KR20000037951A - Method for measuring deposited amount of interstitial type oxygen of silicon wafer in which large amount of metal is doped - Google Patents

Method for measuring deposited amount of interstitial type oxygen of silicon wafer in which large amount of metal is doped Download PDF

Info

Publication number
KR20000037951A
KR20000037951A KR1019980052777A KR19980052777A KR20000037951A KR 20000037951 A KR20000037951 A KR 20000037951A KR 1019980052777 A KR1019980052777 A KR 1019980052777A KR 19980052777 A KR19980052777 A KR 19980052777A KR 20000037951 A KR20000037951 A KR 20000037951A
Authority
KR
South Korea
Prior art keywords
amount
silicon wafer
metal
doped
measuring
Prior art date
Application number
KR1019980052777A
Other languages
Korean (ko)
Inventor
문영희
Original Assignee
이창세
주식회사 실트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이창세, 주식회사 실트론 filed Critical 이창세
Priority to KR1019980052777A priority Critical patent/KR20000037951A/en
Publication of KR20000037951A publication Critical patent/KR20000037951A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE: A method for measuring a deposited amount of interstitial type oxygen of a silicon wafer in which a large amount of metal is doped is provided to prevent the silicon wafer from being damaged when the measuring process is performed. CONSTITUTION: In a method for measuring a deposited amount of interstitial type oxygen of a silicon wafer in which a large amount of metal is doped, an initial X-ray intensity and an amount of a deposited oxygen amount are first measured, then a final X-ray intensity and an amount of a deposited oxygen amount are measured. Linear relations between the initial and final X-ray intensities and the two deposited oxygen amounts are calculated. Next, an X-ray intensity of a silicon wafer sample is measured and the same is annealed. An X-ray intensity of the annealed sample is then measured. An amount of oxygen deposited in the silicon wafer is measured by using the X-ray intensities before and after the annealing process and the linear relations.

Description

다량의 금속이 도핑된 실리콘 웨이퍼의 칩입형 산소 침전물 양의 측정 방법Method for measuring the amount of piercing oxygen precipitates in a silicon wafer doped with a large amount of metal

본 발명은 결정 성장된 실리콘 웨이퍼의 내부에 존재하는 칩입형(Interstitial Type) 산소 침전물(Delta[Oi])을 측정하는 방법에 관한 것으로서, 보다 상세하게는 결정 성장된 실리콘 웨이퍼의 가공 단계에서 형성되는 칩입형 산소 침전물의 양을 정확하게 측정할 수 있는 방법에 관한 것이다.The present invention relates to a method for measuring an interstitial type oxygen precipitate (Delta [Oi]) present in a crystal grown silicon wafer, and more particularly, in the process of processing a crystal grown silicon wafer. The present invention relates to a method capable of accurately measuring the amount of infiltrating oxygen precipitates.

반도체 소자의 제조시에 기판으로 주로 사용되는 실리콘 웨이퍼는 일반적으로 고순도의 다결정 실리콘 봉을 제조한 후, 쵸크랄스키(Czochralski) 결정 성장법 또는 플로트 존(Float zone) 결정 성장법에 따라 단결정 봉을 생산하고, 이를 얇게 절단하고, 실리콘 웨이퍼 일면을 경면(境面) 연마(polishing)하고 세정하여 제조된다. 제조된 실리콘 웨이퍼는 여러 가지 물질의 박막을 실리콘 웨이퍼 표면에 성장시키거나 더하는 막 형성 단계, 실리콘 웨이퍼로부터 박막을 선택적으로 제거하는 패턴 형성 단계 및 실리콘 웨이퍼의 선택된 저항성과 전도성을 불순물 첨가에 따라 변화시키는 도핑(doping) 단계를 포함하는 실리콘 웨이퍼 가공 공정을 거쳐서 반도체 소자나 회로가 된다. 실리콘 웨이퍼가 결정 성장하는 동안 소량의 산소가 결정에 필연적으로 들어가게 되는데, 특히 쵸크랄스키 결정 성장법으로 성장된 실리콘 웨이퍼의 경우에는 실리콘 웨이퍼 내부에 과포화된 산소 함량이 많아 고품질의 반도체에서 요구하는 산소 함량을 초과하는 문제가 있다.Silicon wafers, which are mainly used as substrates in the manufacture of semiconductor devices, generally produce high purity polycrystalline silicon rods, followed by single crystal rods according to the Czochralski crystal growth method or the float zone crystal growth method. It is produced by producing, cutting it thinly, mirror-polishing one surface of a silicon wafer, and cleaning. The fabricated silicon wafer has a film forming step of growing or adding a thin film of various materials to the surface of the silicon wafer, a pattern forming step of selectively removing the thin film from the silicon wafer, and changing the selected resistivity and conductivity of the silicon wafer with the addition of impurities. A semiconductor device or a circuit may be processed through a silicon wafer processing process including a doping step. During the crystal growth of silicon wafers, a small amount of oxygen inevitably enters the crystals. Especially, in the case of silicon wafers grown by Czochralski crystal growth method, the oxygen content required for high-quality semiconductors due to the high supersaturated oxygen content in the silicon wafers. There is a problem of exceeding the content.

또한 성장된 실리콘 웨이퍼에 과포화된 산소는 실리콘 웨이퍼 가공 공정을 거치면서 산소 침전물을 형성하게 되는데, 이 산소 침전물은 산화시 유발되는 적층 결함을 증가시켜 반도체 소자 내에서 누설 전류 불량률을 증가시키는 등 전기적 특성을 감소시키는 문제가 있다. 실리콘 웨이퍼를 어닐링(annealing)하기 전 또는 후의 칩입형 산소 침전물의 양에 대한 종래의 측정은 푸리에 변환 적외선 분광법 (Fourier Transform Infrared Ray Spectrometry: FTIR)을 사용하여 수행하였으나, 이 방법은 소량의 금속이 도핑된 실리콘 웨이퍼 내부에 존재하는 칩입형 산소 침전물의 양을 측정하는데는 적용이 가능하지만, Epi 웨이퍼의 기판으로 사용되는 다량의 금속이 도핑된 실리콘 웨이퍼의 칩입형 산소 침전물의 양을 측정하기에는 적외선의 강한 흡수율 때문에 어려움이 있다. 따라서 다량의 금속이 도핑된 실리콘 웨이퍼의 내부에 존재하는 칩입형 산소 침전물의 양은 GFA(Gas Fusion Analysis: 가스 용융 분석기) 또는 SIMS(Secondary Ion Mass Spectroscopy: 이차 이온 질량 분석기)를 사용하여 측정하였다. 그러나 GFA 또는 SIMS를 사용하여 칩입형 산소 침전물의 양을 측정하는 방법은 실리콘 웨이퍼를 손상시킬 뿐만 아니라 실리콘 웨이퍼 내부에 존재하는 총 산소 농도로부터 칩입형 형태의 산소 침전물의 양만을 구별하여 측정할 수 없다는 문제점이 있다. 따라서 종래의 측정 방법으로는 칩입형 산소 침전물의 양에 대한 측정은 불가능한데, 특히 이러한 문제는 향후 고품질의 Epi 웨이퍼의 제조를 필요로 하는 경우에는 큰 문제가 되기 때문에 실리콘 웨이퍼의 칩입형 산소 침전물 양을 정확히 분석하는 것은 매우 중요하다.In addition, the supersaturated oxygen in the grown silicon wafer forms an oxygen precipitate during the silicon wafer processing process, which increases the stacking defects caused by oxidation, thereby increasing the leakage current defect rate in the semiconductor device. There is a problem to reduce. Conventional measurements of the amount of chipped oxygen precipitates before or after annealing silicon wafers have been performed using Fourier Transform Infrared Ray Spectrometry (FTIR), but this method does not allow a small amount of metal to be doped. It can be applied to measure the amount of chipped oxygen deposits present in the silicon wafers, but it is strong in infrared to measure the amount of chipped oxygen deposits on a large amount of metal doped silicon wafers used as the substrate of the Epi wafer. There is difficulty due to the absorption rate. Therefore, the amount of chipped oxygen precipitates present inside the silicon wafer doped with a large amount of metal was measured using a gas fusion analysis (GFA) or a secondary ion mass spectroscopy (SIM). However, the method of measuring the amount of chipped oxygen precipitate using GFA or SIMS is not only damaging the silicon wafer but also cannot distinguish the amount of the chipped oxygen precipitate from the total oxygen concentration present inside the silicon wafer. There is a problem. Therefore, it is impossible to measure the amount of infiltrating oxygen precipitates by the conventional measuring method. In particular, this problem becomes a big problem when the production of high quality Epi wafer is required in the future. It is very important to analyze this correctly.

따라서 본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 다량의 금속이 도핑된 실리콘 웨이퍼 내에 존재하는 칩입형 산소 침전물의 양을 실리콘 웨이퍼를 손상시키지 않고 정확하게 분석하는 방법을 제공하는 것이다.Accordingly, the present invention is to solve the above problems, an object of the present invention is to provide a method for accurately analyzing the amount of the piercing oxygen precipitates present in the silicon wafer doped with a large amount of metal without damaging the silicon wafer will be.

상기와 같은 목적을 달성하기 위하여 본 발명은 X선 해부 방법을 이용하여In order to achieve the above object, the present invention uses the X-ray dissection method

a) 실리콘 웨이퍼에 소량의 금속을 도핑시켜 실리콘 웨이퍼 샘플을 준비하는 단계;a) preparing a silicon wafer sample by doping a small amount of metal onto the silicon wafer;

b) 상기 a)단계에서 제조된 실리콘 웨이퍼 샘플의 X선 초기 강도(Ii) 및 초기 칩입형 산소 침전물 양(Oi)을 측정하는 단계;b) measuring the initial X-ray intensity (I i ) and the initial pleated oxygen precipitate amount (O i ) of the silicon wafer sample prepared in step a);

c) 상기 b)단계를 거친 실리콘 웨이퍼 샘플을 2단계 어닐링시키는 단계;c) annealing the silicon wafer sample from step b) in two steps;

d) 상기 c)단계를 거친 실리콘 웨이퍼 샘플의 X선 최종 강도(If) 및 최종 칩입형 산 소 침전물 양(Of)을 측정하는 단계;d) measuring the X-ray final intensity (I f ) and the final pleated oxygen precipitate amount (O f ) of the silicon wafer sample subjected to step c);

e) 상기 b)단계 및 d)단계에서 각각 측정된 X선 강도와 칩입형 산소 침전물 양의 비율인 Ii/If및 Oi/Of의 상호간 선형 관계를 도출하는 단계;e) deriving a linear relationship between I i / I f and O i / O f, which is the ratio of the X-ray intensity measured in steps b) and d), respectively, to the amount of chipped oxygen precipitates;

f) 실리콘 웨이퍼에 다량의 금속을 도핑시켜 실리콘 웨이퍼 샘플을 준비하는 단계;f) preparing a silicon wafer sample by doping a large amount of metal onto the silicon wafer;

g) 상기 f)단계에서 제조된 실리콘 웨이퍼 샘플의 X선 초기 강도를 측정하는 단계;g) measuring the initial X-ray intensity of the silicon wafer sample prepared in step f);

h) 상기 g)단계를 거친 실리콘 웨이퍼 샘플을 2단계 어닐링시키는 단계;h) annealing the silicon wafer sample subjected to step g) in two steps;

i) 상기 h)단계를 거친 실리콘 웨이퍼 샘플의 X선 최종 강도를 측정하는 단계; 및i) measuring the final X-ray intensity of the silicon wafer sample subjected to step h); And

j) 다량의 금속이 도핑된 실리콘 웨이퍼에 존재하는 칩입형 산소 침전물 양을 정량적으로 평가하는 단계j) quantitatively evaluating the amount of chipped oxygen precipitate present in the silicon wafer doped with a large amount of metal.

를 포함하는 일련의 공정 단계를 개발하여 다량의 금속이 도핑된 실리콘 웨이퍼의 칩입형 산소 침전물의 양을 실리콘 웨이퍼의 손상없이 정확하게 분석하는 방법을 제공한다.By developing a series of process steps including a provides a method for accurately analyzing the amount of the chipped oxygen precipitate of the silicon wafer doped with a large amount of metal without damaging the silicon wafer.

이하, 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명에 따라 다량의 금속이 도핑된 실리콘 웨이퍼의 칩입형 산소 침전물의 양을 실리콘 웨이퍼의 손상없이 정확하게 분석하기 위하여, 먼저 칩입형 산소 침전물의 양을 측정하기 위한 실리콘 웨이퍼 샘플을 준비한다.In order to accurately analyze the amount of chipped oxygen precipitate of a large amount of metal doped silicon wafer according to the present invention without damaging the silicon wafer, a silicon wafer sample is first prepared for measuring the amount of chipped oxygen precipitate.

다결정 실리콘 덩어리와 도핑시킬 금속을 소량으로 흑연로에 넣고 이것을 용융시키는 방식으로 실리콘 웨이퍼 샘플에 소량의 금속을 도핑시키는데, 이 경우 금속이 도핑된 실리콘 웨이퍼의 비저항 값은 FTIR을 사용하여 측정하며, 비저항 값은 도핑되는 금속의 종류 및 농도에 따라 상이하나 0.1 Ωㆍ㎝ 이상인 것이 바람직하다. 실리콘 웨이퍼의 비저항 값이 0.1 Ωㆍ㎝ 미만이 되면 실리콘 웨이퍼의 전자에 의해 그 파장 내에서 IR이 흡수되어 강도가 낮아지기 때문에 FTIR의 정확한 검지가 불가능하여 적외선 분광법을 사용하여 칩입형 산소 침전물 양만을 독립적으로 측정할 수 없기 때문에 바람직하지 않다. 도핑되는 금속 재료로는 III족 및 V족 원소의 화합물, 할로겐화물 또는 단체 등이 될 수 있으나, 고품질의 EPi 웨이퍼용 기판을 제조하기 위한 것으로는 보론 금속이 도핑되는 것이 바람직하며, 이 경우 보론의 형태는 여러 가지가 있으나, 바람직한 형태는 산화 붕소(B2O3)이다. 보론을 실리콘 웨이퍼에 도핑시킬 경우에는 비저항 값이 2-20 Ωㆍ㎝, 바람직하게는 5-15 Ωㆍ㎝이 되도록 보론을 도핑시키는 것이 좋다.A small amount of metal is doped into a silicon wafer sample by putting a small amount of polycrystalline silicon and a metal to be doped into a graphite furnace and melting it. In this case, the resistivity of the metal-doped silicon wafer is measured using FTIR, Silver varies depending on the type and concentration of the metal to be doped, but is preferably 0.1 Ω · cm or more. When the resistivity of the silicon wafer is less than 0.1 Ω · cm, the IR is absorbed by the electrons of the silicon wafer within the wavelength and the intensity is lowered. Therefore, the accurate detection of the FTIR is impossible. It is not preferable because it cannot be measured. The metal material to be doped may be a compound of Group III and Group V elements, a halide or a single element, but boron metal is preferably doped to produce a high quality EPi wafer substrate. There are many forms, but the preferred form is boron oxide (B 2 O 3 ). When boron is doped to the silicon wafer, it is preferable to dope the boron so that the specific resistance value is 2-20 Ω · cm, preferably 5-15 Ω · cm.

이와 같이 소량의 금속이 도핑된 실리콘 웨이퍼 샘플이 준비되면, 실리콘 웨이퍼 샘플의 초기 X선 강도 (Ii)를 측정한다. 이때 초기 X선 강도는 X선 회절 장치를 사용하여 X선 해부 방법으로 측정하는데, 실리콘 웨이퍼에 도핑되는 금속의 양이 과량이거나 또는 너무 소량인 경우에는 X선 강도와 칩입형 산소 침전물 양의 상호 관계를 도출할 수 없기 때문에 바람직하지 않다. 초기 X선 강도가 측정된 실리콘 웨이퍼 샘플을 적외선 분광 장치로 이동시켜 초기 칩입형 산소 침전물의 양(Oi)을 측정한다. 적외선 분광법으로 칩입형 산소 침전물의 양을 측정하는 경우 도핑되는 금속의 양이 중요하며, 다량의 금속이 도핑되는 경우에는 적외선의 흡수율이 강하기 때문에 정확한 칩입형 산소 침전물의 양을 측정하는 것이 어렵다. 일반적으로 적외선 분광법으로 칩입형 산소 침전물의 양을 정확하게 측정하는데 적합한 도핑되는 금속의 양은 일반적으로 금속이 도핑된 실리콘 웨이퍼의 비저항 값이 0.1 Ωㆍ㎝ 이상이나, 이 값은 도핑되는 금속의 종류에 따라 다를 수 있다.When a silicon wafer sample doped with a small amount of metal is thus prepared, the initial X-ray intensity I i of the silicon wafer sample is measured. At this time, the initial X-ray intensity is measured by X-ray dissection method using an X-ray diffraction apparatus. When the amount of metal doped in the silicon wafer is excessive or too small, the correlation between the X-ray intensity and the amount of chipped oxygen precipitates It is not preferable because cannot be derived. The silicon wafer sample from which the initial X-ray intensity was measured is transferred to an infrared spectrometer to measure the amount of initial infiltrating oxygen precipitate (O i ). When measuring the amount of infiltrating oxygen precipitates by infrared spectroscopy, the amount of metal doped is important, and when a large amount of metal is doped, it is difficult to accurately measure the amount of infiltrating oxygen precipitates because of the strong absorption of infrared rays. In general, the amount of doped metals suitable for accurately measuring the amount of chipped oxygen precipitates by infrared spectroscopy generally has a specific resistance value of 0.1 Ω · cm or more of the metal-doped silicon wafer, but this value depends on the type of doped metal. can be different.

초기 칩입형 산소 침전물 양이 측정된 실리콘 웨이퍼 샘플에 대하여 2단계의 어닐링을 수행한다. 실리콘 웨이퍼의 어닐링은 일반적으로 실리콘 실리콘 웨이퍼에 어떤 처리를 한 후, 실리콘 웨이퍼의 결정성을 회복시키는 위하여 수행하거나 또는 실리콘 웨이퍼의 물성 향상을 위하여 수행하며 어닐링 방법에도 여러 가지가 있으나, 본원 발명에서는 열어닐링법을 사용하여 실리콘 웨이퍼의 산소 침전물의 변화를 확인하기 위하여 산소 침전물 핵을 형성시키는 단계 및 형성된 핵을 성장시키는 단계로 이루어지는 2단계 실리콘 웨이퍼의 어닐링을 수행하여 실리콘 웨이퍼에 존재하는 산소 농도를 감소시킨다. 어닐링 방법은 먼저 실리콘 웨이퍼를 통상의 확산로에 넣고 온도를 서서히 승온하여 로 내의 온도를 600-800 ℃가 되게하고, 이 온도에서 200-700 분 동안 실리콘 웨이퍼 샘플의 열처리를 수행한 후, 로 내의 온도를 800-1200 ℃로 승온시키고 이 온도에서 700-1200 분 동안 실리콘 웨이퍼를 다시 열처리하여 2단계 어닐링을 수행한다. 실리콘 웨이퍼의 어닐링 조건 즉, 어닐링 온도 및 시간은 실리콘 웨이퍼 샘플의 물성에 중요한 영향을 미치기 때문에 제조하고자 하는 실리콘 웨이퍼의 물성에 따라 어닐링 조건을 정확하게 유지시키는 것이 바람직하다. 어닐링된 소량의 금속이 도핑된 실리콘 웨이퍼 샘플의 최종 X선 강도(If) 및 최종 칩입형 산소 침전물의 양(Of)을 X선 해부 방법과 적외선 분광법을 사용하여 각각 측정한다. 이 경우 FTIR 피크로부터 어닐링에 의하여 제거되는 산소가 대부분 칩입형 산소임을 확인하는 것이 가능하다. 상기에서 측정된 초기 및 최종 X선 강도 값과 초기 및 최종 칩입형 산소 침전물의 양 사이의 상관 관계를 도출한다. 이것은 x 축에 X선 강도를 표시하고, y 축에 칩입형 산소 침전물의 양을 표시한 그래프를 그려서 상기에서 측정된 값들을 그래프 상에 표시함으로써 Ii/If및 Oi/Of상호간 선형 상관 관계를 도출한다.A two-step annealing is performed on the silicon wafer sample from which the initial chipped oxygen precipitate amount was measured. In general, the annealing of the silicon wafer is carried out to recover the crystallinity of the silicon wafer after performing some processing on the silicon silicon wafer, or to improve the physical properties of the silicon wafer, and there are various annealing methods. In order to confirm the change of the oxygen precipitates of the silicon wafer using the annealing method, the oxygen concentration present in the silicon wafer is reduced by performing annealing of the silicon wafer, which is a two-step silicon wafer comprising forming an oxygen precipitate nucleus and growing the nucleus formed. Let's do it. In the annealing method, the silicon wafer is first placed in a conventional diffusion furnace, and the temperature is gradually raised to bring the temperature in the furnace to 600-800 ° C., and the heat treatment of the silicon wafer sample is performed at this temperature for 200-700 minutes. The temperature is raised to 800-1200 ° C. and the silicon wafer is heat treated again at this temperature for 700-1200 minutes to perform a two step annealing. Since the annealing conditions of the silicon wafer, that is, the annealing temperature and time have a significant influence on the physical properties of the silicon wafer sample, it is desirable to maintain the annealing conditions accurately according to the physical properties of the silicon wafer to be manufactured. The final X-ray intensity (I f ) and the amount of final chipped oxygen precipitate (O f ) of the annealed small amount of metal doped silicon wafer sample are measured using X-ray dissection and infrared spectroscopy, respectively. In this case, it is possible to confirm that most of the oxygen removed by annealing from the FTIR peak is chopped oxygen. The correlation between the initial and final X-ray intensity values measured above and the amount of the initial and final pleated oxygen precipitates is derived. It is a linear representation of I i / I f and O i / O f by plotting the X-ray intensity on the x-axis, plotting the amount of infiltrating oxygen deposits on the y-axis, and displaying the measured values on the graph. Correlate.

다음으로는 다량의 금속이 도핑된 실리콘 웨이퍼의 칩입형 산소 침전물의 양을 측정하기 위하여, 상기와 동일한 방법으로 다량의 금속을 도핑시킨다. 이 경우 다량의 금속이 도핑된 실리콘 웨이퍼의 비저항 값은 도핑되는 금속에 따라 다를 수 있으나, 평균적으로 0.0001 Ωㆍ㎝ 내지 0.1 Ωㆍ㎝ 미만이 바람직하며, 보론을 실리콘 웨이퍼에 도핑시킬 경우에는 비저항 값이 0.0001-0.01 Ωㆍ㎝이 되도록 보론을 도핑시키는 것이 바람직하다. 이와 같이 다량의 금속이 도핑된 실리콘 웨이퍼 샘플이 준비되면, 상기와 동일한 방법으로 실리콘 웨이퍼 샘플의 X선 강도를 측정한 후, 이 샘플을 상기와 동일한 방법과 조건으로 2단계 어닐링을 수행하고 어닐링 후의 X선 강도를 측정한다. 측정된 초기 및 최종 X선 강도를 소량의 금속에 대하여 상기에서 구한 Ii/If및 Oi/Of상호간 선형 상관 관계에 적용하여 다량의 금속이 도핑된 실리콘 웨이퍼 샘플에 어닐링 전 후에 존재하는 칩입형 산소 침전물의 양을 얻는다. 수득된 산소 침전물의 양은 실리콘 웨이퍼의 가공 처리 단계에서 발생할 수 있는 실리콘 웨이퍼의 적층 결함 밀도를 알 수 있는 자료이기 때문에 고품질의 실리콘 웨이퍼를 제조하는 경우에 중요한 자료가 된다.Next, in order to measure the amount of the chipped oxygen precipitate of the silicon wafer doped with a large amount of metal, a large amount of metal is doped in the same manner as described above. In this case, the specific resistance value of the silicon wafer doped with a large amount of metal may vary depending on the metal to be doped. On average, the resistivity value is preferably 0.0001 Ω · cm to less than 0.1 Ω · cm, and when boron is doped to the silicon wafer, It is preferable to dope boron so that it may become 0.0001-0.01 ohm * cm. When a silicon wafer sample doped with a large amount of metal is prepared as described above, the X-ray intensity of the silicon wafer sample is measured in the same manner as described above, and then the sample is subjected to two-step annealing using the same method and conditions as described above. X-ray intensity is measured. The measured initial and final X-ray intensities are applied to the linear correlations between the I i / I f and O i / O f obtained above for a small amount of metal, which are present before and after annealing on a large amount of metal doped silicon wafer sample. The amount of piercing oxygen precipitate is obtained. The amount of oxygen precipitates obtained is an important data in the production of high quality silicon wafers because the density of the deposition defects of the silicon wafers that may occur in the processing steps of the silicon wafers is known.

다음은 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 용이하게 이해하기 위하여 제공되는 것일 뿐 본 발명을 한정하는 것은 아니다.The following presents a preferred embodiment to aid the understanding of the present invention. However, the following examples are provided only to more easily understand the present invention and do not limit the present invention.

실시예 1Example 1

보론을 실리콘 결정과 함께 흑연로에 넣고 결정 성장시킨 후, 이것을 절단하고 연마하고 세정하여 실리콘 웨이퍼 샘플을 제조하여 비저항 값이 5-15 Ωㆍ㎝이 되도록 하였다. X선 해부 방법과 적외선 분광법으로 각각 실리콘 웨이퍼 샘플의 초기 X선 강도(Ii) 및 초기 칩입형 산소 침전물의 양(Oi)을 측정하였다. 실리콘 웨이퍼 샘플을 확산로에 넣고 온도를 700 ℃로 승온시킨 후, 이 온도에서 300 분 동안 제1 어닐링시키고, 다시 로 내의 온도를 1000 ℃로 승온시켜서 이 온도에서 800 분 동안 제2 어닐링을 수행하였다. 어닐링된 실리콘 웨이퍼 샘플을 상기와 동일한 방법으로 최종 X선 강도(If) 및 칩입형 산소 침전물의 양(Of)을 측정하고, 상기에서 측정된 Ii및 Oi와의 비율인 Ii/If및 Oi/Of를 도출하였다. 준비된 실리콘 웨이퍼 샘플에 비저항 값이 0.001-0.01 Ωㆍ㎝이 되도록 보론을 도핑시키고, 상기와 동일한 방법으로 초기 X선 강도를 측정한 후, 상기와 동일한 조건으로 어닐링시키고 최종 X선 강도를 측정하였다. 비저항 값이 0.001-0.01 Ωㆍ㎝이 되도록 보론이 도핑된 실리콘 웨이퍼에서 측정된 초기 및 최종 X선 강도를 상기에서 도출된 Ii/If및 Oi/Of의 선형 관계에 적용하여 어닐링 전과 후의 칩입형 산소 침전물의 양을 도출하였다.After boron was placed in a graphite furnace together with silicon crystals to grow the crystals, it was cut, polished, and washed to prepare a silicon wafer sample so that the resistivity value was 5-15 Ω · cm. Initial X-ray intensity (I i ) and amount of initial piercing oxygen precipitate (O i ) of the silicon wafer sample were measured by X-ray dissection and infrared spectroscopy, respectively. The silicon wafer sample was placed in a diffusion furnace and the temperature was raised to 700 ° C., followed by a first anneal at this temperature for 300 minutes, and again the temperature in the furnace was raised to 1000 ° C. to perform a second annealing at this temperature for 800 minutes. . End of the annealed silicon wafer sample in the same manner as the X-ray intensity (I f) and the amount of intrusion oxygen precipitates (O f) of the measurement, measured in the I i and O i with the ratio of I i / I f and O i / O f were derived. Boron was doped to the prepared silicon wafer sample so that the resistivity value was 0.001-0.01 Ω · cm, and the initial X-ray intensity was measured by the same method as above, and then annealed under the same conditions as above, and the final X-ray intensity was measured. The initial and final X-ray intensities measured on boron-doped silicon wafers with a resistivity value of 0.001-0.01 Ω · cm were applied to the linear relationship between I i / I f and O i / O f derived before and after annealing. The amount of the subsequent chipped oxygen precipitate was derived.

실시예 2Example 2

제1 어닐링을 700 ℃에서 450 분 동안 수행하는 것을 제외하고는 실시예 1과 동일한 방법으로 보론이 도핑된 실리콘 웨이퍼의 어닐링 전과 후의 칩입형 산소 침전물의 양을 도출하였다.The amount of piercing oxygen precipitate before and after annealing of the boron-doped silicon wafer was derived in the same manner as in Example 1 except that the first annealing was performed at 700 ° C. for 450 minutes.

실시예 3Example 3

제1 어닐링을 700 ℃에서 600 분 동안 수행하는 것을 제외하고는 실시예 1과 동일한 방법으로 보론이 도핑된 실리콘 웨이퍼의 어닐링 전과 후의 칩입형 산소 침전물의 양을 도출하였다.The amount of piercing oxygen precipitate before and after annealing of the boron-doped silicon wafer was derived in the same manner as in Example 1 except that the first annealing was performed at 700 ° C. for 600 minutes.

상기에서 보는 바와 같이 본 발명은 X선 해부 방법을 사용하여 다량의 금속이 도핑된 실리콘 웨이퍼 내부에 존재하는 칩입형 산소 침전물의 양에 대한 분석을 실리콘 웨이퍼를 손상시키지 않고 정확하게 할 수 있었다.As can be seen from the above, the present invention was able to accurately analyze the amount of chipped oxygen precipitates present inside a silicon wafer doped with a large amount of metal using an X-ray dissection method without damaging the silicon wafer.

본 발명은 X선 해부 방법을 사용하여 다량의 금속이 도핑된 실리콘 웨이퍼 내부에 존재하는 칩입형 산소 침전물의 양을 실리콘 웨이퍼를 손상시키지 않고 정확하게 분석함으로써 고품질의 Epi 웨이퍼용 기판을 개발하는 것을 가능하게 할 수 있다.The present invention makes it possible to develop high quality Epi wafer substrates by accurately analyzing the amount of infiltrating oxygen deposits present inside a silicon wafer doped with a large amount of metal using an X-ray dissection method without damaging the silicon wafer. can do.

Claims (4)

다량의 금속이 도핑된 실리콘 웨이퍼의 칩입형 산소 침전물 양의 측정 방법에 있어서,In the method for measuring the amount of piercing oxygen precipitates of a silicon wafer doped with a large amount of metal, a) 실리콘 웨이퍼에 비저항 값이 0.1 Ωㆍ㎝ 이상이 되도록 금속을 도핑시 켜 웨이퍼 샘플을 준비하는 단계;a) preparing a wafer sample by doping a metal so that a resistivity value is 0.1 ohm * cm or more on a silicon wafer; b) 상기 a)단계에서 제조된 웨이퍼 샘플의 초기 X선 강도(Ii) 및 칩 입형 산소 침전물 양(Oi)을 측정하는 단계;b) measuring the initial X-ray intensity (I i ) and the amount of chipped oxygen precipitate (O i ) of the wafer sample prepared in step a); c) 상기 b)단계를 거친 웨이퍼 샘플을 2 단계 어닐링시키는 단계;c) annealing the wafer sample passed through step b) in two steps; d) 상기 c)단계를 거친 웨이퍼 샘플의 최종 X선 강도(If) 및 칩입형 산소 침전물 양(Of)을 측정하는 단계;d) measuring the final X-ray intensity (I f ) and the amount of chipped oxygen precipitate (O f ) of the wafer sample subjected to step c); e) 상기 b)단계 및 d)단계에서 각각 측정된 X선 강도와 칩입형 산소 침전물 양의 비율인 Ii/If및 Oi/Of의 상호간 선형 관계를 도출하는 단계;e) deriving a linear relationship between I i / I f and O i / O f, which is the ratio of the X-ray intensity measured in steps b) and d), respectively, to the amount of chipped oxygen precipitates; f) 실리콘 웨이퍼에 비저항 값이 0.0001 Ωㆍ㎝ 내지 0.1 Ωㆍ㎝ 미만이 되 도록 다량의 금속을 도핑시켜 웨이퍼 샘플을 준비하는 단계;f) preparing a wafer sample by doping a large amount of metal so that the resistivity value is less than 0.0001 Ω · cm to less than 0.1 Ω · cm; g) 상기 f)단계에서 제조된 웨이퍼 샘플의 X선 강도를 측정하는 단계;g) measuring the X-ray intensity of the wafer sample prepared in step f); h) 상기 g)단계를 거친 웨이퍼 샘플을 2단계 어닐링시키는 단계;h) annealing the wafer sample subjected to step g) in two steps; i) 상기 h)단계를 거친 웨이퍼 샘플의 X선 강도를 측정하는 단계; 및i) measuring the X-ray intensity of the wafer sample subjected to step h); And j) 다량의 금속이 도핑된 웨이퍼에 존재하는 칩입형 산소 침전물 양 을 정량적으로 평가하는 단계j) quantitatively evaluating the amount of infiltrating oxygen precipitate present in the wafer doped with a large amount of metal. 를 포함하는 것을 특징으로 하는 칩입형 산소 침전물 양의 측정 방법.Method of measuring the amount of infiltrating oxygen precipitates comprising a. 제 1항에 있어서,The method of claim 1, 실리콘 웨이퍼 샘플에 도핑되는 금속이 보론인 칩입형 산소 침전물 양의 측정 방법.A method for measuring the amount of infiltrating oxygen precipitates wherein the metal doped into the silicon wafer sample is boron. 제 1항에 있어서,The method of claim 1, 상기 c) 및 h) 단계의 2단계 어닐링은 온도 600-800 ℃에서 200-700 분 동안 제1 어닐링을 수행하고 온도 800-1200 ℃에서 700-1200 분 동안 제2 어닐링을 수행하는 칩입형 산소 침전물 양의 측정 방법.The two-step annealing of steps c) and h) is a chipped oxygen precipitate that performs a first annealing for 200-700 minutes at a temperature of 600-800 ° C. and a second annealing for 700-1200 minutes at a temperature of 800-1200 ° C. Method of measuring quantity. 제 1항에 있어서,The method of claim 1, X선 강도는 X선 해부 방법을 사용하여 측정하고 소량의 금속이 도핑된 실리콘 웨이퍼의 칩입형 산소 침전물의 양은 적외선 분광법을 사용하여 측정하는 칩입형 산소 침전물 양의 측정 방법.X-ray intensity is measured using an X-ray dissection method, and the amount of infiltrating oxygen precipitates of a silicon wafer doped with a small amount of metal is measured using infrared spectroscopy.
KR1019980052777A 1998-12-03 1998-12-03 Method for measuring deposited amount of interstitial type oxygen of silicon wafer in which large amount of metal is doped KR20000037951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980052777A KR20000037951A (en) 1998-12-03 1998-12-03 Method for measuring deposited amount of interstitial type oxygen of silicon wafer in which large amount of metal is doped

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980052777A KR20000037951A (en) 1998-12-03 1998-12-03 Method for measuring deposited amount of interstitial type oxygen of silicon wafer in which large amount of metal is doped

Publications (1)

Publication Number Publication Date
KR20000037951A true KR20000037951A (en) 2000-07-05

Family

ID=19561159

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980052777A KR20000037951A (en) 1998-12-03 1998-12-03 Method for measuring deposited amount of interstitial type oxygen of silicon wafer in which large amount of metal is doped

Country Status (1)

Country Link
KR (1) KR20000037951A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388784B1 (en) * 2000-12-22 2003-06-25 주식회사 실트론 Analysis method for defect in silicon wafer
KR100844407B1 (en) * 2007-03-16 2008-07-08 인하대학교 산학협력단 Method of quantitative measurement of reactive oxygen species using x-ray diffraction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388784B1 (en) * 2000-12-22 2003-06-25 주식회사 실트론 Analysis method for defect in silicon wafer
KR100844407B1 (en) * 2007-03-16 2008-07-08 인하대학교 산학협력단 Method of quantitative measurement of reactive oxygen species using x-ray diffraction

Similar Documents

Publication Publication Date Title
EP2204476B1 (en) Method of manufacturing a silicon wafer
EP0503816B1 (en) Heat treatment of Si single crystal
JP3711199B2 (en) Heat treatment method for silicon substrate
KR0127998B1 (en) Method of measuring hydrogen density in silicon crystal
CN101187059B (en) Silicon wafer having good intrinsic getterability and method for its production
US5418172A (en) Method for detecting sources of contamination in silicon using a contamination monitor wafer
Dumin et al. Autodoping of silicon films grown epitaxially on sapphire
US6630363B2 (en) Method for evaluating impurity concentrations in unpolished wafers grown by the Czochralski method
DE112019004412T5 (en) Method for evaluating the carbon concentration of a silicon sample, method for evaluating the silicon wafer manufacturing process, method for manufacturing a silicon wafer and method for manufacturing a silicon single crystal ingot
EP0644588A1 (en) Wafer with epitaxial layer having a low defect density
JP3356835B2 (en) Analytical methods for silicon chank contaminants
KR20000037951A (en) Method for measuring deposited amount of interstitial type oxygen of silicon wafer in which large amount of metal is doped
Jungbluth et al. Process‐Introduced Structural Defects and Junction Characteristics in NPN Silicon Epitaxial Planar Transistors
KR100901823B1 (en) Method of testing defect of silicon wafer
Stein et al. Infrared studies of oxygen and carbon associated defects in electron-irradiated silicon
Hsieh et al. Hydrogenation and subsequent hydrogen annealing of GaAs on Si
JP3896919B2 (en) Method for evaluating Ni contamination of silicon wafer
JPH11297704A (en) Evaluation method for oxygen deposit density
JP7103314B2 (en) Carbon concentration evaluation method in silicon single crystal substrate
KR20000037745A (en) Method for measuring a vacancy fault of a silicon wafer by using cu decoration technique
Geddo et al. Optical determination of oxygen outdiffusion in epitaxial silicon grown on n‐type Czochralski substrates
JPH01195345A (en) Method for evaluating silicon crystal
JP5201126B2 (en) Impurity evaluation method of silicon epitaxial wafer
KR0127999B1 (en) Semiconductor device having substrate made from silicone crystal and its manufacturing method
JP5141406B2 (en) Evaluation method and manufacturing method of silicon epitaxial wafer

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination