
No.33の鋼板はTiおよびZrの含有量が高かったため(1)式を満足せず、表面疵の原因となる多量の炭窒化物形成が形成されてしまい、表面品質に劣った。
No.34の鋼鈑はTiおよびZrの含有量が低かったため(1)式および(2)式を満足せず、耐酸化性に寄与するTiおよびZrの効果が十分に得られず耐酸化性に劣ってしまった。
No.35は各元素の成分範囲は満足しているが、(1)式、(2)式、および(3)式を満足しなかったため、十分な耐酸化性を有さなかった。
No.36は各元素の成分範囲は満足していたが、(2)式、および(3)式を満足しなかったため、十分な耐酸化性を有さなかった。
No.37は各元素の成分範囲は満足していたが、(1)式を満足しなかったため、十分な耐酸化性を有することができなかった。
Steel sheets Nos. 1 to 17 shown in Tables 1 and 2 are invention examples satisfying the conditions of the present invention and had excellent oxidation resistance. On the other hand, the steel sheets Nos. 18 to 37 are comparative examples.
No. The steel sheet No. 18 did not satisfy the formula (2) because the Al content was low, and the alumina concentration in the slag was as high as 54%, and the deoxidation was weak. Oxidation resistance was poor because some elements formed oxides. In addition, since the C content was high, inclusions causing surface flaws were formed, resulting in poor surface quality.
Since the steel sheet No. 19 has a high Si content, surface defects due to intermetallic compounds such as the σ phase are generated, and the high Mn content does not satisfy the formula (2). It has deteriorated in chemical resistance.
Steel sheet No. 20 did not satisfy the formula (1) because of its low Ni content. In addition, since the Al content was high, a large amount of carbonitrides that caused surface defects were formed, resulting in poor surface quality. Furthermore, the CaO concentration in the slag was as high as 85%, and the oxygen concentration was too low. rice field.
Since the steel sheet of No. 21 had a high B content, it did not satisfy the formula (1) and was inferior in oxidation resistance. In addition, since the Al 2 O 3 concentration in the slag was as high as 52% and the CaO concentration was as low as 28%, the O content increased and alumina-based inclusions adhered to the submerged nozzle and fell off. As a result, the number of surface defects increased.
Since the steel sheet No. 22 had a high Cr content, the formula (1) was not satisfied, and the surface oxide scale grew excessively to form a scale with poor adhesion, resulting in rather poor oxidation resistance. Moreover, since Cr nitrides that cause surface flaws are generated, the surface quality is inferior.
Steel plate No. 23 did not satisfy the formula (1) because of its high Ti content, and carbonitrides that cause surface flaws were formed, resulting in poor surface quality.
Steel plate No. 24 did not satisfy the formula (3) because the content of REM was low, and the effect of improving oxidation resistance and the effect of fixing S, which inhibits oxidation resistance, as inclusions was sufficiently obtained. I didn't.
Since the steel sheet of No. 25 had a high Zr content, it did not satisfy the formula (1) and had surface defects caused by the formation of a large amount of carbonitrides, resulting in poor surface quality.
Steel plate No. 26 did not satisfy the formula (1). Moreover, since the Mo content is high, the adhesion of scale is lowered, resulting in poor oxidation resistance.
Steel sheet No. 27 had a low Cr content and did not satisfy the formulas (1) and (2), and therefore was inferior in oxidation resistance. In addition, since the formula (3) is not satisfied, the effect of improving oxidation resistance and the effect of fixing S, which inhibits oxidation resistance, as inclusions cannot be obtained sufficiently.
Steel sheet No. 28 has a high REM content and does not satisfy the formulas (1) and (2). In addition, hot workability and weldability are deteriorated, and clogging of the immerse nozzle is caused during continuous casting, which significantly deteriorates productivity, resulting in poor productivity.
Since the steel sheet of No. 29 had a low CaO concentration of 35% in the slag, the desulfurization reaction did not progress. Therefore, since the S content becomes high, the formulas (1) and (2) are not satisfied, a large amount of inclusions are formed, and the Cr necessary for the formation of the surface oxide scale is consumed. , poor in oxidation resistance.
Steel sheet No. 30 had a high Ni content and did not satisfy the formula (1). could not. In addition, since the Mn content was low, the effects of deoxidizing and stabilizing the austenite phase were not sufficiently obtained. In addition, since the formula (3) was not satisfied, the effect of improving oxidation resistance and the effect of fixing S, which inhibits oxidation resistance, as inclusions could not be obtained sufficiently.
The steel sheet of No. 31 did not satisfy the formula (1), and the CaO concentration in the slag was as high as 83%, so the Ca content was high. A large amount of Ca—Al oxide-based inclusions was formed, Al in the alloy was consumed, and effective Al decreased, resulting in poor oxidation resistance.
Since the steel sheet of No. 32 had a high N content, it did not satisfy the expression (2), Cr, Al, and Ti, which contribute to oxidation resistance, precipitated as nitrides, and a sufficient internal oxide layer was formed. It could not be formed, resulting in poor oxidation resistance.
Steel sheet No. 33 had a high content of Ti and Zr and therefore did not satisfy the formula (1), resulting in the formation of a large amount of carbonitrides that cause surface flaws, resulting in poor surface quality.
Steel plate No. 34 did not satisfy the formulas (1) and (2) because the contents of Ti and Zr were low. was inferior to
Although No. 35 satisfied the component range of each element, it did not satisfy the formulas (1), (2) and (3), so it did not have sufficient oxidation resistance.
No. 36 satisfied the component range of each element, but did not satisfy the formulas (2) and (3), so it did not have sufficient oxidation resistance.
Although No. 37 satisfied the component range of each element, it did not satisfy the formula (1), so it could not have sufficient oxidation resistance.
本発明のオーステナイト系Fe-Ni-Cr合金は、上述した高温環境下における耐酸化性に加えて、耐熱性にも優れているため、熱交換器や燃焼部品などの高温環境にも好適に用いることができる。 The austenitic Fe--Ni--Cr alloy of the present invention has excellent heat resistance in addition to the oxidation resistance in high-temperature environments described above, so it is suitable for use in high-temperature environments such as heat exchangers and combustion parts. be able to.
1:表面酸化スケール層、2:内部酸化物層、3:界面
1: surface oxide scale layer, 2: internal oxide layer, 3: interface
Claims (6)
C:0.004~0.13%、
Si:0.15~1.0%、
Mn:0.03~2.0%、
P:≦0.040%、
S:≦0.003%、
Ni:20.0~38.0%、
Cr:18.0~28.0%、
Mo:≦1.0%、
Cu:≦1.0%、
N:≦0.03%、
B:≦0.01%、
Al:0.10~1.0%、
Ti、Zrの少なくとも一方をTi:0.10~1.0%、Zr:0.01~0.6%、
O:0.0002~0.0030%、
Ca:≦0.002%、
希土類元素(REM)であるLa、Ce、Yのいずれか一種または二種以上の総重量:0.001~0.010%
を含有し、残部がFeおよび不可避的な不純物からなる成分組成からなり、下記の(1)、(2)式を満足して含有することを特徴とするオーステナイト系Fe-Ni-Cr合金。
85≧0.3×Si+1.5×Ni+1.3×Cr+5.8×Al+7.7×Zr+2.7×Ti+2173×REM―3582×S―32.9×Mo―2448×B≧47…(1)
40≧0.6×Si+1.3×Cr+23.53×Al+5.88×Ti+3074×REM―5067×S―0.8×Mn―816×N≧0…(2)
(ここで、上記式中の各元素記号は、各元素の含有量(質量%)を示す。) C in mass %: 0.004 to 0.13%,
Si: 0.15 to 1.0%,
Mn: 0.03-2.0%,
P: ≤ 0.040%,
S: ≤ 0.003%,
Ni: 20.0 to 38.0%,
Cr: 18.0 to 28.0%,
Mo: ≤ 1.0%,
Cu: ≤ 1.0%,
N: ≤ 0.03%,
B: ≤ 0.01%,
Al: 0.10-1.0%,
At least one of Ti and Zr, Ti: 0.10 to 1.0%, Zr: 0.01 to 0.6%,
O: 0.0002 to 0.0030%,
Ca: ≤ 0.002%,
Total weight of one or more of La, Ce, and Y that are rare earth elements (REM): 0.001 to 0.010%
An austenitic Fe--Ni--Cr alloy characterized in that it has a component composition with the balance being Fe and unavoidable impurities, and contains the following formulas (1) and (2).
85≧0.3×Si+1.5×Ni+1.3×Cr+5.8×Al+7.7×Zr+2.7×Ti+2173×REM-3582×S-32.9×Mo-2448×B≧47 (1)
40≧0.6×Si+1.3×Cr+23.53×Al+5.88×Ti+3074×REM-5067×S-0.8×Mn-816×N≧0 (2)
(Here, each element symbol in the above formula indicates the content (mass%) of each element.)
3.2≦REM(La、Ce、Y)/S…(3)
(ここで、上記式中の各元素記号は、各元素の含有量(質量%)を示す。) The austenitic system according to claim 1, wherein the total weight of one or more of the rare earth elements (REM) La, Ce, and Y satisfies the following formula (3): Fe--Ni--Cr alloy.
3.2≦REM(La, Ce, Y)/S (3)
(Here, each element symbol in the above formula indicates the content (mass%) of each element.)
合金組成は、合金原料を溶解した後、精錬を行うことによって調整を行い、精錬では溶解させた合金原料(溶融合金)に酸素およびアルゴンの混合ガスを吹き込み脱炭し、窒素濃度を0.03%以下に制御した後、Cr還元し、その後、アルミニウム、石灰石および蛍石を溶融合金に添加して、CaO-SiO2-Al2O3-MgO-F系スラグを形成し、溶融合金中の酸素濃度を0.0002~0.0030mass%とし、その後にLa、Ce、Yのいずれか一種または二種以上含んだ原料を添加した後、鋳造を行いスラブを得て、これを熱間圧延工程に供することを特徴とするオーステナイト系Fe-Ni-Cr合金の製造方法。 A method for producing an austenitic Fe—Ni—Cr alloy according to any one of claims 1 to 5,
The alloy composition is adjusted by refining after melting the alloy raw material, and in the refining, a mixed gas of oxygen and argon is blown into the melted alloy raw material (molten alloy) to decarburize, and the nitrogen concentration is 0.03. % or less, Cr reduction, then aluminum, limestone and fluorite are added to the molten alloy to form CaO—SiO 2 —Al 2 O 3 —MgO—F system slag, After setting the oxygen concentration to 0.0002 to 0.0030 mass% and then adding a raw material containing one or more of La, Ce, and Y, casting is performed to obtain a slab, which is subjected to a hot rolling process. A method for producing an austenitic Fe—Ni—Cr alloy, characterized in that it is provided for.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022086913A JP7158618B1 (en) | 2022-05-27 | 2022-05-27 | Austenitic Fe-Ni-Cr alloy with excellent oxidation resistance and method for producing the same |
PCT/JP2023/017180 WO2023228699A1 (en) | 2022-05-27 | 2023-05-02 | AUSTENITIC Fe-Ni-Cr ALLOY HAVING EXCELLENT OXIDATION RESISTANCE AND METHOD FOR PRODUCING SAME |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022086913A JP7158618B1 (en) | 2022-05-27 | 2022-05-27 | Austenitic Fe-Ni-Cr alloy with excellent oxidation resistance and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7158618B1 true JP7158618B1 (en) | 2022-10-21 |
JP2023174197A JP2023174197A (en) | 2023-12-07 |
Family
ID=83691958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022086913A Active JP7158618B1 (en) | 2022-05-27 | 2022-05-27 | Austenitic Fe-Ni-Cr alloy with excellent oxidation resistance and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7158618B1 (en) |
WO (1) | WO2023228699A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010113843A1 (en) | 2009-04-01 | 2010-10-07 | 住友金属工業株式会社 | Method for producing high-strength seamless cr-ni alloy pipe |
JP2014031526A (en) | 2012-08-01 | 2014-02-20 | Nippon Steel & Sumitomo Metal | Metallic material |
WO2018066579A1 (en) | 2016-10-05 | 2018-04-12 | 新日鐵住金株式会社 | NiCrFe ALLOY |
-
2022
- 2022-05-27 JP JP2022086913A patent/JP7158618B1/en active Active
-
2023
- 2023-05-02 WO PCT/JP2023/017180 patent/WO2023228699A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010113843A1 (en) | 2009-04-01 | 2010-10-07 | 住友金属工業株式会社 | Method for producing high-strength seamless cr-ni alloy pipe |
JP2014031526A (en) | 2012-08-01 | 2014-02-20 | Nippon Steel & Sumitomo Metal | Metallic material |
