KR20020051092A - Analysis method for defect in silicon wafer - Google Patents

Analysis method for defect in silicon wafer Download PDF

Info

Publication number
KR20020051092A
KR20020051092A KR1020000080572A KR20000080572A KR20020051092A KR 20020051092 A KR20020051092 A KR 20020051092A KR 1020000080572 A KR1020000080572 A KR 1020000080572A KR 20000080572 A KR20000080572 A KR 20000080572A KR 20020051092 A KR20020051092 A KR 20020051092A
Authority
KR
South Korea
Prior art keywords
wafer
heat treatment
analysis method
inert gas
metal
Prior art date
Application number
KR1020000080572A
Other languages
Korean (ko)
Other versions
KR100388784B1 (en
Inventor
황돈하
Original Assignee
이 창 세
주식회사 실트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이 창 세, 주식회사 실트론 filed Critical 이 창 세
Priority to KR10-2000-0080572A priority Critical patent/KR100388784B1/en
Publication of KR20020051092A publication Critical patent/KR20020051092A/en
Application granted granted Critical
Publication of KR100388784B1 publication Critical patent/KR100388784B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE: An analysis method of defects of wafers is provided to easily discriminate different defect regions by increasing a micro-defect density using two-step thermal treatment. CONSTITUTION: An analysis method of defects of wafers comprises a first step contaminating a surface of a wafer with a metal, a second step diffusing an inert gas and the metal into the wafer by firstly annealing at a diffusion furnace in the inert gas and an oxygen mixed condition, a third step increasing an inner temperature of the diffusion furnace, a fourth step secondly performing a thermal treatment so as to precipitate an inner oxygen of the wafer using the inert gas and the metal as a core in the inert gas condition, a last step decreasing the inner temperature of the diffusion furnace.

Description

웨이퍼의 결함 분석 방법{Analysis method for defect in silicon wafer}Analysis method for defect in silicon wafer

본 발명은 웨이퍼의 결함 분석 방법에 관한 것으로서, 특히, 웨이퍼 내의 미세 석출물의 밀도를 증가시켜 서로 다른 결함 영역을 명확하게 분석할 수 있는 웨이퍼의 결함 분석 방법에 관한 것이다.The present invention relates to a defect analysis method of a wafer, and more particularly, to a defect analysis method of a wafer capable of clearly analyzing different defect regions by increasing the density of fine precipitates in the wafer.

실리콘 단결정 잉곳(ingot)을 쵸크랄스키 방법(Czochralski method : 이하, CZ 방법이라 칭함)에 의하여 결정 성장시키는데 있어서 단결정 내 결함은 결정의 인상속도 및 냉각 등의 성장 조건에 크게 의존한다. 이러한 결함은 반도체소자의 특성에 큰 영향을 주므로 성장 계면 근처의 열 환경을 조절함으로써 결정 결함의 종류 및 분포를 제어할 뿐만 아니라 품질의 정확한 평가는 매우 중요하다.In crystal growth of a silicon single crystal ingot by the Czochralski method (hereinafter referred to as CZ method), defects in the single crystal largely depend on growth conditions such as crystal pulling rate and cooling. Since such defects greatly affect the characteristics of the semiconductor device, it is very important not only to control the type and distribution of crystal defects by controlling the thermal environment near the growth interface, but also to accurately evaluate the quality.

실리콘 웨이퍼 내에는 단결정 잉곳(ingot) 성장시 성장조건에 웨이퍼 반경 방향으로 베이컨시-타입(vacancy-type)과 인터스티셜-타입(interstitial-type) 등 서로 다른 특성을 갖는 결함영역이 존재한다. 그러므로, 웨이퍼 내의 결함 영역을 분석하여 단결정 잉곳의 성장 조건을 최적화하여야 한다.In the silicon wafer, defect regions having different characteristics, such as vacancy-type and interstitial-type, exist in the radial direction of the wafer in growth conditions during single crystal ingot growth. Therefore, defect areas in the wafer must be analyzed to optimize the growth conditions of the single crystal ingot.

종래에는 웨이퍼 내의 미세 석출물의 밀도를 측정하여 서로 다른 결함 영역을 분석하는 기술로 열처리 방법과 식각 방법을 사용하였다.Conventionally, the heat treatment method and the etching method are used as a technique of measuring the density of the fine precipitates in the wafer to analyze different defect regions.

상기에서 열처리 방법은 웨이퍼를 확산 열처리로에서 400℃~1000℃ 정도의 1 단계와 1000∼1100℃ 정도의 온도로 2 단계로 진행한다. 상기에서 1 단계 열처리는 질소(N2), 아르곤(Ar) 또는 네온(Ne) 등의 불활성 가스와 산소(O2)를 혼합한 가스를 흘려주면서 진행하는 것으로 이 질소(N2), 아르곤(Ar) 또는 네온(Ne) 등의 불활성 가스가 웨이퍼 내부로 확산된다.In the above heat treatment method, the wafer is subjected to two steps at a temperature of about 400 ° C. to 1000 ° C. and about 1000 to 1100 ° C. in a diffusion heat treatment furnace. In the first stage heat treatment, the inert gas such as nitrogen (N 2), argon (Ar), or neon (Ne) is flowed while flowing with a mixture of oxygen (O 2) and nitrogen (N 2), argon (Ar) or An inert gas such as neon Ne diffuses into the wafer.

그리고, 2 단계 열처리는 1 단계 열처리 후 확산 열처리로의 내부 온도를 상승시키고 산소(O2)를 포함하지 않은 질소(N2), 아르곤(Ar) 또는 네온(Ne) 등의 불활성 가스만을 흘리면서 진행한다. 이 때, 웨이퍼 내부에 확산된 질소(N2), 아르곤(Ar) 또는 네온(Ne) 등의 불활성 가스는 핵으로 작용하여 산소(O2) 석출을 증가시키므로 마이크로 석출물의 양이 증가된다. 그러므로, 웨이퍼 내의 열처리하기 전과 후에 중심에서 가장자리 부분으로 반경 방향을 따라 10㎜ 간격으로 이동하면서 산소 농도의 변화를 측정하여 농도 차가 크면 베이컨시-타입 영역으로, 또한, 농도 차가 작으면 인터스티셜-타입 영역으로 분석한다.In addition, the two-stage heat treatment is performed by increasing the internal temperature of the diffusion heat treatment furnace after the one-stage heat treatment and flowing only inert gas such as nitrogen (N 2), argon (Ar), or neon (Ne) that do not contain oxygen (O 2). At this time, an inert gas such as nitrogen (N 2), argon (Ar), or neon (Ne) diffused inside the wafer acts as a nucleus to increase the precipitation of oxygen (O 2), thereby increasing the amount of micro precipitates. Therefore, before and after the heat treatment in the wafer, the change in oxygen concentration is measured in the radial direction from the center to the edge portion at intervals of 10 mm along the radial direction, so that the concentration difference is large in the vacancy-type region, and the concentration difference is small in interstitial. Analyze by type domain.

그러나, 종래 기술에 따른 웨이퍼의 결함 분석 방법은 결정 성장시 결함 발생이 적고 웨이퍼 내의 산소 농도가 낮으면 마이크로(micro) 석출물의 밀도가 매우 낮아서로 다른 결함 영역을 구별하기 어려운 문제점이 있었다.However, the defect analysis method of the wafer according to the prior art has a problem that it is difficult to distinguish other defect regions because the density of the micro precipitates is very low when the defect generation during crystal growth and the oxygen concentration in the wafer is low.

따라서, 본 발명의 목적은 웨이퍼 내의 산소 농도가 낮아도 마이크로 석출물의 밀도를 증가시켜 서로 다른 결함 영역을 용이하게 구별할 수 있는 웨이퍼의 결함 분석 방법을 제공함에 있다.Accordingly, an object of the present invention is to provide a defect analysis method of a wafer which can easily distinguish different defect regions by increasing the density of micro precipitates even when the oxygen concentration in the wafer is low.

상기 목적을 달성하기 위한 본 발명에 따른 웨이퍼의 결함 분석 방법은 웨이퍼의 표면을 금속으로 오염시키는 단계와, 상기 웨이퍼를 불활성 가스 및 산소가 혼합된 분위기의 확산로에서 제 1 열처리하여 상기 불활성 가스와 상기 금속을 상기 웨이퍼로 확산시키는 단계와, 상기 확산로 내부의 온도를 상승시키는 단계와, 상기 웨이퍼를 상기 불활성 가스 분위기에서 상기 불활성 가스와 상기 금속을 핵으로 하여 상기 웨이퍼 내부의 산소가 석출되도록 제 2 열처리하는 단계와, 상기 확산로 내부의 온도를 하강시키는 단계로 구성한다.The defect analysis method of the wafer according to the present invention for achieving the above object comprises the step of contaminating the surface of the wafer with a metal, and the first heat treatment of the wafer in a diffusion path of an atmosphere of inert gas and oxygen mixed with the inert gas Diffusing the metal onto the wafer, raising the temperature inside the diffusion path, and depositing oxygen inside the wafer using the inert gas and the metal as nuclei in the inert gas atmosphere. 2 heat-treating, and the step of lowering the temperature inside the diffusion furnace.

상기에서, 바람직하기는, 금속으로 구리(Cu), 철(Fe), 니켈(Ni) 또는 백금(Pt)을 사용한다.In the above, preferably, copper (Cu), iron (Fe), nickel (Ni) or platinum (Pt) is used as the metal.

바람직하기는 금속을 회전 도포, 이온 주입, 증착 또는 가스 상태로 10∼10000ppb가 되도록 웨이퍼 표면을 오염시킨다.Preferably, the wafer surface is contaminated so that the metal is 10 to 10000 ppb in a spin coating, ion implantation, deposition or gas phase.

바람직하기는, 제 1 열처리를 400℃~1000℃의 온도에서 1∼6시간 동안 80∼99% 정도의 질소(N2), 아르곤(Ar) 또는 네온(Ne)의 불활성 가스와 1∼20%의 산소(O2)를 혼합한 가스를 흘려주면서 진행한다.Preferably, the first heat treatment is carried out at an inert gas of nitrogen (N 2), argon (Ar), or neon (Ne) and 80% to 99% for 1 to 6 hours at a temperature of 400 ° C to 1000 ° C. It proceeds by flowing the gas which mixed oxygen (O2).

바람직하기는, 제 1 열처리 후 확산로 내부의 온도를 분당 3∼10℃로 상승시킨다.Preferably, the temperature inside the diffusion furnace after the first heat treatment is raised to 3 to 10 ° C per minute.

바람지하기는, 제 2 열처리를 1000∼1100℃의 온도에서 2∼48시간 동안 진행한다.Winding is performed by a 2nd heat processing for 2 to 48 hours at the temperature of 1000-1100 degreeC.

바람지하기는, 제 2 열처리 후 확산로의 내부 온도를 분당 1∼5℃로 하강시킨다.Winding is carried out to lower the internal temperature of the diffusion furnace after the second heat treatment to 1-5 占 폚 per minute.

도 1은 본 발명에 따른 웨이퍼의 열처리 온도 구배를 도시하는 도면.1 shows a heat treatment temperature gradient of a wafer according to the present invention;

도 2는 본 발명에서 따른 웨이퍼의 산소 농도의 측정 방법을 도시하는 평면도.2 is a plan view showing a method for measuring the oxygen concentration of a wafer according to the present invention;

도 3은 본 발명과 종래 기술에 따라 열처리한 웨이퍼의 산소 농도차를 나타내는 그래프.3 is a graph showing the oxygen concentration difference of the wafer heat-treated according to the present invention and the prior art.

이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 웨이퍼의 결함 분석 방법시 열처리 온도 구배를 도시하는 도면이다.1 is a diagram showing a heat treatment temperature gradient in the defect analysis method of the wafer according to the present invention.

본 발명에 따른 웨이퍼의 결함 분석 방법시 열처리를 하기 전에 웨이퍼의 표면을 구리(Cu), 철(Fe), 니켈(Ni) 또는 백금(Pt) 등의 금속으로 오염시킨다. 상기에서 웨이퍼 표면은 구리(Cu), 철(Fe), 니켈(Ni) 또는 백금(Pt) 등의 금속을 회전 도포, 이온 주입, 증착 또는 가스 상태로 흘림 등의 방법으로 10∼10000ppb 정도로 오염시켰다.In the defect analysis method of the wafer according to the present invention, the surface of the wafer is contaminated with a metal such as copper (Cu), iron (Fe), nickel (Ni), or platinum (Pt) before heat treatment. The wafer surface is contaminated about 10 to 10000ppb by a method such as spin coating, ion implantation, vapor deposition, or flowing gas such as copper (Cu), iron (Fe), nickel (Ni), or platinum (Pt). .

그리고, 표면이 오염된 웨이퍼를 확산 열처리로를 이용하여 도 1에 도시된 바와 같이 2단계 열처리한다.The surface contaminated wafer is then subjected to a two-step heat treatment as shown in FIG. 1 using a diffusion heat treatment furnace.

먼저, 오염된 웨이퍼를 확산 열처리로에 넣는다. 그리고, 확산 열처리로 내에서 오염된 웨이퍼를 400℃~1000℃ 정도의 온도로 1∼6시간 동안 1 단계 열처리한다. 1단계 열처리시 확산 열처리로에 질소(N2), 아르곤(Ar) 또는 네온(Ne) 등의 불활성 가스를 80∼99% 정도와 산소(O2)를 1∼20%를 정도를 혼합한 가스를 흘려준다. 이 때, 질소(N2), 아르곤(Ar) 또는 네온(Ne) 등의 불활성 가스는 웨이퍼 내부로 확산되어 산소(O2) 석출의 핵(nuclei)으로 작용한다. 이 때, 웨이퍼 표면의 구리(Cu), 철(Fe), 니켈(Ni) 또는 백금(Pt) 등의 오염 물질도 웨이퍼 내부로 확산된다. 그리고, 혼합 가스를 구성하는 산소(O2)는 웨이퍼의 표면을 산화시킨다.First, the contaminated wafer is placed in a diffusion heat treatment furnace. The contaminated wafer in the diffusion heat treatment furnace is subjected to one step heat treatment at a temperature of about 400 ° C. to 1000 ° C. for 1 to 6 hours. During the first stage heat treatment, a gas containing a mixture of about 80 to 99% of inert gas such as nitrogen (N2), argon (Ar) or neon (Ne) and about 1 to 20% of oxygen (O2) is flowed into a diffusion heat treatment furnace. give. At this time, an inert gas such as nitrogen (N 2), argon (Ar), or neon (Ne) diffuses into the wafer and acts as a nuclei of oxygen (O 2) precipitation. At this time, contaminants such as copper (Cu), iron (Fe), nickel (Ni), or platinum (Pt) on the wafer surface are also diffused into the wafer. Oxygen (O2) constituting the mixed gas oxidizes the surface of the wafer.

1 단계 열처리 후 확산 열처리로의 내부 온도를 분당 3∼10℃ 정도로 상승시킨다.After the one-step heat treatment, the internal temperature of the diffusion heat treatment furnace is increased to about 3 to 10 ° C per minute.

연속해서, 1 단계 열처리된 웨이퍼를 1000∼1100℃ 정도의 온도로 2∼48시간 동안 2 단계 열처리한다. 1 단계 열처리 동안 웨이퍼 내부로 확산된 질소(N2), 아르곤(Ar) 또는 네온(Ne) 등의 불활성 가스는 2 단계 열처리시 핵으로 작용하여 산소(O2)의 석출을 증가시키므로 마이크로 석출물의 양이 증가된다. 이 때, 1 단계 열처리 동안 웨이퍼 내부로 확산된 구리(Cu), 철(Fe), 니켈(Ni) 또는 백금(Pt) 등의 금속도 핵으로 작용하여 산소(O2)의 석출을 더욱 증가시키므로 마이크로 석출물의 양이 증가된다.Subsequently, the wafer subjected to the step 1 heat treatment is subjected to the step 2 heat treatment at a temperature of about 1000 to 1100 ° C. for 2 to 48 hours. Inert gas such as nitrogen (N2), argon (Ar) or neon (Ne) diffused into the wafer during the first step heat treatment acts as a nucleus during the second step heat treatment to increase the precipitation of oxygen (O2), thereby increasing the amount of micro precipitates. Is increased. At this time, metals such as copper (Cu), iron (Fe), nickel (Ni), or platinum (Pt) diffused into the wafer during the one-step heat treatment also act as nuclei to further increase the deposition of oxygen (O 2). The amount of precipitate is increased.

상기에서 2 단계 열처리시 확산 열처리로에 산소(O2)를 포함하지 않은 질소(N2), 아르곤(Ar) 또는 네온(Ne) 등의 불활성 가스만을 흘려 주는 데, 이는 산소(O2)가 웨이퍼 내부로 확산되어 농도가 변하는 것을 방지한다. 또한, 1 단계 열처리시 웨이퍼 표면에 형성된 산화막은 2 단계 열처리시 웨이퍼 내부의 산소(O2)가 외방 확산(out diffusion)되어 농도가 변하는 것을 방지한다. 즉, 2 단계 열처리시 웨이퍼 내부의 산소(O2) 농도가 변하지 않도록 하여 정확한 분석을 할 수 없게 되는 것을 방지한다.In the two-stage heat treatment, only an inert gas such as nitrogen (N 2), argon (Ar), or neon (Ne), which does not contain oxygen (O 2), flows to the diffusion heat treatment furnace, and oxygen (O 2) flows into the wafer. Diffusion prevents concentration changes. In addition, the oxide film formed on the surface of the wafer during the first step of heat treatment prevents oxygen (O 2) from diffusing out of the wafer during the second step of heat treatment to change its concentration. That is, the oxygen (O 2) concentration in the wafer does not change during the two-step heat treatment, thereby preventing the accurate analysis from being performed.

상기에서 2 단계 열처리시 산소(O2) 농도가 높은 베이컨시-타입 영역에서는 석출된 마이크로 석출물의 밀도가 크고, 상대적으로, 산소(O2) 농도가 낮은 인터스티셜-타입 영역에서는 석출된 마이크로 석출물의 밀도가 작게 된다.In the above two-step heat treatment, the density of the micro precipitates precipitated in the vacancy-type region having a high oxygen (O2) concentration is high, and the micro precipitates precipitated in the interstitial-type region having a low oxygen (O2) concentration. The density becomes small.

2 단계 열처리 후 확산 열처리로의 내부 온도를 분당 1∼5℃ 정도로 하강시킨다.After the two-step heat treatment, the internal temperature of the diffusion heat treatment furnace is lowered to about 1 to 5 ℃ per minute.

도 2는 본 발명에 따른 웨이퍼의 산소 농도의 측정 방법을 도시하는 평면도이다.2 is a plan view illustrating a method for measuring the oxygen concentration of a wafer according to the present invention.

본 발명은 웨이퍼(11) 내의 열처리하기 전과 후의 산소 농도 차의 변화를 측정하여 서로 다른 결함 영역을 분석한다. 즉, 웨이퍼(11)를 열처리하기 전과 후에 각각 중심에서 가장자리 부분으로 반경 방향을 따라 10㎜ 간격으로 이동하면서 산소농도를 측정하여 산소 농도 차의 변화에 따른 서로 다른 결함영역을 분석한다.The present invention analyzes different defect regions by measuring a change in oxygen concentration difference before and after heat treatment in the wafer 11. That is, before and after the heat treatment of the wafer 11, the oxygen concentrations are measured while moving from the center to the edge portion along the radial direction at intervals of 10 mm, respectively, to analyze different defect regions according to the change in the oxygen concentration difference.

도 3은 본 발명과 종래 기술에 따른 열처리 전 및 후의 웨이퍼의 산소 농도 차를 나타내는 그래프이다. 상기에서 곡선(A)는 종래 기술에 따른 열처리 전 및 후의 웨이퍼의 산소 농도 차를 나타내고, 곡선(B)는 본 발명에 따른 열처리 전 및 후의 웨이퍼의 산소 농도 차를 나타낸다.3 is a graph showing the oxygen concentration difference of the wafer before and after the heat treatment according to the present invention and the prior art. In the above curve (A) shows the oxygen concentration difference of the wafer before and after the heat treatment according to the prior art, curve (B) shows the oxygen concentration difference of the wafer before and after the heat treatment according to the present invention.

곡선(A)를 참조하면, 종래 기술에 따라 열처리된 웨이퍼는 열처리 전 및 후의 산소 농도 차이가 중심에서 20㎜ 정도까지는 0.2∼0.4ppma 정도이고, 40㎜ 부근에서는 1.7∼2.0ppma 정도이며, 60㎜ 부근에서는 1.0∼1.5ppma 정도이고, 80㎜ 부근에서는 1.1∼1.6ppma 정도이다. 종래 기술에 따라 열처리된 웨이퍼는 열처리 전과의 산소 농도 차이의 변화가 작으며, 이에 의해, 서로 다른 결함영역을 분석하기 어렵다.Referring to curve A, the wafer heat-treated according to the prior art has a difference in oxygen concentration before and after the heat treatment of about 0.2 mm to 0.4 ppm at about 20 mm from the center, about 1.7 mm to 2.0 ppm at about 40 mm, and 60 mm. It is about 1.0-1.5 ppma in the vicinity and about 1.1-1.6 ppma in the vicinity of 80 mm. The wafer heat-treated according to the prior art has a small change in oxygen concentration difference from before the heat treatment, whereby it is difficult to analyze different defect regions.

그러나, 본 발명에 따라 열처리된 웨이퍼의 열처리 전 및 후의 산소 농도 차이는, 곡선(B)에 나타내어진 바와 같이, 중심 부근에서는 0.5ppma 정도이며, 20㎜ 부근에서는 2.8∼3.2ppma 정도이고, 40㎜ 부근에서는 2.8∼3.2ppma 정도이며, 60㎜ 부근에서는 1.0∼1.5ppma 정도이고, 80㎜ 부근에서는 2.0∼2.4ppma 정도이다. 본 발명에 따라 열처리된 웨이퍼는 열처리 전과의 산소 농도 차이의 변화가 종래 기술 보다 크게되어 서로 다른 결함영역의 분석이 용이하다. 상기에서 산소 농도 차이가중심 부근의 영역 1에서는 매우 작으므로 결정 결함이 없는 영역으로, 15∼45㎜ 부근 사이의 영역 2는 매우 크므로 베이컨시-타입 영역으로, 45∼65㎜ 부근 사이의 영역 3은 작으므로 인터스티셜-타입 영역으로, 65㎜ 부근 이상부터 웨이퍼의 가장자리까지 영역 4는 크므로 베이컨시-타입 영역으로 분석될 수 있다.However, the oxygen concentration difference before and after the heat treatment of the wafer heat-treated according to the present invention is about 0.5 ppm at the center, about 2.8 to 3.2 ppm at around 20 mm, and 40 mm as shown by the curve (B). It is about 2.8-3.2 ppma in the vicinity, about 1.0-1.5 ppmma in the vicinity of 60 mm, and about 2.0-2.4 ppmma in the vicinity of 80 mm. In the wafer heat-treated according to the present invention, the change in oxygen concentration difference from before the heat treatment is greater than that of the prior art, so that analysis of different defect regions is easy. In the above, the oxygen concentration difference is very small in the region 1 near the center, so there is no crystal defect, and the region 2 between 15 and 45 mm is very large, so the bacony-type region is between 45 and 65 mm. Since 3 is small, it can be analyzed as an interstitial-type region, and since region 4 is larger from around 65 mm to the edge of the wafer, it can be analyzed as a vacancy-type region.

상술한 바와 같이 본 발명은 웨이퍼 표면을 구리(Cu), 철(Fe), 니켈(Ni) 또는 백금(Pt) 등의 금속으로 오염시킨 후, 이 웨이퍼를 질소(N2), 아르곤(Ar) 또는 네온(Ne) 등의 불활성 가스를 80∼99% 정도와 산소(O2)를 1∼20%를 정도를 혼합한 가스를 흘리면서 400℃~1000℃ 정도의 온도로 1∼6시간 동안 1 단계 열처리하여 불활성 가스와 금속을 웨이퍼 내부로 확산시키고, 계속해서, 산소(O2)를 포함하지 않은 질소(N2), 아르곤(Ar) 또는 네온(Ne) 등의 불활성 가스만을 흘려면서 1000∼1100℃ 정도의 온도로 2∼48시간 동안 2 단계 열처리하여 웨이퍼 내부에 확산된 불활성 가스와 금속이 핵으로 작용하여 산소(O2)의 석출을 증가시켜 마이크로 결함 밀도를 증가시킨다.As described above, the present invention contaminates the wafer surface with a metal such as copper (Cu), iron (Fe), nickel (Ni), or platinum (Pt), and then the wafer is nitrogen (N2), argon (Ar) or 1-step heat treatment for 1 to 6 hours at a temperature of 400 ℃ to 1000 ℃ while flowing a gas in which 80% to 99% of inert gas such as neon and 1% to 20% of oxygen (O2) are mixed. An inert gas and a metal are diffused into the wafer, and then, the temperature is about 1000 to 1100 ° C. while flowing only an inert gas such as nitrogen (N 2), argon (Ar), or neon (Ne) that does not contain oxygen (O 2). Two-step heat treatment for 2 to 48 hours in the furnace to increase the micro defect density by increasing the deposition of oxygen (O2) by the inert gas and metal diffused into the wafer acts as a nucleus.

따라서, 본 발명은 1 단계 및 2 단계 열처리에 의해 마이크로 결함 밀도를 증가시키므로 서로 다른 결함 영역을 용이하게 구별할 수 있는 잇점이 있다.Therefore, the present invention increases the micro defect density by one-step and two-step heat treatment, and thus has the advantage of easily distinguishing different defect areas.

Claims (9)

웨이퍼의 표면을 금속으로 오염시키는 단계와,Contaminating the surface of the wafer with metal, 상기 웨이퍼를 불활성 가스 및 산소가 혼합된 분위기의 확산로에서 제 1 열처리하여 상기 불활성 가스와 상기 금속을 상기 웨이퍼로 확산시키는 단계와,Firstly heat treating the wafer in a diffusion path of an atmosphere in which an inert gas and oxygen are mixed to diffuse the inert gas and the metal into the wafer; 상기 확산로 내부의 온도를 상승시키는 단계와,Raising the temperature inside the diffusion furnace; 상기 웨이퍼를 상기 불활성 가스 분위기에서 상기 불활성 가스와 상기 금속을 핵으로 하여 상기 웨이퍼 내부의 산소가 석출되도록 제 2 열처리하는 단계와,Performing a second heat treatment of the wafer in the inert gas atmosphere so that oxygen inside the wafer is precipitated using the inert gas and the metal as nuclei; 상기 확산로 내부의 온도를 하강시키는 단계로 구성하는 웨이퍼의 결함 분석 방법.Wafer defect analysis method comprising the step of lowering the temperature inside the diffusion path. 청구항 1에 있어서 상기 금속이 구리(Cu), 철(Fe), 니켈(Ni) 또는 백금(Pt)으로 이루어지는 웨이퍼의 결함 분석 방법.The defect analysis method of the wafer of Claim 1 in which the said metal consists of copper (Cu), iron (Fe), nickel (Ni), or platinum (Pt). 청구항 2에 있어서 상기 금속을 회전 도포, 이온 주입, 증착 또는 가스 상태로 흘려 상기 웨이퍼의 표면을 오염시키는 웨이퍼의 결함 분석 방법.The wafer defect analysis method according to claim 2, wherein the metal is contaminated by rotating coating, ion implantation, vapor deposition, or gas flow. 청구항 2에 있어서 상기 금속이 10∼10000ppb가 되도록 웨이퍼 표면을 오염시키는 웨이퍼의 결함 분석 방법.The wafer defect analysis method according to claim 2, wherein the wafer is contaminated so that the metal is 10 to 10000 ppb. 청구항 1에 있어서 상기 제 1 열처리를 400℃~1000℃의 온도에서 1∼6시간 동안 진행하는 웨이퍼의 결함 분석 방법.The defect analysis method of claim 1, wherein the first heat treatment is performed at a temperature of 400 ° C. to 1000 ° C. for 1 to 6 hours. 청구항 1에 있어서 상기 제 1 열처리를 80∼99% 정도의 질소(N2), 아르곤(Ar) 또는 네온(Ne)의 불활성 가스와 1∼20%의 산소(O2)를 혼합한 가스를 흘려주면서 진행하는 웨이퍼의 결함 분석 방법.The process of claim 1, wherein the first heat treatment is performed while flowing an inert gas of about 80 to 99% of nitrogen (N 2), argon (Ar), or neon (Ne) and a gas mixed with 1 to 20% of oxygen (O 2). Wafer defect analysis method. 청구항 1에 있어서 상기 확산로 내부의 온도를 분당 3∼10℃로 상승시키는 웨이퍼의 결함 분석 방법.The defect analysis method of the wafer of Claim 1 which raises the temperature inside the said diffusion path to 3-10 degreeC per minute. 청구항 1에 있어서 상기 제 2 열처리를 1000∼1100℃의 온도에서 2∼48시간 동안 진행하는 웨이퍼의 결함 분석 방법.The defect analysis method of claim 1, wherein the second heat treatment is performed at a temperature of 1000 to 1100 ° C. for 2 to 48 hours. 청구항 1에 있어서 상기 확산로의 내부 온도를 분당 1∼5℃로 하강시키는 웨이퍼의 결함 분석 방법.The defect analysis method of the wafer of Claim 1 which lowers the internal temperature of the said diffusion path to 1-5 degreeC per minute.
KR10-2000-0080572A 2000-12-22 2000-12-22 Analysis method for defect in silicon wafer KR100388784B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0080572A KR100388784B1 (en) 2000-12-22 2000-12-22 Analysis method for defect in silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0080572A KR100388784B1 (en) 2000-12-22 2000-12-22 Analysis method for defect in silicon wafer

Publications (2)

Publication Number Publication Date
KR20020051092A true KR20020051092A (en) 2002-06-28
KR100388784B1 KR100388784B1 (en) 2003-06-25

Family

ID=27684853

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0080572A KR100388784B1 (en) 2000-12-22 2000-12-22 Analysis method for defect in silicon wafer

Country Status (1)

Country Link
KR (1) KR100388784B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100459079B1 (en) * 2002-12-05 2004-12-03 주식회사 실트론 Evaluation method of gettering ability of silicon wafer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725460B1 (en) 2005-12-28 2007-06-07 삼성전자주식회사 A sample wafer for measuring a metal contamination level
KR20200020252A (en) 2018-08-16 2020-02-26 효림산업주식회사 Low Energy Type Filtration Apparatus Using Solar Energy and Operation Method Thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100237829B1 (en) * 1997-02-06 2000-01-15 윤종용 Defect analysing method for wafer
JPH11236293A (en) * 1998-02-24 1999-08-31 Sumitomo Metal Ind Ltd High quality silicon single crystal wafer
JPH11274257A (en) * 1998-03-18 1999-10-08 Shin Etsu Handotai Co Ltd Method of evaluating defect of semiconductor crystal
KR20000037745A (en) * 1998-12-02 2000-07-05 이창세 Method for measuring a vacancy fault of a silicon wafer by using cu decoration technique
KR20000037951A (en) * 1998-12-03 2000-07-05 이창세 Method for measuring deposited amount of interstitial type oxygen of silicon wafer in which large amount of metal is doped

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100459079B1 (en) * 2002-12-05 2004-12-03 주식회사 실트론 Evaluation method of gettering ability of silicon wafer

Also Published As

Publication number Publication date
KR100388784B1 (en) 2003-06-25

Similar Documents

Publication Publication Date Title
JP3711199B2 (en) Heat treatment method for silicon substrate
US6849119B2 (en) Ideal oxygen precipitating silicon wafers and oxygen out-diffusion-less process therefor
EP1146150B1 (en) Low defect density, ideal oxygen precipitating silicon
US6342725B2 (en) Silicon on insulator structure having a low defect density handler wafer and process for the preparation thereof
US8142885B2 (en) Silicon wafer and method for manufacturing the same
KR101822479B1 (en) Method for producing silicon wafer
KR100388784B1 (en) Analysis method for defect in silicon wafer
US7074271B2 (en) Method of identifying defect distribution in silicon single crystal ingot
JP2004193354A (en) Silicon wafer, method for heat treatment thereof and epitaxial wafer
US6538285B2 (en) Silicon wafer
WO2002027778A1 (en) Method of heat-treating silicon wafer
JP3811582B2 (en) Heat treatment method for silicon substrate and method for producing epitaxial wafer using the substrate
JP4675542B2 (en) Evaluation method of gettering ability
JP3896919B2 (en) Method for evaluating Ni contamination of silicon wafer
KR100309462B1 (en) A semiconductor wafer and the method thereof
JP2000269288A (en) Crystal defect detecting method for silicon wafer, crystal defect evaluating method, and oxide film breakdown voltage characteristics evaluating method
KR20050059910A (en) Method of detecting defects in the silicon wafer
KR100685260B1 (en) Heat treatment method for silicon wafer
JP2004020341A (en) Method of measuring point defect distribution in silicon single crystal ingot
GB2324652A (en) Method of analyzing a semiconductor ingot
JPH05275436A (en) Heat treatment of silicon wafer
KR100500712B1 (en) A method for measuring concentration of metal contamintion of silicon wafer
KR100303699B1 (en) Method for analyzing metal dopant within wafer by using liquid nitrogen quenching method
US6013556A (en) Method of integrated circuit fabrication
JP2023169790A (en) Silicon wafer heat treatment method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130327

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140325

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160401

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20180319

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20190325

Year of fee payment: 17