JP2023169790A - Silicon wafer heat treatment method - Google Patents

Silicon wafer heat treatment method Download PDF

Info

Publication number
JP2023169790A
JP2023169790A JP2022081119A JP2022081119A JP2023169790A JP 2023169790 A JP2023169790 A JP 2023169790A JP 2022081119 A JP2022081119 A JP 2022081119A JP 2022081119 A JP2022081119 A JP 2022081119A JP 2023169790 A JP2023169790 A JP 2023169790A
Authority
JP
Japan
Prior art keywords
heat treatment
silicon wafer
temperature
metal
contamination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022081119A
Other languages
Japanese (ja)
Inventor
駿 小貫
Shun Konuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2022081119A priority Critical patent/JP2023169790A/en
Publication of JP2023169790A publication Critical patent/JP2023169790A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a silicon wafer heat treatment method that can suppress the formation of OSF due to metal contamination when performing oxidation heat treatment on a silicon wafer contaminated with metal.SOLUTION: A heat treatment method for performing oxidation heat treatment on a metal-contaminated silicon wafer includes first heat treatment of dissolving metal precipitates on the surface of a silicon wafer by carrying the silicon wafer into a heat treatment furnace at room temperature, and performing heat treatment on the silicon wafer at a temperature equal to or higher than the higher one of a solid solubility limit temperature at which the solid solubility matches the estimated contamination concentration of a contaminant metal in the silicon wafer and the highest temperature in the thermal history of the silicon wafer after metal contamination, and lower than the melting point of silicon after replacing the atmosphere with a non-oxidizing atmosphere, and a second heat treatment of replacing the atmosphere with an oxidizing atmosphere without lowering the temperature, and heat-treating and oxidizing the silicon wafer at a temperature higher than the heat treatment temperature of the first heat treatment and lower than the melting point of silicon.SELECTED DRAWING: Figure 1

Description

本発明は、金属汚染されたシリコンウェーハの酸化熱処理を行う熱処理方法であって、特に、上記酸化熱処理を行う際に、金属汚染起因の酸化誘起積層欠陥(Oxidation induced stacking fault、以下OSFとも言う)の形成を抑制することができるシリコンウェーハの熱処理方法に関する。 The present invention is a heat treatment method for performing oxidation heat treatment on a metal-contaminated silicon wafer, and in particular, when performing the oxidation heat treatment, oxidation induced stacking faults (hereinafter also referred to as OSF) caused by metal contamination are detected. The present invention relates to a heat treatment method for silicon wafers that can suppress the formation of.

半導体集積回路の製造工程において、歩留まり低下の原因としてOSFの存在が挙げられる。OSFは結晶成長時に導入される微小欠陥や、シリコンウェーハの金属汚染が原因となり、半導体デバイスの製造における酸化工程等で顕在化し、半導体デバイスのリーク電流を増加させ、デバイス不良の原因となる。
以上のことから、OSFによる半導体デバイスの電気的特性の劣化を防ぐため、OSF形成を低減させる必要がある。OSFを低減させる方法としては、還元性雰囲気で高速加熱・急速冷却熱処理(RTA)を加える行うことが提案されている(例えば特許文献1)。またOSF顕在化熱処理の前に酸素含有雰囲気、アルゴン雰囲気、水素含有雰囲気等の熱処理を加えることで、その後OSFが顕在化する条件で熱処理を施してもOSFフリーとなる方法も提案されている(例えば特許文献2)。
In the manufacturing process of semiconductor integrated circuits, the presence of OSFs is cited as a cause of decreased yield. OSFs are caused by minute defects introduced during crystal growth and metal contamination of silicon wafers, and become apparent during the oxidation process in semiconductor device manufacturing, increasing leakage current in semiconductor devices and causing device failure.
From the above, in order to prevent the deterioration of the electrical characteristics of a semiconductor device due to OSFs, it is necessary to reduce the formation of OSFs. As a method for reducing OSF, it has been proposed to perform rapid heating/rapid cooling heat treatment (RTA) in a reducing atmosphere (for example, Patent Document 1). In addition, a method has been proposed in which heat treatment in an oxygen-containing atmosphere, argon atmosphere, hydrogen-containing atmosphere, etc. is added before the OSF manifestation heat treatment, so that even if the heat treatment is performed under conditions that cause OSF to become manifest, the OSF-free condition can be obtained ( For example, Patent Document 2).

しかし、特許文献1はRTA熱処理中にOSF発生の起因となる金属汚染を受ける可能性がある。更に、急速加熱・急速冷却を行う設備を必要とするため簡便ではない。また、特許文献2に記載の方法では、金属汚染を避け、尚且つ結晶成長時に導入される微小欠陥が起因となるOSFの形成を避けるものであり、金属汚染を受けたシリコンウェーハについて、金属汚染起因のOSF発生を低減するものではない。 However, in Patent Document 1, there is a possibility that metal contamination that causes OSF generation occurs during RTA heat treatment. Furthermore, it is not convenient because it requires equipment for rapid heating and rapid cooling. In addition, the method described in Patent Document 2 avoids metal contamination and also avoids the formation of OSF caused by micro defects introduced during crystal growth. It does not reduce the occurrence of OSF caused by this.

金属汚染起因のOSF形成を低減するためには、金属汚染そのものを避けること、また、ゲッタリングによりデバイスを作製するシリコンウェーハ表層への影響を避ける手法などが考えられるが、金属汚染を完全に防ぐことは難しく、またゲッタリング機構を利用するには時間とコストを要する。 In order to reduce the formation of OSFs caused by metal contamination, methods such as avoiding the metal contamination itself and avoiding the effect of gettering on the surface layer of the silicon wafer used to fabricate devices can be considered, but it is impossible to completely prevent metal contamination. This is difficult, and using a gettering mechanism requires time and cost.

特許文献3では非酸化性雰囲気下での400℃~500℃の温度で10分~100時間熱処理する事前熱処理により結晶起因のOSF形成の低減が提案されているが、昇温時に関する記載がなく、また、指定された温度範囲では金属汚染起因のOSF形成の低減効果は見込めない場合がある。 Patent Document 3 proposes reducing the formation of OSFs caused by crystals by pre-heat treatment at a temperature of 400° C. to 500° C. for 10 minutes to 100 hours in a non-oxidizing atmosphere, but there is no description regarding when the temperature is raised. Further, in the specified temperature range, the effect of reducing OSF formation due to metal contamination may not be expected.

特開平10-326790号公報Japanese Patent Application Publication No. 10-326790 特開2000-277528号公報Japanese Patent Application Publication No. 2000-277528 特開平5-213696号公報Japanese Patent Application Publication No. 5-213696

本発明は上記問題点に鑑みてなされたもので、金属汚染を受けたシリコンウェーハを酸化熱処理する際に、金属汚染起因のOSF形成を抑制することができるシリコンウェーハの熱処理方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a silicon wafer heat treatment method that can suppress the formation of OSF due to metal contamination when silicon wafers contaminated with metal are subjected to oxidation heat treatment. purpose.

上記目的を達成するために、本発明は、金属汚染されたシリコンウェーハに酸化熱処理を行う熱処理方法であって、
前記シリコンウェーハを室温で熱処炉内に搬入し、該熱処理炉内を非酸化性雰囲気に置換後、該非酸化性雰囲気下、前記シリコンウェーハにおいて推定される汚染金属の汚染濃度に固溶度が一致する固溶限界温度と、前記シリコンウェーハの金属汚染後の熱履歴における最高温度とのうち高い方の温度以上、かつ、シリコンの融点未満の温度で、前記シリコンウェーハに熱処理を行うことにより、前記シリコンウェーハの表面の金属析出物を溶解させる第1の熱処理と、
該第1の熱処理後、降温せずに前記熱処理炉内を酸化性雰囲気に置換し、該酸化性雰囲気下、前記第1の熱処理の熱処理温度以上、かつ、シリコンの融点未満の温度で前記シリコンウェーハに熱処理を行うことにより、前記シリコンウェーハを酸化させる第2の熱処理と、
を含むことを特徴とするシリコンウェーハの熱処理方法を提供する。
In order to achieve the above object, the present invention provides a heat treatment method for performing oxidation heat treatment on a metal-contaminated silicon wafer, comprising:
The silicon wafer is carried into a heat treatment furnace at room temperature, and the inside of the heat treatment furnace is replaced with a non-oxidizing atmosphere. Under the non-oxidizing atmosphere, the contamination concentration of the contaminant metal estimated in the silicon wafer has a solid solubility. By performing heat treatment on the silicon wafer at a temperature that is higher than the higher of the matching solid solution limit temperature and the highest temperature in the thermal history after metal contamination of the silicon wafer, and lower than the melting point of silicon, a first heat treatment for dissolving metal precipitates on the surface of the silicon wafer;
After the first heat treatment, the inside of the heat treatment furnace is replaced with an oxidizing atmosphere without decreasing the temperature, and the silicon is heated in the oxidizing atmosphere at a temperature higher than the heat treatment temperature of the first heat treatment and lower than the melting point of silicon. a second heat treatment for oxidizing the silicon wafer by subjecting the wafer to heat treatment;
Provided is a method for heat treating a silicon wafer, the method comprising:

このような本発明のシリコンウェーハの熱処理方法によれば、金属汚染されてしまったシリコンウェーハに酸化熱処理を施す際、たとえゲッタリング機構などを持たない場合においても金属汚染起因のOSF形成を抑制することが可能である。 According to the silicon wafer heat treatment method of the present invention, when performing oxidation heat treatment on a metal-contaminated silicon wafer, the formation of OSF due to metal contamination can be suppressed even if the silicon wafer does not have a gettering mechanism. Is possible.

このとき、前記シリコンウェーハにおける汚染金属の汚染濃度を、該シリコンウェーハの不純物分析、または、前記シリコンウェーハに施してきた工程の環境汚染試験から推定することができる。 At this time, the contamination concentration of the contaminant metal in the silicon wafer can be estimated from an impurity analysis of the silicon wafer or an environmental contamination test of a process performed on the silicon wafer.

このようにして汚染金属の汚染濃度を推定することができ、その汚染濃度に固溶度が一致する固溶限界温度を求めることができる。ひいては第1の熱処理における熱処理温度を決めることができる。 In this way, the contamination concentration of the contaminant metal can be estimated, and the solid solubility limit temperature at which the solid solubility matches the contamination concentration can be determined. Consequently, the heat treatment temperature in the first heat treatment can be determined.

本発明のシリコンウェーハの熱処理方法であれば、金属汚染後のシリコンウェーハを酸化熱処理しても、金属汚染起因のOSF形成を抑制可能である。 With the silicon wafer heat treatment method of the present invention, even if a silicon wafer is subjected to oxidation heat treatment after metal contamination, it is possible to suppress the formation of OSF due to metal contamination.

本発明のシリコンウェーハの熱処理方法の工程の一例を示すフロー図である。FIG. 2 is a flow diagram showing an example of the steps of the silicon wafer heat treatment method of the present invention. 実施例1の工程を示すフロー図である。3 is a flow diagram showing the steps of Example 1. FIG. 比較例1の工程を示すフロー図である。3 is a flow diagram showing the steps of Comparative Example 1. FIG. 比較例2の工程を示すフロー図である。3 is a flow diagram showing the steps of Comparative Example 2. FIG. 比較例3の工程を示すフロー図である。3 is a flow diagram showing the steps of Comparative Example 3. FIG. 実施例1、比較例1-3のOSF密度を示すグラフである。1 is a graph showing OSF densities of Example 1 and Comparative Examples 1-3.

以下、本発明の実施形態について図面を参照して説明するが、本発明はこれに限定されるものではない。
前述したようにシリコンウェーハは製造工程中の環境や熱処理等から金属汚染を受け、酸化熱処理をすると金属汚染起因のOSFが形成される場合がある。
その対策として前述のように、OSF形成を抑制する方法が模索され、様々な方法が提案されているが、金属汚染起因のOSF形成を避ける手法としては、いずれも金属汚染そのものを避ける手法である。そこで本発明者は、金属汚染後のシリコンウェーハであっても、OSF形成を抑制する方法を探るため、金属汚染起因のOSF形成機構の調査を進めた。
調査を進めた結果、OSF形成はシリコンウェーハ中の汚染金属の汚染濃度そのものではなく、酸化熱処理前のシリコンウェーハ表面の金属析出物密度に依存することが分かった。このことから、酸化熱処理前にシリコンウェーハ表面の金属析出物を溶解させる目的で非酸化性雰囲気における熱処理を施すことでOSF形成の抑制が可能ではないかと考え、本発明の発想に至った。
Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited thereto.
As described above, silicon wafers are subject to metal contamination from the environment, heat treatment, etc. during the manufacturing process, and when subjected to oxidation heat treatment, OSFs due to metal contamination may be formed.
As a countermeasure, as mentioned above, methods to suppress OSF formation have been sought and various methods have been proposed, but all methods to avoid OSF formation due to metal contamination are methods that avoid metal contamination itself. . Therefore, in order to find a method for suppressing the formation of OSFs even in silicon wafers that have been contaminated with metals, the present inventors investigated the mechanism of OSF formation caused by metal contamination.
As a result of further investigation, it was found that the formation of OSFs does not depend on the concentration of contaminant metals in the silicon wafer itself, but on the density of metal precipitates on the surface of the silicon wafer before the oxidation heat treatment. Based on this, it was thought that OSF formation could be suppressed by performing heat treatment in a non-oxidizing atmosphere for the purpose of dissolving metal precipitates on the surface of a silicon wafer before oxidation heat treatment, and the idea of the present invention was developed.

本発明のシリコンウェーハの熱処理方法は、金属汚染されたシリコンウェーハの酸化熱処理を行う熱処理方法であり、図1はその工程の一例を示すフローチャートである。
図1に示すように本発明の熱処理方法は第1の熱処理と第2の熱処理を行う工程を含んでいる。なお、後述するように第2の熱処理には酸化熱処理の工程が含まれている。
まず、図1のS1のように、金属汚染されたシリコンウェーハを準備する。
シリコンウェーハ(以下、単にウェーハとも言う)自体は特に限定されず、例えばチョクラルスキー法で製造されたものでも良いし、フローティングゾーン法で製造されたものでも良い。金属汚染されたものであれば抵抗率や酸素濃度等も特に限定されないが、抵抗率が高抵抗率であり、酸素濃度が低酸素濃度の無欠陥のシリコンウェーハのようなゲッタリング能力を有していないシリコンウェーハに酸化熱処理を行う場合は、金属汚染起因のOSFが発生しやすいので、本発明を適用することが特に好ましい。
The silicon wafer heat treatment method of the present invention is a heat treatment method for performing oxidation heat treatment on metal-contaminated silicon wafers, and FIG. 1 is a flowchart showing an example of the process.
As shown in FIG. 1, the heat treatment method of the present invention includes the steps of performing a first heat treatment and a second heat treatment. Note that, as described later, the second heat treatment includes an oxidation heat treatment step.
First, as shown in S1 of FIG. 1, a metal-contaminated silicon wafer is prepared.
The silicon wafer (hereinafter also simply referred to as a wafer) itself is not particularly limited, and may be manufactured by, for example, the Czochralski method or the floating zone method. There are no particular limitations on resistivity or oxygen concentration as long as the material is contaminated with metal, but it has a high resistivity and a gettering ability similar to a defect-free silicon wafer with a low oxygen concentration. When performing oxidation heat treatment on a silicon wafer that has not been oxidized, OSF due to metal contamination is likely to occur, so it is particularly preferable to apply the present invention.

汚染金属の種類としては、例えば、通常においてドーパント扱いされるものではなく汚染金属扱いされるものとすることができ、Fe、Ni、Co、Cuなどが挙げられるが、これらに限定されない。 The types of contaminating metals include, for example, those that are not normally treated as dopants but are treated as contaminant metals, and include, but are not limited to, Fe, Ni, Co, and Cu.

また、汚染のされ方についても特に限定されない。試験等のために故意汚染したウェーハであっても良いし、このウェーハの準備工程の前に施してきたウェーハの製造工程中(例えば熱処理工程中)において金属汚染を受けたウェーハであっても良い。
なお、前者は意図的に汚染するためその汚染濃度は簡単に推定できる。また後者については、例えば、製造工程ごとに金属汚染についての検査(不純物分析)を日常的に行っておくことで、どのような装置の使用や処理で、処理されたシリコンウェーハに金属汚染が発生したか否か(金属汚染のタイミング)、また汚染金属種、汚染の度合いについての定量的なデータを得ることができる。当然、日常的に検査を行うケースだけでなく、必要な時に別個のシリコンウェーハを用いて検査を行っても良い。ここではこれらのような検査を環境汚染試験とも言う。この環境汚染試験により、準備したシリコンウェーハの汚染金属の汚染濃度を推定することが可能である。
あるいは準備したシリコンウェーハを不純物分析にかけることで汚染金属の汚染濃度を推定することもできる。
そして分析方法としては、全反射蛍光X線分析や、同一の工程を経たシリコンウェーハに対するSIMS測定などが挙げられる。
Furthermore, there are no particular limitations on how the contamination occurs. It may be a wafer that has been intentionally contaminated for testing, etc., or it may be a wafer that has been contaminated with metal during the wafer manufacturing process (for example, during the heat treatment process) that was performed before the wafer preparation process. .
In addition, since the former is intentionally contaminated, its contamination concentration can be easily estimated. Regarding the latter, for example, by routinely testing for metal contamination (impurity analysis) in each manufacturing process, it is possible to determine what kind of equipment is being used or what kind of processing is being used to cause metal contamination on processed silicon wafers. It is possible to obtain quantitative data on whether or not the metal has been contaminated (timing of metal contamination), the type of contaminated metal, and the degree of contamination. Of course, not only the case where inspection is performed on a daily basis, but also the inspection may be performed using a separate silicon wafer when necessary. Here, these types of tests are also referred to as environmental pollution tests. Through this environmental contamination test, it is possible to estimate the contamination concentration of contaminant metals in the prepared silicon wafer.
Alternatively, the concentration of contaminating metals can be estimated by subjecting the prepared silicon wafer to impurity analysis.
Examples of analysis methods include total reflection fluorescent X-ray analysis and SIMS measurement on silicon wafers that have undergone the same process.

次に図1のS2のように、酸化性雰囲気での熱処理を施す前に、ウェーハ表面の金属析出物を溶解させる目的で非酸化性雰囲気における第1の熱処理を行う。
この非酸化性雰囲気での熱処理の際、熱処理炉内へシリコンウェーハを搬入する際に、僅かに炉内に侵入する大気中の酸素による酸化によってOSFが発生してしまうこと防ぐため、シリコンウェーハは熱処理炉内に室温の状態で搬入し、炉内雰囲気を非酸化性雰囲気へ置換した後、所定の熱処理温度まで昇温して熱処理する。室温としては、例えば20~25℃とすることができる。
Next, as in S2 of FIG. 1, before heat treatment is performed in an oxidizing atmosphere, a first heat treatment is performed in a non-oxidizing atmosphere for the purpose of dissolving metal precipitates on the wafer surface.
During heat treatment in this non-oxidizing atmosphere, when carrying the silicon wafer into the heat treatment furnace, the silicon wafer is The material is carried into a heat treatment furnace at room temperature, and after the atmosphere in the furnace is replaced with a non-oxidizing atmosphere, the temperature is raised to a predetermined heat treatment temperature and heat treatment is performed. The room temperature can be, for example, 20 to 25°C.

非酸化性雰囲気での熱処理温度は、シリコンウェーハにおいて推定される汚染金属の汚染濃度に固溶度が一致する固溶限界温度と、シリコンウェーハの金属汚染後の熱履歴における最高温度とのうち高い方の温度以上とする。金属汚染後の熱履歴における最高温度以上の熱処理がOSF形成の抑制に有効である原理は詳細には明らかになっていないが、金属汚染後の熱処理中の応力や、格子間シリコンと空孔等の点欠陥などが金属析出、及びその核形成に関わっており、その形成温度以上の温度が金属析出物の溶解に必要とされることが推定される。したがって、もしも金属汚染後にシリコンウェーハに熱処理を特に施していないのであれば(熱履歴が特にないのであれば)、熱処理温度は固溶限界温度以上に設定すれば良い。
また熱処理温度の上限としてはシリコンの融点未満の温度とする。
このような温度範囲で熱処理することにより汚染金属は不飽和状態からシリコン中に固溶した安定な状態となり、表面(表層)に析出した汚染金属がシリコン中に溶解する。
汚染金属のシリコンウェーハ表面における析出物がOSF形成における核であるため、第1の熱処理(非酸化性雰囲気下の熱処理)によりシリコンウェーハ表面の金属析出物を溶解させることで、後工程の第2の熱処理時(酸化熱処理時)の金属汚染起因のOSF形成を抑制することが可能となる。
The heat treatment temperature in a non-oxidizing atmosphere is the higher of the solid solubility limit temperature at which the solid solubility matches the estimated concentration of contaminant metal in the silicon wafer and the highest temperature in the thermal history of the silicon wafer after metal contamination. The temperature shall be higher than that of the other side. Although the principle behind why heat treatment at a temperature higher than the highest temperature in the thermal history after metal contamination is effective in suppressing OSF formation is not clear in detail, it is important to note that stress during heat treatment after metal contamination, interstitial silicon, vacancies, etc. It is presumed that point defects and the like are involved in metal precipitation and nucleation, and that a temperature higher than the formation temperature is required to dissolve the metal precipitates. Therefore, if the silicon wafer is not particularly subjected to heat treatment after metal contamination (if there is no particular heat history), the heat treatment temperature may be set above the solid solution limit temperature.
Further, the upper limit of the heat treatment temperature is set to be less than the melting point of silicon.
By heat-treating in such a temperature range, the contaminating metal changes from an unsaturated state to a stable state in which it is dissolved in silicon, and the contaminant metal deposited on the surface (surface layer) dissolves in the silicon.
Since contaminant metal precipitates on the silicon wafer surface are the core of OSF formation, by dissolving the metal precipitates on the silicon wafer surface by the first heat treatment (heat treatment in a non-oxidizing atmosphere), the second It becomes possible to suppress the formation of OSF due to metal contamination during the heat treatment (oxidation heat treatment).

ここで、推定される汚染金属の汚染濃度や汚染タイミングについては、図1のS1のウェーハ準備の工程でも説明した通り、不純物分析や環境汚染試験などから求めることができる。
また固溶限界温度については、従来から知られている、各種の汚染金属のシリコン中における固溶度と固溶限界温度との関係式から求めることができる。例えばNiの場合は以下の式1が知られている。この式1のNi固溶度[Ceq]に推定される汚染濃度を代入し、温度[T]について解くことで求めることができる。
Ceq=1.2×1024exp(-1.68/kT)
[ここでCeq:Ni固溶度(atoms/cm)、k:ボルツマン定数(eV/K)、T:温度(K)]…(式1)
(Weber, E. R.: Appl. Phys. A30 (1983) 1.参照)
またFe、Co、Cuなどは例えば以下のような関係式が知られている。
Fe:Ceq=4.3×1022exp(-2.1/kT)
(Aoki, M., Hara, A., Ohsawa, A. : J. Appl. Phys. 72 (1992) 895.参照)
Co:Ceq=1.0×1026exp(-2.83/kT)
(Weber, E. R. : Appl. Phys. A 30 (1983) 1.参照)
Cu:Ceq=5.5×1023exp(-1.49/kT)
(Weber, E. R., Wiehl, N. : Mater. Res. Soc. Svmp. Proc. 14 (1983) 19.参照)
Here, the estimated contamination concentration of the contaminant metal and the contamination timing can be determined from impurity analysis, environmental contamination tests, etc., as explained in the wafer preparation step S1 in FIG.
Further, the solid solubility limit temperature can be determined from a conventionally known relational expression between the solid solubility of various contaminant metals in silicon and the solid solubility limit temperature. For example, in the case of Ni, the following equation 1 is known. It can be determined by substituting the estimated contamination concentration for the Ni solid solubility [Ceq] in Equation 1 and solving for the temperature [T].
Ceq=1.2×10 24 exp(-1.68/k B T)
[where Ceq: Ni solid solubility (atoms/cm 3 ), k B : Boltzmann constant (eV/K), T: temperature (K)]... (Formula 1)
(See Weber, E.R.: Appl. Phys. A30 (1983) 1.)
For example, the following relational expressions are known for Fe, Co, Cu, etc.
Fe:Ceq=4.3×10 22 exp(-2.1/k B T)
(See Aoki, M., Hara, A., Ohsawa, A.: J. Appl. Phys. 72 (1992) 895.)
Co:Ceq=1.0×10 26 exp(-2.83/k B T)
(See Weber, E.R.: Appl. Phys. A 30 (1983) 1.)
Cu: Ceq=5.5×10 23 exp (-1.49/k B T)
(See Weber, E. R., Wiehl, N.: Mater. Res. Soc. Svmp. Proc. 14 (1983) 19.)

また、金属汚染されたシリコンウェーハに金属汚染後に別の熱処理が施されていた場合について例を挙げて説明する。この場合、前述したように非酸化性雰囲気における熱処理温度は、上記固溶限界温度か、金属汚染後の熱履歴における最高温度のいずれか高い方の温度以上とする。例えば、汚染金属として、Niにより約1013atoms/cm濃度で故意汚染された後、800℃の熱処理Hが施されたシリコンウェーハの場合を考える。このとき、Si中のNi固溶度が約1013atoms/cmに相当するのは、上記式1より約500℃である(固溶限界温度=約500℃)。一方で金属汚染後の熱履歴における最高温度は、上記熱処理Hの800℃である。したがって、汚染金属(Ni)の固溶限界温度よりも、金属汚染後でこれまでに受けた熱処理Hの温度の方が高いので、非酸化性雰囲気下の熱処理温度は800℃以上、シリコン融点未満を満たす温度とする。 Furthermore, an example will be described in which a metal-contaminated silicon wafer is subjected to another heat treatment after being metal-contaminated. In this case, as described above, the heat treatment temperature in the non-oxidizing atmosphere is set to be higher than the solid solution limit temperature or the highest temperature in the thermal history after metal contamination, whichever is higher. For example, consider the case of a silicon wafer that has been intentionally contaminated with Ni as a contaminant metal at a concentration of about 10 13 atoms/cm 3 and then subjected to heat treatment HA at 800°C. At this time, the Ni solid solubility in Si corresponds to about 10 13 atoms/cm 3 at about 500° C. according to the above formula 1 (solid solubility limit temperature = about 500° C.). On the other hand, the highest temperature in the thermal history after metal contamination was 800° C. in the heat treatment HA . Therefore, since the temperature of the heat treatment H A received so far after metal contamination is higher than the solid solubility limit temperature of the contaminated metal (Ni), the heat treatment temperature in a non-oxidizing atmosphere is 800°C or higher, which is the melting point of silicon. The temperature shall be less than or equal to

なお、ここで挙げたNiの故意汚染は汚染量を明確にして本発明の効果を分かりやすく示したにすぎず、前述したように本発明で言う金属汚染とは、故意汚染のみならず、シリコンウェーハが製造工程中に受ける環境汚染も含めることができる。 Note that the intentional contamination of Ni mentioned here is merely to clarify the amount of contamination and clearly demonstrate the effect of the present invention.As mentioned above, the metal contamination referred to in the present invention refers to not only intentional contamination but also silicon contamination. Environmental contamination to which the wafers are subjected during the manufacturing process can also be included.

また、非酸化性雰囲気における熱処理時間については限定されないが、特には汚染金属の拡散係数に依存させることができる。高温ほど短時間の熱処理で効果を発揮するが、汚染金属の拡散長が金属汚染された汚染シリコンウェーハ厚に相当する熱処理時間以上とするのが好ましい。このように汚染金属種、熱処理温度、シリコンウェーハの厚さ等に応じて適宜決定することができる。 Further, the heat treatment time in a non-oxidizing atmosphere is not limited, but can be made to depend particularly on the diffusion coefficient of the contaminant metal. The higher the temperature, the more effective a short heat treatment time will be, but it is preferable that the heat treatment time is longer than the diffusion length of the contaminated metal corresponding to the thickness of the metal-contaminated silicon wafer. In this way, it can be determined as appropriate depending on the type of contaminant metal, the heat treatment temperature, the thickness of the silicon wafer, etc.

さらに図1のS3のように、上記第1の熱処理後、第2の熱処理を行う。このとき、冷却過程で再度金属析出物が形成されることを防ぐため、第1の熱処理での非酸化性雰囲気から降温せずに酸化性雰囲気へ置換し、該酸化性雰囲気で第1の熱処理の熱処理温度以上(かつ、シリコンの融点未満)の温度で熱処理を行う。このようにしてシリコンウェーハの酸化熱処理を行う。
このように第1の熱処理後、炉内温度を下げることなく連続的に酸化性雰囲気で第2の熱処理を行うことにより、第1の熱処理で溶解したOSF形成の核となる金属析出物が、冷却過程で再度析出してしまい、第2の熱処理工程でOSFが形成されてしまうことを回避することができる。
Furthermore, as in S3 of FIG. 1, a second heat treatment is performed after the first heat treatment. At this time, in order to prevent metal precipitates from forming again during the cooling process, the non-oxidizing atmosphere in the first heat treatment is replaced with an oxidizing atmosphere without lowering the temperature, and the first heat treatment is performed in the oxidizing atmosphere. The heat treatment is performed at a temperature higher than the heat treatment temperature (and lower than the melting point of silicon). In this way, the silicon wafer is subjected to oxidation heat treatment.
After the first heat treatment, by continuously performing the second heat treatment in an oxidizing atmosphere without lowering the furnace temperature, the metal precipitates that were dissolved in the first heat treatment and become the core of OSF formation are removed. It is possible to avoid the formation of OSF in the second heat treatment step due to re-precipitation during the cooling process.

なお、第2の熱処理時間は特に限定されず、例えば1分以上とすることができる。またその上限も特に限定されず、求める酸化膜厚等により適宜決定することができる。 Note that the second heat treatment time is not particularly limited, and can be, for example, 1 minute or more. Further, the upper limit is not particularly limited, and can be appropriately determined depending on the desired oxide film thickness, etc.

以上のような熱処理方法によって、金属汚染後のシリコンウェーハに酸化熱処理を施したとしても、金属汚染起因のOSFが形成されるのを、極めて効果的に、また、従来法よりも確実に防ぐことができる。 By the heat treatment method described above, even if oxidation heat treatment is applied to a silicon wafer after metal contamination, the formation of OSF caused by metal contamination can be extremely effectively and more reliably prevented than conventional methods. I can do it.

以下、実施例および比較例を示して本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
CZ法により直径150mm、初期酸素濃度18ppma(JEIDA)、方位<100>のシリコン単結晶インゴットから、通常の方法でスライス、研磨し、デバイス作製に使用されるシリコンウェーハを作製した。
次に、図2に示すようにこのシリコンウェーハの表面にNiを約1013atoms/cmの濃度で故意汚染した。具体的にはNi原子吸光用標準液(1000mg/L=1000ppm)を純水で希釈した溶液をウェーハ表面にスピンコートすることにより行った。シリコンウェーハを熱処理炉内に室温で搬入し、窒素雰囲気中、1000℃、1hの熱処理後(以下、拡散熱処理とも言う)、-220℃/minで室温(25℃)まで冷却し、冷却後にシリコンウェーハを取り出した。このようにしてシリコンウェーハ表面にNiシリサイドを形成した。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
(Example 1)
A silicon single crystal ingot with a diameter of 150 mm, an initial oxygen concentration of 18 ppma (JEIDA), and an orientation of <100> was sliced and polished by the CZ method using a conventional method to prepare a silicon wafer to be used for device fabrication.
Next, as shown in FIG. 2, the surface of this silicon wafer was intentionally contaminated with Ni at a concentration of about 10 13 atoms/cm 2 . Specifically, a solution prepared by diluting a Ni atomic absorption standard solution (1000 mg/L=1000 ppm) with pure water was spin-coated onto the wafer surface. The silicon wafer is carried into a heat treatment furnace at room temperature, and after heat treatment for 1 hour at 1000°C in a nitrogen atmosphere (hereinafter also referred to as diffusion heat treatment), it is cooled to room temperature (25°C) at -220°C/min. I took out the wafer. In this way, Ni silicide was formed on the surface of the silicon wafer.

このシリコンウェーハ中のNi体積濃度は、表面汚染濃度が約1013atoms/cmであり、厚さが675μmであることから、約1.5×1014atoms/cmである。なお、式1から固溶度が約1.5×1014atoms/cmに相当する固溶限界温度を求めたところ約580℃であった。すなわち、故意汚染後の熱履歴における最高温度(上記拡散熱処理の1000℃)>固溶限界温度(約580℃)であった。
なお、別の同様のシリコンウェーハを準備し、上記と同様の熱処理炉で同様の熱処理を行い、熱処理前後のシリコンウェーハについてNi濃度を分析したところ、Ni濃度の増加量は上記の故意汚染量:約1.5×1014atoms/cmに比べて極微量であり無視できる程度であった。したがって、この拡散熱処理でのシリコンウェーハ外部からのNi汚染増加量は無視できる。
The Ni volume concentration in this silicon wafer is approximately 1.5×10 14 atoms/cm 3 because the surface contamination concentration is approximately 10 13 atoms/cm 2 and the thickness is 675 μm. Note that the solid solubility limit temperature corresponding to a solid solubility of approximately 1.5×10 14 atoms/cm 3 was determined to be approximately 580° C. from Formula 1. That is, the highest temperature in the thermal history after intentional contamination (1000° C. of the above diffusion heat treatment) was greater than the solid solution limit temperature (about 580° C.).
In addition, another similar silicon wafer was prepared and subjected to the same heat treatment in the same heat treatment furnace as above, and the Ni concentration of the silicon wafer before and after the heat treatment was analyzed. The increase in the Ni concentration was the same as the above intentional contamination amount: The amount was extremely small compared to about 1.5×10 14 atoms/cm 3 and could be ignored. Therefore, the increase in Ni contamination from outside the silicon wafer during this diffusion heat treatment can be ignored.

次に表面のNiシリサイドを溶解させるため、シリコンウェーハを熱処理炉内に室温(25℃)で搬入し、熱処理炉内を窒素雰囲気に十分置換した後、該窒素雰囲気中で1000℃まで昇温し、3hの第1の熱処理を施した。
その後、温度を保ったまま雰囲気を酸素に置換し、酸素雰囲気中で1000℃、4hの第2の熱処理(酸化熱処理)を施した。
Next, in order to dissolve the Ni silicide on the surface, the silicon wafer was carried into a heat treatment furnace at room temperature (25°C), and after the inside of the heat treatment furnace was sufficiently replaced with a nitrogen atmosphere, the temperature was raised to 1000°C in the nitrogen atmosphere. A first heat treatment was performed for 3 hours.
Thereafter, the atmosphere was replaced with oxygen while maintaining the temperature, and a second heat treatment (oxidation heat treatment) was performed at 1000° C. for 4 hours in an oxygen atmosphere.

第2の熱処理後のシリコンウェーハの酸化膜を5%フッ酸で除去し、選択エッチング液(IT液)を用いて1minの選択エッチングを施し、ウェーハ表面にエッチピットを形成し、シリコンウェーハの表面を光学顕微鏡で観察し、OSF密度を測定した。 After the second heat treatment, the oxide film on the silicon wafer is removed with 5% hydrofluoric acid, and selective etching is performed for 1 min using a selective etching solution (IT solution) to form etch pits on the wafer surface. was observed with an optical microscope, and the OSF density was measured.

(比較例1)
図3に示すように、実施例1における第1の熱処理を行わなかったこと、第2の熱処理(酸化熱処理)の際の搬入の仕方以外は実施例1と同じ方法で熱処理を行った。より具体的には、実施例1と同様の故意汚染、拡散熱処理、冷却、ウェーハ取り出しを行った後、室温で搬入し、熱処理炉内を酸素雰囲気に置換し、該酸素雰囲気中で1000℃まで昇温し、4hの熱処理(酸化熱処理)を行った。その後、実施例1と同様にしてOSF密度を測定した。
(Comparative example 1)
As shown in FIG. 3, the heat treatment was performed in the same manner as in Example 1, except that the first heat treatment in Example 1 was not performed and the method of transport during the second heat treatment (oxidation heat treatment) was carried out. More specifically, after the same intentional contamination, diffusion heat treatment, cooling, and wafer removal as in Example 1, the wafers were brought in at room temperature, the inside of the heat treatment furnace was replaced with an oxygen atmosphere, and the temperature was raised to 1000°C in the oxygen atmosphere. The temperature was raised and heat treatment (oxidation heat treatment) was performed for 4 hours. Thereafter, the OSF density was measured in the same manner as in Example 1.

(比較例2)
図4に示すように、実施例1における第1の熱処理の際、シリコンウェーハを800℃で熱処理炉に投入してから1000℃まで昇温したこと以外は実施例1と同じ方法で熱処理を行い、OSF密度を測定した。
(Comparative example 2)
As shown in FIG. 4, during the first heat treatment in Example 1, the heat treatment was performed in the same manner as in Example 1, except that the silicon wafer was placed in a heat treatment furnace at 800 °C and then heated to 1000 °C. , the OSF density was measured.

(比較例3)
図5に示すように、実施例1における第1の熱処理温度を、拡散熱処理温度未満の800℃としたこと以外は実施例1と同じ方法で熱処理を行い、OSF密度を測定した。
(Comparative example 3)
As shown in FIG. 5, the heat treatment was performed in the same manner as in Example 1 except that the first heat treatment temperature in Example 1 was 800° C., which is lower than the diffusion heat treatment temperature, and the OSF density was measured.

それぞれのOSF密度の測定結果を図6に示す。
実施例1と比較例1を比較すると、本発明における非酸化性雰囲気下の第1の熱処理を行うことにより(すなわち、実施例1)、金属汚染起因のOSF形成が抑制されていることがわかる。
また、実施例1と比較例2を比較すると、第1の熱処理において、高温の熱処理炉内にシリコンウェーハを搬入した場合(すなわち、比較例2)、OSF低減効果が低いことがわかる。
さらに、実施例1と比較例3を比較すると、固溶限界温度よりも高い、拡散熱処理温度(すなわち、汚染後にシリコンウェーハが受けた熱処理温度)以上の高温で第1の熱処理をしない場合(すなわち、比較例3)、OSF低減効果が低いことがわかる。
したがって本発明によれば、金属汚染されてしまったシリコンウェーハに対して酸化熱処理を行う際、金属汚染起因のOSF形成をたとえゲッタリング機構なしでも効果的に抑制することが可能である。
The measurement results of each OSF density are shown in FIG.
Comparing Example 1 and Comparative Example 1, it can be seen that OSF formation due to metal contamination is suppressed by performing the first heat treatment in a non-oxidizing atmosphere in the present invention (i.e., Example 1). .
Further, when comparing Example 1 and Comparative Example 2, it can be seen that the OSF reduction effect is low when the silicon wafer is carried into a high-temperature heat treatment furnace in the first heat treatment (i.e., Comparative Example 2).
Furthermore, when comparing Example 1 and Comparative Example 3, it is found that when the first heat treatment is not performed at a high temperature higher than the solid solution limit temperature and higher than the diffusion heat treatment temperature (i.e., the heat treatment temperature that the silicon wafer was subjected to after contamination) (i.e. , Comparative Example 3), it can be seen that the OSF reduction effect is low.
Therefore, according to the present invention, when performing oxidation heat treatment on a silicon wafer contaminated with metal, it is possible to effectively suppress the formation of OSF due to metal contamination even without a gettering mechanism.

ちなみに、実施例1の拡散熱処理はウェーハ表面に故意汚染したNiを表面からシリコン中へ拡散させるプロセスであり、今回、拡散熱処理温度の方が固溶限界温度よりも高い温度であったが、逆に固溶限界温度よりも低い温度で拡散熱処理をした場合では、ウェーハ表面のNiがシリコン中にその拡散熱処理での熱処理温度における固溶度までしか入っていかないため、第1の熱処理の温度をNiの固溶限界温度以上とすることにより金属汚染起因のOSFはほぼ発生しない。 Incidentally, the diffusion heat treatment in Example 1 is a process in which Ni, which was intentionally contaminated on the wafer surface, is diffused from the surface into the silicon.In this case, the diffusion heat treatment temperature was higher than the solid solution limit temperature, but the reverse was true. When diffusion heat treatment is performed at a temperature lower than the solid solution limit temperature, Ni on the wafer surface enters silicon only up to the solid solubility at the heat treatment temperature in the diffusion heat treatment. By setting the temperature to be higher than the solid solution limit temperature of Ni, almost no OSF due to metal contamination occurs.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiments. The above-mentioned embodiments are illustrative, and any embodiment that has substantially the same configuration as the technical idea stated in the claims of the present invention and has similar effects is the present invention. covered within the technical scope of.

Claims (2)

金属汚染されたシリコンウェーハに酸化熱処理を行う熱処理方法であって、
前記シリコンウェーハを室温で熱処炉内に搬入し、該熱処理炉内を非酸化性雰囲気に置換後、該非酸化性雰囲気下、前記シリコンウェーハにおいて推定される汚染金属の汚染濃度に固溶度が一致する固溶限界温度と、前記シリコンウェーハの金属汚染後の熱履歴における最高温度とのうち高い方の温度以上、かつ、シリコンの融点未満の温度で、前記シリコンウェーハに熱処理を行うことにより、前記シリコンウェーハの表面の金属析出物を溶解させる第1の熱処理と、
該第1の熱処理後、降温せずに前記熱処理炉内を酸化性雰囲気に置換し、該酸化性雰囲気下、前記第1の熱処理の熱処理温度以上、かつ、シリコンの融点未満の温度で前記シリコンウェーハに熱処理を行うことにより、前記シリコンウェーハを酸化させる第2の熱処理と、
を含むことを特徴とするシリコンウェーハの熱処理方法。
A heat treatment method for performing oxidation heat treatment on a metal-contaminated silicon wafer, the method comprising:
The silicon wafer is carried into a heat treatment furnace at room temperature, and the inside of the heat treatment furnace is replaced with a non-oxidizing atmosphere. Under the non-oxidizing atmosphere, the contamination concentration of the contaminant metal estimated in the silicon wafer has a solid solubility. By performing heat treatment on the silicon wafer at a temperature that is higher than the higher of the matching solid solution limit temperature and the highest temperature in the thermal history after metal contamination of the silicon wafer, and lower than the melting point of silicon, a first heat treatment for dissolving metal precipitates on the surface of the silicon wafer;
After the first heat treatment, the inside of the heat treatment furnace is replaced with an oxidizing atmosphere without decreasing the temperature, and the silicon is heated in the oxidizing atmosphere at a temperature higher than the heat treatment temperature of the first heat treatment and lower than the melting point of silicon. a second heat treatment for oxidizing the silicon wafer by subjecting the wafer to heat treatment;
A method for heat treating a silicon wafer, the method comprising:
前記シリコンウェーハにおける汚染金属の汚染濃度を、該シリコンウェーハの不純物分析、または、前記シリコンウェーハに施してきた工程の環境汚染試験から推定することを特徴とする請求項1に記載のシリコンウェーハの熱処理方法。 The heat treatment of a silicon wafer according to claim 1, wherein the concentration of contamination metal in the silicon wafer is estimated from an impurity analysis of the silicon wafer or an environmental contamination test of a process performed on the silicon wafer. Method.
JP2022081119A 2022-05-17 2022-05-17 Silicon wafer heat treatment method Pending JP2023169790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022081119A JP2023169790A (en) 2022-05-17 2022-05-17 Silicon wafer heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022081119A JP2023169790A (en) 2022-05-17 2022-05-17 Silicon wafer heat treatment method

Publications (1)

Publication Number Publication Date
JP2023169790A true JP2023169790A (en) 2023-11-30

Family

ID=88924097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022081119A Pending JP2023169790A (en) 2022-05-17 2022-05-17 Silicon wafer heat treatment method

Country Status (1)

Country Link
JP (1) JP2023169790A (en)

Similar Documents

Publication Publication Date Title
KR100573473B1 (en) Silicon wafer and method of fabricating the same
JP3011178B2 (en) Semiconductor silicon wafer, its manufacturing method and heat treatment apparatus
JP5256195B2 (en) Silicon wafer and manufacturing method thereof
US20080102287A1 (en) Silicon wafer for igbt and method for producing same
JPS6255697B2 (en)
US20100155903A1 (en) Annealed wafer and method for producing annealed wafer
JP2002532875A (en) Epitaxial silicon wafer having internal gettering and method of manufacturing the same
KR19990024037A (en) Semiconductor device and manufacturing method thereof
KR101822479B1 (en) Method for producing silicon wafer
KR100319413B1 (en) Method for manufacturing semiconductor silicon epitaxial wafer and semiconductor device
TW508701B (en) Method for manufacturing single-crystal silicon wafer
JPH11168106A (en) Treatment method of semiconductor substrate
TW201339378A (en) Qualitative crystal defect evaluation method
JPH10229093A (en) Production of silicon epitaxial wafer
WO2010131412A1 (en) Silicon wafer and method for producing the same
JP2001253795A (en) Silicon epitaxial water and method of producing the same
JP2023169790A (en) Silicon wafer heat treatment method
JPH11204534A (en) Manufacture of silicon epitaxial wafer
JP4035886B2 (en) Silicon epitaxial wafer and manufacturing method thereof
JP2006278892A (en) Quality evaluation method of silicon single-crystal wafer
JP3896919B2 (en) Method for evaluating Ni contamination of silicon wafer
JP4370571B2 (en) Annealing wafer evaluation method and quality assurance method
JP2652346B2 (en) Manufacturing method of silicon wafer
JP2652344B2 (en) Silicon wafer
JPH1192300A (en) Production of semiconductor substrate