WO2018066579A1 (en) | 2016-10-05 | 2018-04-12 | 新日鐵住金株式会社 | NiCrFe ALLOY |
Also Published As
Publication number | Publication date |
---|---|
WO2023228699A1 (en) | 2023-11-30 |
JP2023174197A (en) | 2023-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1326143C (en) | Ferritic stainless steel and processing therefore | |
JP6675846B2 (en) | Fe-Cr-Ni alloy with excellent high-temperature strength | |
JP6869142B2 (en) | Stainless steel sheet and its manufacturing method | |
JP6990337B1 (en) | Ni-based alloy with excellent surface properties and its manufacturing method | |
JP3422612B2 (en) | Manufacturing method of ultra low carbon cold rolled steel sheet | |
CN108754342A (en) | A kind of inexpensive hyperoxia glassed steel and its manufacturing method of CSP technique productions | |
US20230077573A1 (en) | Stainless steel for metal foils, stainless steel foil, and methods for producing them | |
US20230077707A1 (en) | Stainless steel, stainless steel material, and method for producing stainless steel | |
JP7158618B1 (en) | Austenitic Fe-Ni-Cr alloy with excellent oxidation resistance and method for producing the same | |
JP7223210B2 (en) | Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance | |
JP7261345B1 (en) | Austenitic Ni-Cr-Fe alloy excellent in oxidation resistance and its production method | |
JP6823221B1 (en) | Highly corrosion resistant austenitic stainless steel and its manufacturing method | |
JP4998365B2 (en) | Ultra-low carbon steel sheet and manufacturing method thereof | |
JP4259097B2 (en) | Ti-containing high workability ferritic chromium steel sheet excellent in ridging resistance and method for producing the same | |
JP7009666B1 (en) | Ni—Cr—Mo alloy for welded pipes with excellent workability and corrosion resistance | |
JP7546803B1 (en) | Austenitic stainless steel strip or steel plate, their manufacturing method, and high-pressure hydrogen gas equipment or liquid hydrogen equipment | |
CN116171334B (en) | Precipitation hardening martensitic stainless steel having excellent fatigue resistance | |
JP7369266B1 (en) | Fe-Cr-Ni alloy with excellent surface properties and its manufacturing method | |
WO2024084877A1 (en) | Ni-cr-fe-mo-based alloy having excellent surface properties, and method for producing same | |
JP2004204252A (en) | Ti-CONTAINING HIGH-WORKABILITY FERRITIC CHROMIUM STEEL SHEET SUPERIOR IN RIDGING RESISTANCE, AND MANUFACTURING METHOD THEREFOR | |
JP7546804B1 (en) | Austenitic stainless steel strip or steel plate, their manufacturing method, and high-pressure hydrogen gas equipment or liquid hydrogen equipment | |
JP6954976B2 (en) | High oxidation resistance Ni-Cr-Al alloy with excellent laser cutting properties and its manufacturing method | |
JP2024057785A (en) | Martensitic Stainless Steel Sheet | |
KR20220126754A (en) | Stainless steel with excellent mirror polishing properties and manufacturing method therefor | |
JPH06220588A (en) | Cold rolled fe-ni alloy sheet excellent in plating suitability and solderability and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220601 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20220601 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220805 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220920 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221005 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221011 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7158618 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |