KR20020046436A - Method for fabricating semiconductor device - Google Patents

Method for fabricating semiconductor device Download PDF

Info

Publication number
KR20020046436A
KR20020046436A KR1020000076631A KR20000076631A KR20020046436A KR 20020046436 A KR20020046436 A KR 20020046436A KR 1020000076631 A KR1020000076631 A KR 1020000076631A KR 20000076631 A KR20000076631 A KR 20000076631A KR 20020046436 A KR20020046436 A KR 20020046436A
Authority
KR
South Korea
Prior art keywords
semiconductor device
manufacturing
diffusion barrier
forming
tin diffusion
Prior art date
Application number
KR1020000076631A
Other languages
Korean (ko)
Other versions
KR100384844B1 (en
Inventor
김경민
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR10-2000-0076631A priority Critical patent/KR100384844B1/en
Publication of KR20020046436A publication Critical patent/KR20020046436A/en
Application granted granted Critical
Publication of KR100384844B1 publication Critical patent/KR100384844B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE: A fabrication method of semiconductor devices is provided to reduce a contact resistance of a lower electrode by reducing interface resistance between an ohmic contact layer and a diffusion barrier layer. CONSTITUTION: An insulating layer(22) having a contact hole is formed on a conductive layer(21). A recessed polysilicon plug(23) is formed in the contact hole. A TiSi2 ohmic contact layer(24) is formed by depositing a Ti on the recessed polysilicon plug(23) and thermal reacting. The non-reacted Ti atoms are removed by cleaning. A TiN diffusion layer(25) is formed by PECVD(Plasma Enhanced CVD) using NH3 gases. Then, a lower electrode(26), a dielectric film(27) and an upper electrode(28) are sequentially formed on the resultant structure.

Description

반도체소자 제조 방법{Method for fabricating semiconductor device}Method for fabricating semiconductor device

본 발명은 반도체소자 제조 방법에 관한 것으로, 더욱 상세하게는 MIM(Metal Insulator Metal) 구조의 캐패시터 제조 방법에 관한 것이다.The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of manufacturing a capacitor having a metal insulator metal (MIM) structure.

통상적으로 Ta2O5캐패시터의 하부전극은 RTN(Rapid Thermal Nitrization) 표면처리된 폴리실리콘을 사용하였다.Typically, the lower electrode of the Ta 2 O 5 capacitor used a polysilicon surface treatment of rapid thermal nitrization (RTN).

한편, 소자가 점차 고 집적화됨에 따라 안정된 소자동작을 위한 셀당 캐패시턴스는 변화가 없는 반면 캐패시터 셀 사이즈는 점점 줄어들게 되어 유효산화막의 두께가 30Å 정도인 폴리실리콘을 하부전극으로 하는 Ta2O5캐패시터 구조는 한계에 도달하게 되었다.On the other hand, as the device is increasingly integrated, the capacitance per cell for stable device operation does not change, but the capacitor cell size is gradually reduced, and the Ta 2 O 5 capacitor structure having polysilicon as the lower electrode having an effective oxide thickness of about 30Å is used. The limit has been reached.

이러한 문제를 해결하기 위해 하부메탈전극을 도입해 유효산화막 두께를 낮추는 방법이 시도되었다. 이러한 하부메탈전극의 도입은 플러그 물질인 폴리실리콘과 하부메탈전극의 열반응 방지를 위한 확산방지막 형성공정을 필요로 하게 된다.In order to solve this problem, a method of lowering the effective oxide thickness by introducing a lower metal electrode has been attempted. The introduction of the lower metal electrode requires a diffusion barrier forming process for preventing thermal reaction between the polysilicon as the plug material and the lower metal electrode.

그러나, 종래기술의 MIM 캐패시터 제조 공정에서는 확산방지막과 오믹콘택층사이의 잔류 산화물에 의한 계면 저항에 의해 하부전극의 콘택 저항이 증가하여 캐패시터의 전기적 특성을 열화시키는 문제가 발생하게 된다.However, in the prior art MIM capacitor manufacturing process, the contact resistance of the lower electrode is increased due to the interfacial resistance caused by the residual oxide between the diffusion barrier and the ohmic contact layer, resulting in a problem of deteriorating the electrical characteristics of the capacitor.

도 1a 내지 도 1d는 종래기술에 따른 MIM 구조 캐패시터의 제조 방법을 보인다.1A-1D show a method of manufacturing a MIM structure capacitor according to the prior art.

먼저 도 1a에 보이는 바와 같이, 전도층(11) 상의 절연막(12)을 선택적으로 에칭하여 콘택홀(10)을 형성한다.First, as shown in FIG. 1A, the insulating layer 12 on the conductive layer 11 is selectively etched to form the contact hole 10.

다음으로 도 1b에 도시된 것처럼 폴리실리콘 플러그(13)와 TiSi2오믹콘택층(14)의 적층구조를 형성하도록 한다. 여기서, 폴리실리콘 플러그(13)는 폴리실리콘을 증착한 후 리세스 에치 백(Recess etch back)공정을 실시하여 형성하며, TiSi2오믹콘택층(14)은 물리기상증착법(Physical Vapor Deposition; PVD)에 의해 Ti를 층착하고 RTP(Rapid Thermal Process) 또는 로에서의 열처리에 의해 상기 폴리실리콘 플러그(13)과 Ti를 열반응시켜 TiSi2오믹콘택층(14)을 형성한 다음, SC(Standard Cleaning)-1 용액을 이용하여 절연막(12) 상에 잔류하는 미 반응 Ti 및 산화물을 제거한 것이다.Next, as shown in FIG. 1B, a laminated structure of the polysilicon plug 13 and the TiSi 2 ohmic contact layer 14 is formed. Here, the polysilicon plug 13 is formed by depositing polysilicon and performing a recess etch back process, and the TiSi 2 ohmic contact layer 14 is formed of a physical vapor deposition (PVD). By depositing Ti and thermally reacting the polysilicon plug 13 and Ti by heat treatment in a rapid thermal process (RTP) or a furnace to form a TiSi 2 ohmic contact layer 14, followed by SC (Standard Cleaning) The unreacted Ti and oxide remaining on the insulating film 12 are removed by using the −1 solution.

다음으로 도 1c에 도시된 것처럼 TiSi2오믹콘택층(14) 상에 TiN 확산방지막(15)을 증착한 후 CMP(Chemical Mechanical Polishing) 공정을 통하여 콘택홀(10) 내부에만 TiN 확산방지막(15)을 형성한다.Next, as illustrated in FIG. 1C, the TiN diffusion barrier layer 15 is deposited on the TiSi 2 ohmic contact layer 14, and then the TiN diffusion barrier layer 15 is formed only inside the contact hole 10 through a chemical mechanical polishing (CMP) process. To form.

다음으로 도 1d에 도시된 바와 같이 상기 폴리실리콘 플러그(13), TiSi2 오믹콘택층(14), TiN 확산방지막(15)이 적층구조를 이룬 웨이퍼 상에 하부메탈전극(16)과 유전막(17) 및 상부메탈전극(18)을 증착하여 캐패시터를 형성한다.Next, as shown in FIG. 1D, the lower metal electrode 16 and the dielectric layer 17 are stacked on the wafer on which the polysilicon plug 13, the TiSi 2 ohmic contact layer 14, and the TiN diffusion barrier layer 15 are stacked. And the upper metal electrode 18 is deposited to form a capacitor.

전술한 바와 같이 이루어지는 종래 MIM 구조 캐패시터의 제조 방법은 다음과 같은 문제점이 있다.The manufacturing method of the conventional MIM structure capacitor made as described above has the following problems.

Ti 금속 증착과 TiSi2오믹콘택층(14)의 형성을 위한 열반응 공정 이후, 미 반응 Ti 및 산화물의 제거를 위해 세정공정을 수행해야 하므로 TiSi2오믹콘택층(14) 표면의 산화물이 완전히 제거되지 않는다.After the thermal reaction process for the deposition of Ti metal and the formation of the TiSi 2 ohmic contact layer 14, a cleaning process must be performed to remove unreacted Ti and oxides, so that oxides on the surface of the TiSi 2 ohmic contact layer 14 are completely removed. It doesn't work.

특히, TiSi2오믹콘택층(14)과 TiN 확산방지막(15) 계면(14a)에 형성된 상기 산화물은 하부메탈전극(도 1의 16)의 콘택 저항을 감소시키며, 심지어 TiSi2오믹콘택층(14)과 TiN 확산방지막(15)을 양 전극으로 하는 기생 캐패시터를 형성하게 하여 소자의 전기적 특성을 열화시킨다.In particular, the oxide formed at the TiSi 2 ohmic contact layer 14 and the TiN diffusion barrier 15 interface 14a reduces the contact resistance of the lower metal electrode (16 in FIG. 1), and even the TiSi 2 ohmic contact layer 14 ) And the TiN diffusion barrier film 15 are formed to form a parasitic capacitor to deteriorate the electrical characteristics of the device.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, TiN 확산방지막과 TiSi2오믹콘택층의 계면 저항에 의한 하부전극의 콘택 저항을 감소시켜 전기적 특성을 개선시키는 반도체소자 제조 방법을 제공하는데 그 목적이 있다.The present invention is to solve the problems of the prior art as described above, to provide a semiconductor device manufacturing method for improving the electrical properties by reducing the contact resistance of the lower electrode due to the interfacial resistance of the TiN diffusion barrier and TiSi 2 ohmic contact layer. The purpose is.

도 1a 내지 도 1d는 종래기술에 따른 캐패시터의 제조 공정을 나타내는 단면도,1A to 1D are cross-sectional views illustrating a manufacturing process of a capacitor according to the prior art;

도 2a 내지 2e는 본 발명의 실시예에 따른 캐패시터의 제조 공정을 나타내는 단면도.2A to 2E are cross-sectional views illustrating a manufacturing process of a capacitor according to an embodiment of the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10 : 콘택홀10: contact hole

11, 21 : 전도층11, 21: conductive layer

12, 22 : 절연막12, 22: insulating film

13, 23 : 폴리실리콘 플러그13, 23: polysilicon plug

14, 24 : TiSi2오믹콘택층14, 24: TiSi 2 ohmic contact layer

14a : TiSi2오믹콘택층과 TiN 확산방지막의 계면14a: Interface between TiSi 2 ohmic contact layer and TiN diffusion barrier

24a : Ti층24a: Ti layer

24b : 미반응 Ti와 잔류산화물24b: unreacted Ti and residual oxide

15, 25 : TiN 확산방지막15, 25: TiN diffusion barrier

16, 26 : 하부메탈전극16, 26: lower metal electrode

17, 27 : 유전막17, 27: dielectric film

18, 28 : 상부메탈전극18, 28: upper metal electrode

상기 목적을 달성하기 위하여 본 발명은 캐패시터의 제조 방법에 있어서, 전도층 상의 절연막을 선택적으로 식각하여 콘택홀을 형성하는 단계; 상기 콘택홀 내부에 리세스된 폴리실리콘 플러그를 형성하는 단계; 결과물 전면에 Ti를 증착하고 상기 폴리실리콘과 상기 Ti를 열반응시켜 TiSi2오믹콘택층을 형성하는 단계; 미반응 Ti를 세정하여 제거하는 단계; NH3가스를 포함하는 플라즈마 화학기상증착에 의해 TiN 확산방지막을 형성하면서 상기 세정 시 형성되는 산화물을 제거하는 단계; 상기 TiN 확산방지막 상부을 식각하여 웨이퍼를 평탄화하는 단계; 및 상기 TiN 확산방지막 상에 캐패시터의 메탈전극를 형성하는 단계를 포함한다.In order to achieve the above object, the present invention provides a method of manufacturing a capacitor, comprising: forming a contact hole by selectively etching an insulating film on a conductive layer; Forming a recessed polysilicon plug in the contact hole; Depositing Ti on the entire surface of the resultant and thermally reacting the polysilicon and the Ti to form a TiSi 2 ohmic contact layer; Washing and removing unreacted Ti; Removing oxides formed during the cleaning while forming the TiN diffusion barrier by plasma chemical vapor deposition including NH 3 gas; Etching the upper portion of the TiN diffusion barrier layer to planarize the wafer; And forming a metal electrode of the capacitor on the TiN diffusion barrier layer.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부한 도 3a 내지 도 3e를 참조하여 설명한다.Hereinafter, in order to explain in detail enough that a person having ordinary skill in the art to which the present invention pertains can easily carry out the technical idea of the present invention, refer to FIGS. 3A to 3E attached with the most preferred embodiment of the present invention. Will be explained.

후술하는 본 발명의 MIM(Metal Insulator Metal) 구조의 캐패시터는 전극으로 Pt, Ru, Ir, 등의 금속 또는 IrO2, TiN 등의 전도성 산화막 중 어느 하나를 적용 가능하다.The capacitor of the metal insulator metal (MIM) structure of the present invention described below may be applied to any one of metals such as Pt, Ru, Ir, and conductive oxide films such as IrO 2 and TiN.

도 2a 내지 도 2e는 본 발명의 반도체소자 제조 공정을 나타내는 단면도이다.2A to 2E are cross-sectional views illustrating a semiconductor device manufacturing process of the present invention.

먼저 도 2a에 보이는 바와 같이, 절연막(22)이 에칭된 전도층(21) 상에 리세스된 폴리실리콘 플러그(23)를 형성한다. 폴리실리콘 증착 및 에치백에 의해 폴리실리콘 플러그(23)가 형성되는 바, 에치 백 시 상기 절연막(22)의 상부를 기준으로 500Å 내지 2000Å의 깊이로 상기 폴리실리콘 플러그(23)가 리세스되도록 한다.First, as shown in FIG. 2A, a polysilicon plug 23 is formed on the conductive layer 21 on which the insulating film 22 is etched. The polysilicon plug 23 is formed by polysilicon deposition and etch back, so that the polysilicon plug 23 is recessed to a depth of 500 mV to 2000 mV based on the upper portion of the insulating film 22 during the etch back. .

다음으로, 도 3b에 도시된 것처럼 결과물 전면에 Ti 증착 후 급속열처리(Rapid Thermal Process; RTP) 공정에 의해 Ti와 폴리실리콘의 열반응을 통하여 TiSi2 오믹콘택층(24)을 형성한다. 여기서, 상기 급속열처리(RTP) 공정은100sccm 내지 1000sccm의 N2가스를 반응가스로 하여 650℃ 내지 800℃의 온도 및 0.2Torr 내지 1Torr의 압력 하에서 10초 내지 60초 동안 실시한다. 도면부호 '24a'는 미반응 Ti를 나타낸다.Next, as illustrated in FIG. 3B, the TiSi 2 ohmic contact layer 24 is formed through thermal reaction between Ti and polysilicon by a rapid thermal process (RTP) after Ti deposition on the entire surface of the resultant. Here, the rapid heat treatment (RTP) process is carried out for 10 seconds to 60 seconds at a temperature of 650 ℃ to 800 ℃ and a pressure of 0.2 Torr to 1 Torr using N 2 gas of 100sccm to 1000sccm as the reaction gas. Reference numeral '24a' represents unreacted Ti.

다음으로 도 2c에 도시된 바와 같이, 미반응한 Ti층(24a)과 기타 잔류산화물의 제거를 위해 SC-1 용액을 이용하여 세정공정을 실시한다. 그러나, 상기의 세정공정을 실시하여도 미반응 Ti와 잔류산화물(24b)은 존재하게 된다.Next, as shown in FIG. 2C, a cleaning process is performed using SC-1 solution to remove unreacted Ti layer 24a and other residual oxides. However, unreacted Ti and residual oxide 24b also exist even if the above washing step is performed.

이어서, TiSi2오믹콘택층(24) 표면에 플라즈마 화학기상증착법(Plasma Enhanced Chemical Vapor Deposition; PECVD)에 의해 TiN 확산 방지막(25)을 형성한다. 여기서, 상기 플라즈마 화학기상증착법(PECVD)은 400℃ 내지 700℃의 온도 및 0.2Torr 내지 10Torr의 압력과 30W 내지 500W의 파워 하에서 30초 내지 120초 동안 10sccm 내지 5slm 유량의 NH3반응가스와 기화된 TiCl4를 이용하여 실시된다. 이 과정에서 Ticl4가스는 50℃ 내지 70℃의 온도에서 기화시켜 챔버에 투입한다. 따라서, TiN 증착과 동시에 상기 NH3반응가스에 의해 잔류산화물(24b)은 질화되고,상기 TiSi2오믹콘택층(24)과 TiN 확산방지막(25)의 접촉 저항을 감소시킬 수 있다.Subsequently, a TiN diffusion barrier layer 25 is formed on the surface of the TiSi 2 ohmic contact layer 24 by plasma enhanced chemical vapor deposition (PECVD). The plasma chemical vapor deposition (PECVD) is vaporized with NH 3 reaction gas at a flow rate of 10 sccm to 5 slm for 30 seconds to 120 seconds at a temperature of 400 ° C to 700 ° C, a pressure of 0.2 Torr to 10 Torr and a power of 30W to 500W. It is carried out using TiCl 4 . In this process, Ticl 4 gas is vaporized at a temperature of 50 ° C to 70 ° C and introduced into the chamber. Accordingly, the residual oxide 24b is nitrided by the NH 3 reaction gas at the same time as the TiN deposition, and the contact resistance between the TiSi 2 ohmic contact layer 24 and the TiN diffusion barrier layer 25 can be reduced.

다음으로 도 2d에 도시된 것 처럼 TiN 확산방지막(25) 상부를 식각하여 평탄화 한다.Next, as illustrated in FIG. 2D, the upper portion of the TiN diffusion barrier layer 25 is etched and planarized.

다음으로 도 2e에 도시된 바와 같이 상기 TiN 확산방지막 상에 하부메탈전극(26) 과 유전막(27) 및 상부메탈전극(28)을 적층하여 캐패시터를 형성한다.Next, as shown in FIG. 2E, a capacitor is formed by stacking a lower metal electrode 26, a dielectric layer 27, and an upper metal electrode 28 on the TiN diffusion barrier layer.

여기서, TiN 확산방지막(25) 상부의 캐패시터는 평판형, 원통형, 실린더 형 중 어느 하나를 적용한다..Here, the capacitor on the TiN diffusion barrier 25 is applied to any one of a plate type, a cylindrical type, a cylindrical type.

전술한 것처럼 본 발명의 반도체소자 제조 방법은 TiN 확산방지막을 NH3반응가스를 포함한 플라즈마 화학기상증착법에 의해 형성함으로써, 잔류 산화막을 질화시켜 TiSi2오믹콘택층과 TiN 확산방지막의 계면 저항이 감소되어 결과적으로 하부전극의 콘택저항이 감소되며 이것으로 인해 전체적인 캐패시터의 전기적 특성을 향상시킬 수 있음을 실시예를 통해 알아보았다.As described above, in the method of fabricating the semiconductor device of the present invention, the TiN diffusion barrier is formed by a plasma chemical vapor deposition method including NH 3 reaction gas, thereby nitriding the residual oxide layer to reduce the interfacial resistance between the TiSi 2 ohmic contact layer and the TiN diffusion barrier. As a result, the contact resistance of the lower electrode is reduced, and as a result, it was found through the examples that the electrical characteristics of the entire capacitor can be improved.

이상에서 본 발명의 기술 사상을 바람직한 실시예에 따라 구체적으로 기술하였으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical spirit of the present invention has been described in detail according to a preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

상기와 같이 본 발명은 반도체소자 제조 방법에 있어서, 오믹콘택층과 확산방지막의 계면저항을 줄이므로써 하부메탈전극의 콘택 저항을 줄여 캐패시터의 전기적 특성을 향상시킬 수 있다.As described above, in the method of manufacturing a semiconductor device, the electrical resistance of the capacitor can be improved by reducing the contact resistance of the lower metal electrode by reducing the interface resistance between the ohmic contact layer and the diffusion barrier.

Claims (16)

반도체소자 제조 방법에 있어서,In the semiconductor device manufacturing method, 전도층 상의 절연막을 선택적으로 식각하여 콘택홀을 형성하는 단계;Selectively etching the insulating film on the conductive layer to form a contact hole; 상기 콘택홀 내부에 리세스된 폴리실리콘 플러그를 형성하는 단계;Forming a recessed polysilicon plug in the contact hole; 결과물 전면에 Ti를 증착하고 상기 폴리실리콘과 상기 Ti를 열반응시켜 TiSi2오믹콘택층을 형성하는 단계;Depositing Ti on the entire surface of the resultant and thermally reacting the polysilicon and the Ti to form a TiSi 2 ohmic contact layer; 미반응 Ti를 세정하여 제거하는 단계;Washing and removing unreacted Ti; NH3가스를 포함하는 플라즈마 화학기상증착에 의해 TiN 확산방지막을 형성하면서 상기 세정 시 형성되는 산화물을 제거하는 단계;Removing oxides formed during the cleaning while forming the TiN diffusion barrier by plasma chemical vapor deposition including NH 3 gas; 상기 TiN 확산방지막 상부을 식각하여 웨이퍼를 평탄화하는 단계; 및Etching the upper portion of the TiN diffusion barrier layer to planarize the wafer; And 상기 TiN 확산방지막 상에 캐패시터의 메탈전극를 형성하는 단계Forming a metal electrode of a capacitor on the TiN diffusion barrier layer 를 포함하여 이루어짐을 특징으로 하는 반도체소자 제조 방법.Semiconductor device manufacturing method characterized in that it comprises a. 제 1 항에 있어서,The method of claim 1, 상기 캐패시터는,The capacitor, MIM 구조인 것을 특징으로 하는 반도체소자 제조 방법.A semiconductor device manufacturing method, characterized in that the MIM structure. 제 1 항에 있어서,The method of claim 1, 상기 폴리실리콘 플러그는,The polysilicon plug, 상기 콘택홀 내부에서 500Å 내지 2000Å으로 리세스된 것을 특징으로 하는 반도체소자 제조 방법.Method of manufacturing a semiconductor device characterized in that the recessed in the contact hole 500 ~ 2000Å. 제 1 항에 있어서,The method of claim 1, 상기 TiSi2오믹콘택층 형성을 위한 상기 열반응은,The thermal reaction for forming the TiSi 2 ohmic contact layer, 급속열처리에 의한 것을 특징으로 하는 반도체소자 제조 방법.A method of manufacturing a semiconductor device, characterized by rapid thermal treatment. 제 4 항에 있어서,The method of claim 4, wherein 상기 급속열처리는,The rapid heat treatment, 100sccm 내지 1000sccm의 N2반응가스를 사용하는 것을 특징으로 하는 반도체소자 제조 방법.Method for producing a semiconductor device, characterized in that using the N 2 reaction gas of 100sccm to 1000sccm. 제 5 항에 있어서,The method of claim 5, 상기 급속열처리는,The rapid heat treatment, 650℃ 내지 800℃의 온도 하에서 실시하는 것을 특징으로 하는 반도체소자 제조 방법.A method of manufacturing a semiconductor device, characterized in that carried out at a temperature of 650 ℃ to 800 ℃. 제 6 항에 있어서,The method of claim 6, 상기 급속열처리는,The rapid heat treatment, 0.2Torr 내지 1Torr의 압력 하에서 실시하는 것을 특징으로 하는 반도체소자 제조 방법.A method of manufacturing a semiconductor device, characterized in that carried out under a pressure of 0.2 Torr to 1 Torr. 제 7 항에 있어서,The method of claim 7, wherein 상기 급속열처리는,The rapid heat treatment, 10초 내지 60초 동안 실시하는 것을 특징으로 하는 반도체소자 제조 방법.Method for manufacturing a semiconductor device, characterized in that performed for 10 seconds to 60 seconds. 제 1 항에 있어서,The method of claim 1, 상기 TiN 확산방지막 형성을 위한 플라즈마 화학기상증착은,Plasma chemical vapor deposition for forming the TiN diffusion barrier film, 10sccm 내지 5slm의 상기 NH3반응가스를 이용하는 것을 특징으로 하는 반도체소자 제조 방법.10sccm to 5slm using the NH 3 reaction gas, characterized in that the semiconductor device manufacturing method. 제 9 항에 있어서,The method of claim 9, 상기 TiN 확산방지막 형성을 위한 플라즈마 화학기상증착은,Plasma chemical vapor deposition for forming the TiN diffusion barrier film, 50℃ 내지 70℃의 온도 하에서 기화된 TiCl4가스를 사용하는 것을 특징으로 하는 반도체소자 제조 방법.Method for producing a semiconductor device, characterized in that using a vaporized TiCl 4 gas at a temperature of 50 ℃ to 70 ℃. 제 10 항에 있어서,The method of claim 10, 상기 TiN 확산방지막 형성을 위한 플라즈마 화학기상증착은,Plasma chemical vapor deposition for forming the TiN diffusion barrier film, 400℃ 내지 700℃의 온도 하에서 실시하는 것을 특징으로 하는 반도체소자 제조 방법.A method of manufacturing a semiconductor device, characterized in that carried out at a temperature of 400 ℃ to 700 ℃. 제 10 항에 있어서,The method of claim 10, 상기 TiN 확산방지막 형성을 위한 플라즈마 화학기상증착은,Plasma chemical vapor deposition for forming the TiN diffusion barrier film, 0.2Torr 내지 10Torr의 압력 하에서 실시하는 것을 특징으로 하는 반도체소자 제조 방법.Method of manufacturing a semiconductor device, characterized in that carried out under a pressure of 0.2 Torr to 10 Torr. 제 11 항에 있어서,The method of claim 11, 상기 TiN 확산방지막 형성을 위한 플라즈마 화학기상증착은,Plasma chemical vapor deposition for forming the TiN diffusion barrier film, 30W 내지 500W의 파워 하에서 실시하는 것을 특징으로 하는 반도체소자 제조 방법.A semiconductor device manufacturing method characterized in that carried out under a power of 30W to 500W. 제 12 항에 있어서,The method of claim 12, 상기 TiN 확산방지막 형성을 위한 플라즈마 화학기상증착은,Plasma chemical vapor deposition for forming the TiN diffusion barrier film, 30초 내지 120초 동안 실시하는 것을 특징으로 하는 반도체소자 제조 방법.A semiconductor device manufacturing method characterized in that carried out for 30 seconds to 120 seconds. 제 1 항에 있어서,The method of claim 1, 상기 캐패시터는,The capacitor, 평판형, 원통형 또는 오목형 중 어느 하나인 것을 특징으로 하는 반도체소자 제조 방법.Method of manufacturing a semiconductor device, characterized in that any one of a flat plate, cylindrical or concave. 제 1 항에 있어서,The method of claim 1, 상기 캐패시터의 메탈전극으로,As a metal electrode of the capacitor, Pt, Ru, Ir, IrO2또는 TiN 중 어느 하나를 사용하는 것을 특징으로 하는 캐패시터 제조 방법.Capacitor manufacturing method characterized in that any one of Pt, Ru, Ir, IrO 2 or TiN.
KR10-2000-0076631A 2000-12-14 2000-12-14 Method for fabricating semiconductor device KR100384844B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0076631A KR100384844B1 (en) 2000-12-14 2000-12-14 Method for fabricating semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0076631A KR100384844B1 (en) 2000-12-14 2000-12-14 Method for fabricating semiconductor device

Publications (2)

Publication Number Publication Date
KR20020046436A true KR20020046436A (en) 2002-06-21
KR100384844B1 KR100384844B1 (en) 2003-05-22

Family

ID=27681954

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0076631A KR100384844B1 (en) 2000-12-14 2000-12-14 Method for fabricating semiconductor device

Country Status (1)

Country Link
KR (1) KR100384844B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100224784B1 (en) * 1996-12-31 1999-10-15 김영환 Method of manufacturing semiconductor device
KR20000003429A (en) * 1998-06-29 2000-01-15 김영환 Method of fabricating anti-diffusion film of semiconductor device
KR100293714B1 (en) * 1998-12-30 2001-07-12 박종섭 Method for manufacturing capacitor with platinum electrode

Also Published As

Publication number Publication date
KR100384844B1 (en) 2003-05-22

Similar Documents

Publication Publication Date Title
KR100376266B1 (en) Method of manufacturing a capacitor in a semiconductor device
KR100400248B1 (en) Method for forming the line in semiconductor device
KR100384844B1 (en) Method for fabricating semiconductor device
KR100671604B1 (en) Method of manufacturing a capacitor in a semiconductor device
KR100827521B1 (en) Capacitor of semiconductor device and method for manufacturing the same
KR100384849B1 (en) Method for fabricating semiconductor device
US6306666B1 (en) Method for fabricating ferroelectric memory device
KR100384848B1 (en) Method for fabricating semiconductor device
KR100454256B1 (en) Method for fabricating capacitor having ruthenium bottom-electrode
KR100365739B1 (en) Method for forming w upper electrode of capacitor
KR100476374B1 (en) Method for fabricating semiconductor device
KR100390834B1 (en) Semiconductor device and method for fabricating the same
KR100549336B1 (en) Method of manufacturing a capacitor in a semiconductor device
KR100604664B1 (en) Capacitor with double dielectric and method for manufacturing the same
KR100414868B1 (en) Method for fabricating capacitor
KR100504554B1 (en) method for manufacturing capacitor of semiconductor device
KR101016952B1 (en) Method of manufacturing semiconductor device
KR100437619B1 (en) Method for forming capacitor of semiconductor device
KR20040059783A (en) Method of manufacturing capacitor for semiconductor device
KR100359784B1 (en) Method for Fabricating Capacitor of Semiconductor Device
KR100685637B1 (en) Method of manufacturing a capacitor in a semiconductor device
KR100362197B1 (en) Method for fabricating semiconductor device
KR100404481B1 (en) Method for manufacturing capacitor semiconductor device
KR20020002756A (en) Method of forming a capacitor in a semiconductor device
KR100683485B1 (en) Method of manufacturing capacitor for semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110429

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee