KR20020040920A - A Thermal Contaction Material Manufacturing Device And Manufacturing Method Thereof - Google Patents
A Thermal Contaction Material Manufacturing Device And Manufacturing Method Thereof Download PDFInfo
- Publication number
- KR20020040920A KR20020040920A KR1020000070600A KR20000070600A KR20020040920A KR 20020040920 A KR20020040920 A KR 20020040920A KR 1020000070600 A KR1020000070600 A KR 1020000070600A KR 20000070600 A KR20000070600 A KR 20000070600A KR 20020040920 A KR20020040920 A KR 20020040920A
- Authority
- KR
- South Korea
- Prior art keywords
- thermoelectric material
- crucible
- vacuum
- gas
- based thermoelectric
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- 229910002909 Bi-Te Inorganic materials 0.000 claims abstract description 56
- 238000001816 cooling Methods 0.000 claims abstract description 16
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 238000001125 extrusion Methods 0.000 claims abstract description 13
- 238000002844 melting Methods 0.000 claims abstract description 11
- 230000008018 melting Effects 0.000 claims abstract description 11
- 239000013078 crystal Substances 0.000 claims abstract description 8
- 239000007787 solid Substances 0.000 claims abstract description 8
- 238000002156 mixing Methods 0.000 claims abstract description 6
- 238000003756 stirring Methods 0.000 claims description 16
- 230000001939 inductive effect Effects 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims description 2
- 238000007731 hot pressing Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 14
- 239000002019 doping agent Substances 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 4
- 238000004506 ultrasonic cleaning Methods 0.000 abstract description 4
- 238000001291 vacuum drying Methods 0.000 abstract description 3
- 238000013019 agitation Methods 0.000 abstract 1
- 230000004927 fusion Effects 0.000 abstract 1
- 239000000155 melt Substances 0.000 abstract 1
- 230000003647 oxidation Effects 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 abstract 1
- 238000007670 refining Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 11
- 238000005245 sintering Methods 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 239000011344 liquid material Substances 0.000 description 3
- 238000002109 crystal growth method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 150000001787 chalcogens Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000005619 thermoelectricity Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/003—Apparatus, e.g. furnaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/01—Reducing atmosphere
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/20—Use of vacuum
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
본 발명은 열전재료 제조장치 및 그 제조방법에 관한 것으로, 보다 상세하게는 열전소자 재료를 초음파 세정 및 진공 건조하여 고진공의 진공조 내에서 용융정제 응고시켜, 도판트와 함께 외부가 불활성 가스로 채위진 고진공 챔버내에서 용융 혼합 시킨 후, 작은 입자의 고 액상 재료를 압출기로 이송할 수 있도록 적용함으로서, Bi-Te계 열전재료의 고밀도화, 미세조직의 입도미세화 및 이방성을 높여 연속적인 결정을 제조하고자 하는 것을 특징으로 하는 열전재료 제조장치 및 그 제조방법에 관한 것이다.The present invention relates to a thermoelectric material manufacturing apparatus and a method for manufacturing the same, and more particularly, ultrasonic cleaning and vacuum drying of the thermoelectric material to melt and solidify in a vacuum chamber of high vacuum, the outside of the dopant with an inert gas After melt-mixing in the high-vacuum high vacuum chamber, small particles of high-liquid material can be transferred to the extruder to increase the density of Bi-Te-based thermoelectric materials, increase the grain size and anisotropy of the microstructure, thereby producing continuous crystals. The present invention relates to a thermoelectric material manufacturing apparatus and a manufacturing method thereof.
현재 사용되는 열전재료 제조방법은 분말화된 금속과 도판트의 혼합물을 용융하여 일방향 응고 시키는 단결정 성장법, 인고트를 분말화하여 얻은 분말을 이용하는 냉간 프레스 소결법, 열간프레스법에 의해 일반적으로 제조되고 있다.Current thermoelectric material manufacturing methods are generally manufactured by the single crystal growth method of melting a mixture of powdered metal and dopant to unidirectionally solidify, the cold press sintering method using powder obtained by powdering the ingot, and the hot press method. have.
여기서, 종래의 단결정 성장법은 전기전도율은 크게 향상되지만 열전도율이 증가되어 성능지수가 낮아지며, 제조비용이 고가라는 결점과 대구경의 단결정 성장이 어렵다는 결점을 가지고 있다.Here, the conventional single crystal growth method has the drawback that the electrical conductivity is greatly improved but the thermal conductivity is increased and the performance index is lowered, and the manufacturing cost is high and the large diameter single crystal is difficult to grow.
이러한, 단점을 해결하기 위해 냉간 프레스 소결법을 이용되어져 있었으나, Bi-Te계 화합물의 구조 민감성 때문에 열전능이 현저하게 작아지고, 압력과 온도의 제어가 적절치 않게 p형 Bi-Te계를 분말성형체로 하면 n형으로 전이되는 현상이 발생한다. 또한, 열처리 조건에도 민감하여 소결온도가 약간 달라도 p형 및 n형으로 변화하기 때문에, 열처리 조건의 설정이 어려움이 발생된다. 더욱이, 냉간 프레스 소결법에서는 고온소결에 의한 소결체의 겉보기 밀도와 이론 밀도의 비를 90% 이상으로 하면, 결정립의 성장 및 칼코겐원소(Te,Se)의 증발에 의한 조성의 변화가 발생되어 열전특성의 제어가 어려운 문제점이 초래된다. 따라서, 냉간 프레스 소결법으로 제조한 Bi-Te계 소결체는, 시판되고 있는 단결성 성장법에 의한 용제재료의열전성능지수 보다 높지 않아, 현재까지는 실용화되지 않는다.Cold press sintering method has been used to solve these disadvantages, but due to the structural sensitivity of Bi-Te-based compounds, the thermoelectricity becomes remarkably small, and if the p-type Bi-Te-based powder is formed inadequately under pressure and temperature control, Transition to n-type occurs. In addition, since it is sensitive to heat treatment conditions and changes to p-type and n-type even if the sintering temperature is slightly different, it is difficult to set heat treatment conditions. Furthermore, in the cold press sintering method, when the ratio of the apparent density and the theoretical density of the sintered body by high temperature sintering is 90% or more, the change of the composition due to the growth of grains and the evaporation of the chalcogen element (Te, Se) occurs and the thermoelectric characteristics This results in a difficult control. Therefore, the Bi-Te system sintered body manufactured by the cold press sintering method is not higher than the thermoelectric performance index of the solvent material by the commercially available unity growth method, and it is not put to practical use until now.
한편, 열간프레스법은 압력을 가하면서 소결을 행하기 때문에 소결온도가 낮아도 90% 이상의 소결체를 용이하게 제조할 수 있으며, 냉간 프레스 소결법에 비해 저온에서 소결이 가능하여 결정립 성장을 억제할 수 있으나, Bi-Te계 열전반도체의 서머모듈(Thermo-Module) 제작시 특유의 이방성을 효과적으로 이용하는데 문제점을 갖고 있어, 절단공정의 생산성 저하와 제조 원가 상승으로 인해 실용화 측면에서 큰 결점을 가지고 있다.On the other hand, since the hot press method sinters under pressure, the sintered compact can be easily manufactured even at a low sintering temperature, and sintering is possible at low temperatures compared to the cold press sintering method, thereby suppressing grain growth. It has a problem to effectively use the unique anisotropy when manufacturing Bi-Te-based thermoelectric semiconductors (Thermo-Module), and there is a big disadvantage in terms of practical use due to the decrease in productivity of the cutting process and the increase in manufacturing cost.
본 발명은 상기와 같은 문제점을 해결코자 하는 것으로, 본 발명의 목적은, 열전재료 제조장치 및 그 제조방법에 관한 것으로, 보다 상세하게는 열전소자 재료를 초음파 세정 및 진공 건조하여 고진공의 진공조 내에서 용융정제 응고시켜, 도판트와 함께 외부가 불활성 가스로 채위진 고진공 챔버내에서 용융 혼합 시킨 후, 작은 입자의 고 액상 재료를 압출기로 이송할 수 있도록 적용함으로서, Bi-Te계 열전재료의 고밀도화, 미세조직의 입도미세화 및 이방성을 높여 연속적인 결정을 제조하고자 하는 열전재료 제조장치 및 그 제조방법을 제공하는 것이다.The present invention is to solve the above problems, the object of the present invention relates to a thermoelectric material manufacturing apparatus and a method for manufacturing the same, and more particularly, ultrasonic cleaning and vacuum drying of the thermoelectric element material in a high vacuum vacuum chamber High-density Bi-Te-based thermoelectric materials by melt-coating solidified at, followed by melt mixing in a high vacuum chamber filled with an inert gas outside with a dopant, and then transporting the small liquid high liquid materials to the extruder. The present invention provides a thermoelectric material manufacturing apparatus and a method of manufacturing the same, which are intended to produce continuous crystals by increasing the fineness and anisotropy of microstructure.
상기 목적을 달성하기 위한 구성으로, Bi-Te계를 장입하여 균일하게 용해하는 도가니계(100)와; 상기 도가니계(100)의 내부에 위치한 교반날개(10)를 이용하여, Bi-Te계의 섞임을 유도하는 교반계(200)와; 상기 도가니계(100)에 열을 가하여 Bi-Te계를 용해 하는 가열 및 냉각계(300)와; 상기 도가니계(100)에 의해 용해된 Bi-Te계가 외부로 산화되는 것을 방지하는 분위기 챔버계(400)와; 상기 분위기 챔버계(400)의 내부에 가스를 공급하여, Bi-Te계의 용해 및 용융을 유도하는 가스공급계(500)와; 상기 분위기 챔버계(400)의 측면에 결합되어, 상기 분위기 챔버계(400)의 내부에 환원성 분위기를 제어하여 일정한 진공으로 유지하는 진공계(600)와; 상기 도가니계(100)의 하부에 위치한 이송관(20)을 통하여 Bi-Te계가 고체상태로 응고되며, 응고된 Bi-Te계는 실린더(30)를 통하여 압출되는 압출계(700)와; 상기 이송관(20)의 내부에 일정한 진공상태와 가스상태를 제어하는 가스 및 진공계(800)와; 상기 압출계(700)에 이송된 Bi-Te계를 냉각하여 결정성장온도를 조절하는 냉각계(900)를 포함하여 구성되는 것을 특징으로 하는 열전재료 제조장치에 의해 달성된다.A crucible system 100 having a Bi-Te system in which a composition for achieving the above object is melted uniformly; A stirring system (200) for inducing mixing of the Bi-Te system using the stirring blade (10) located inside the crucible system (100); A heating and cooling system (300) for dissolving the Bi-Te system by applying heat to the crucible system (100); An atmosphere chamber system 400 which prevents the Bi-Te system dissolved by the crucible system 100 from being oxidized to the outside; A gas supply system 500 for supplying gas into the atmosphere chamber system 400 to induce melting and melting of the Bi-Te system; A vacuum gauge 600 coupled to a side surface of the atmosphere chamber system 400 to control a reducing atmosphere inside the atmosphere chamber system 400 to maintain a constant vacuum; A Bi-Te system is solidified in a solid state through a transfer tube 20 disposed below the crucible system 100, and the solidified Bi-Te system is extruded through a cylinder 30; A gas and vacuum gauge 800 for controlling a constant vacuum state and a gas state inside the transfer pipe 20; It is achieved by a thermoelectric material manufacturing apparatus comprising a cooling system 900 for cooling the Bi-Te system transferred to the extrusion system 700 to control the crystal growth temperature.
그리고, 상기 가스공급계(500)는 상기 분위기 챔버계(400)의 내부에 공급되는 가스는 Ar 및 LN2 인 것이 바람직하다.In addition, the gas supply system 500 is preferably a gas supplied to the interior of the atmosphere chamber 400, Ar and LN2.
또한, 상기 목적을 달성하기 위한 방법으로, Bi-Te계를 도가니계(100)에 장입하여 고진공으로 배기하는 장입단계(S10)와; 상기 도가니계(100)에 장입된 Bi-Te계는 가열 및 냉각계(300)에 의해 용해되는 가열단계(S20)와; 상기 단계에서 용해된 Bi-Te계는 교반계(200)의 교반날개(10)에 의해 용융 혼합되는 교반단계(S30)와; 상기 단계의 용융 혼합된 Bi-Te계는 압출계(500)의 이송관(20)을 통하여 고체상태로 응고되는 이송단계(S40)와; 상기 이송관(20)을 통해 이송된 Bi-Te계를 열간압출하여 성형하는 압출단계(S50)로 이루어지는 것을 특징으로 하는 열전재료 제조방법에 의해 달성된다.In addition, as a method for achieving the above object, the charging step (S10) to charge the Bi-Te system into the crucible system (100) and evacuated to high vacuum; The Bi-Te system charged in the crucible system 100 is a heating step (S20) that is dissolved by the heating and cooling system (300); The Bi-Te system dissolved in the above step is a stirring step (S30) is melt mixed by the stirring blade 10 of the stirring system 200; The melt-mixed Bi-Te system of the step is a transfer step (S40) is solidified in a solid state through the transfer pipe 20 of the extrusion system (500); It is achieved by the thermoelectric material manufacturing method characterized in that the extrusion step (S50) for hot extrusion of the Bi-Te system transferred through the transfer pipe 20 to be molded.
본 발명의 그 밖의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로 부터 더욱 분명해질 것이다.Other objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments in conjunction with the accompanying drawings.
도 1은 본 발명에 따른 열전재료 제조장치를 나타내는 구성도,1 is a block diagram showing a thermoelectric material manufacturing apparatus according to the present invention,
도 2는 본 발명에 따른 열전재료 제조방법을 나타내는 흐름도이다.2 is a flowchart illustrating a method of manufacturing a thermoelectric material according to the present invention.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
10: 교반날개 20: 이송관10: stirring blade 20: transfer pipe
30: 실린더 40: 구동모터30: cylinder 40: drive motor
100: 도가니계 200: 교반계100: crucible 200: stirring system
300: 가열 및 냉각계 400: 분위기 챔버계300: heating and cooling system 400: atmosphere chamber system
500: 가스공급계 600: 진공계500: gas supply system 600: vacuum gauge
700: 압출계 800: 가스 및 진공계700: extrusion system 800: gas and vacuum system
900: 냉각계900: cooling system
이하에서 본 발명의 바람직한 실시예를 첨부된 도면에 의거 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 열전재료 제조장치를 나타내는 구성도이다. 도 1에 도시된 바와 같이, 원통형의 도가니계(100)에 용융온도가 항상 균일한지를 감시하는 온도센서(미도시)와 상기 도가니계(100)의 장입탈착을 용이하게 하기 위한 지그 대차(미도시)를 구비한다. 그리고, 상기 도가니계(100)에 열전소자의 재료인 Bi-Te계를 장입하고, 상기 도가니계(100)와 가열 및 냉각계(300)를 감싼형태인 분위기 챔버계(400)는 내부에는 불활성 가스가 공급되는데, 여기서, 불활성 가스는 Bi-Te계의 용해 및 용융을 유도하기 위해 Ar 및 LN2를 사용한다.1 is a block diagram showing a thermoelectric material manufacturing apparatus according to the present invention. As shown in FIG. 1, a temperature sensor (not shown) that monitors whether the melting temperature is always uniform in a cylindrical crucible system 100 and a jig bogie for facilitating charging and detaching of the crucible system 100 (not shown) C). In addition, a Bi-Te system, which is a material of a thermoelectric element, is charged into the crucible system 100, and the atmosphere chamber system 400 having a shape surrounding the crucible system 100 and the heating and cooling system 300 is inert therein. Gas is supplied where the inert gas uses Ar and LN2 to induce dissolution and melting of the Bi-Te system.
그리고, 상기 분위기 챔버계(400)의 측면에 진공계(600)가 결합되어, 상기 분위기 챔버계(400)의 내부를 고진공(10e-5 torr)으로 배기시킨다. 그리고, 도가니계(100)내에 장입된 Bi-Te계를 초음파 세정 후, 가열 및 냉각계(300)의 직접 고주파 유도가열 방식을 이용하여, 최대 가열온도 1200℃와 상용 가열온도 250℃-700℃의 열을 가해 상기 도가니계(100)에 장입된 Bi-Te계를 용해시킨다. 그리고, 상기 도가니계(100)의 내부에 설치되는 교반계(200)의 교반날개(10)가 구동모터(40)에 의해 15RPM으로 회전되어, 상기 도가니계(100)의 내부에 용해된 Bi-Te계가 용융 혼합되어 이루어진다.In addition, the vacuum gauge 600 is coupled to the side surface of the atmosphere chamber system 400 to exhaust the inside of the atmosphere chamber system 400 to a high vacuum (10e-5 torr). In addition, after the ultrasonic cleaning of the Bi-Te system charged in the crucible system 100, the maximum heating temperature of 1200 ℃ and commercial heating temperature 250 ℃-700 ℃ using a direct high frequency induction heating method of heating and cooling system 300 Heat is applied to dissolve the Bi-Te system charged in the crucible system 100. In addition, the stirring blade 10 of the stirring system 200 installed in the crucible system 100 is rotated at 15 RPM by the driving motor 40, and the Bi- dissolved in the crucible system 100 is dissolved. Te system is melt-mixed.
그리고, 상기 도가니계(100)의 하부에 연결되는 압출계(700)의 이송관(20)을 통하여 용융 혼합된 Bi-Te계는 실린더(30)로 이송한다. 여기서, 상기 이송관(20)에는 가스 및 진공계(800)가 결합되어 있어, 상기 이송관(20)의 내부에 일정한 진공과 가스의 최적의 상태를 만들어 준다. 이때, 상기 이송관(20)에 의해 이송되는 Bi-Te계는 상기 실린더(30)에 히터(미도시)가 설치되어, 상기 히터가 Bi-Te계를 냉각시켜 고체상태로 응고시키기 위함이다. 그리고, 고체상태로 응고된 Bi-Te계는 상기 압출계(700)에 의해 열간압출(295℃, 30-150atm)되어 적당한 크기로 성형시킨다.In addition, the Bi-Te system melt-mixed through the transfer pipe 20 of the extrusion system 700 connected to the lower portion of the crucible system 100 is transferred to the cylinder 30. Here, the gas and the vacuum system 800 is coupled to the transfer pipe 20, thereby making the optimum state of the constant vacuum and gas inside the transfer pipe 20. At this time, the Bi-Te system transported by the transfer pipe 20 is provided with a heater (not shown) in the cylinder 30, so that the heater cools the Bi-Te system to solidify in a solid state. Then, Bi-Te solidified in the solid state is hot-extruded (295 ℃, 30-150atm) by the extrusion system 700 is formed into a suitable size.
도 2는 본 발명에 따른 열전재료 제조방법을 나타내는 흐름도이다. 도 2에 도시된 바와 같이, Bi-Te계를 도가니계(100)에 장입하여 고진공(10e-5 torr)으로 배기한다(S10). 그리고, 상기 도가니계(100)에 장입된 Bi-Te계는 가열 및 냉각계(300)에 의해 열이 전달되어 상기 Bi-Te계를 균일하게 용해시킨다(S20).2 is a flowchart illustrating a method of manufacturing a thermoelectric material according to the present invention. As shown in FIG. 2, the Bi-Te system is charged into the crucible system 100 and exhausted into a high vacuum (10e-5 torr) (S10). In addition, the Bi-Te system charged in the crucible system 100 is heat-transmitted by the heating and cooling system 300 to uniformly dissolve the Bi-Te system (S20).
그리고, 용해된 Bi-Te계는 교반계(200)의 교반날개(10)에 의해 용융 혼합하여(S30), 압출계(700)의 이송관(20)을 통하여 고체상태로 응고시킨다(S40). 그리고, 상기 이송관(20)을 통해 이송된 Bi-Te계를 열간압출하여 성형하는 압출단계(S50)로 이루어지는 것을 특징이다.The melted Bi-Te system is melt mixed by the stirring blade 10 of the stirring system 200 (S30), and solidified in a solid state through the transfer pipe 20 of the extrusion system 700 (S40). . And, it is characterized by consisting of an extrusion step (S50) for hot-molding the Bi-Te system transferred through the transfer pipe 20.
따라서, 열전소자 재료를 초음파 세정 및 진공 건조하여 용해시킨 후, 고진공의 진공조 내에서 용융정제 응고시키고, 도판트와 함께 외부가 불활성 가스(Ar 및 LN2)로 채위진 고진공 챔버내에서 용융 혼합 시킨다. 그리고, 작은 입자의 고 액상 재료를 압출기로 이송하여 Bi-Te계 열전재료의 고밀도화, 미세조직의 입도미세화 및 이방성을 높여 연속적인 결정을 제조하고자 하는 것이다.Therefore, the thermoelectric material is ultrasonically cleaned and vacuum dried to dissolve, and then melt-coagulated and solidified in a vacuum chamber of a high vacuum, and melt-mixed in a high vacuum chamber filled with an inert gas (Ar and LN2) outside together with a dopant. . In addition, the small liquid high-liquid material is transferred to an extruder to increase the density of the Bi-Te-based thermoelectric material, increase the particle size of the microstructure, and increase the anisotropy, thereby preparing continuous crystals.
이상에서 상술한 바와같이 본 발명에 따른 열전재료 제조장치 및 그 제조방법에 의하면, 열전소자 재료를 초음파 세정 및 진공 건조하여 용융정제 응고 및 도판트와 함께 고진공 챔버내에 용융 혼합 후 이송하는 것이다.As described above, according to the thermoelectric material manufacturing apparatus and the method for manufacturing the same according to the present invention, the thermoelectric material is ultrasonically cleaned and vacuum-dried to be melt-transferred together with a melt-purified solidification and a dopant and then transported in a high vacuum chamber.
이러한, 본 발명에 의한 열전재료 제조장치 및 그 제조방법은 Bi-Te계 열전재료의 고밀도화, 미세조직의 입도미세화 및 이방성을 높여 연속적인 결정을 제조하는 것으로, 열전재료의 기계적 특성 향상 및 절단시에 회수율을 증가시켜 열전재료의 생산성을 향상시킬 수 있는 특징을 가지고 있다.Such a thermoelectric material manufacturing apparatus and a manufacturing method according to the present invention is to produce a continuous crystal by increasing the density of the Bi-Te-based thermoelectric material, finer grain size and anisotropy, and improve the mechanical properties of the thermoelectric material and at the time of cutting It has a feature that can improve the productivity of the thermoelectric material by increasing the recovery rate.
비록, 본 발명이 상기에서 언급한 바람직한 실시예와 관련하여 설명되어졌지만, 본 발명의 요지와 범위로 부터 벗어남이 없이 다른 다양한 수정 및 변형이 가능할 것이다. 따라서, 첨부된 청구의 범위는 본 발명의 진정한 범위내에 속하는 그러한 수정 및 변형을 포함할 것이라고 여겨진다.Although the present invention has been described in connection with the above-mentioned preferred embodiments, various other modifications and variations may be made without departing from the spirit and scope of the invention. Accordingly, it is intended that the appended claims cover such modifications and variations as fall within the true scope of the invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000070600A KR20020040920A (en) | 2000-11-25 | 2000-11-25 | A Thermal Contaction Material Manufacturing Device And Manufacturing Method Thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000070600A KR20020040920A (en) | 2000-11-25 | 2000-11-25 | A Thermal Contaction Material Manufacturing Device And Manufacturing Method Thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20020040920A true KR20020040920A (en) | 2002-05-31 |
Family
ID=19701417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000070600A KR20020040920A (en) | 2000-11-25 | 2000-11-25 | A Thermal Contaction Material Manufacturing Device And Manufacturing Method Thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20020040920A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6437456A (en) * | 1987-07-31 | 1989-02-08 | Komatsu Mfg Co Ltd | Thermoelectric semiconductor material and production thereof |
KR900008002A (en) * | 1988-11-15 | 1990-06-02 | 원본미기재 | Thermoelectric material and its manufacturing method |
JPH1056210A (en) * | 1996-08-08 | 1998-02-24 | Aisin Seiki Co Ltd | Thermoelectric semiconductor sintered element and production thereof |
JPH11186621A (en) * | 1997-12-25 | 1999-07-09 | Aisin Seiki Co Ltd | Method and die for manufacturing thermoelectric semiconductor |
-
2000
- 2000-11-25 KR KR1020000070600A patent/KR20020040920A/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6437456A (en) * | 1987-07-31 | 1989-02-08 | Komatsu Mfg Co Ltd | Thermoelectric semiconductor material and production thereof |
KR900008002A (en) * | 1988-11-15 | 1990-06-02 | 원본미기재 | Thermoelectric material and its manufacturing method |
JPH1056210A (en) * | 1996-08-08 | 1998-02-24 | Aisin Seiki Co Ltd | Thermoelectric semiconductor sintered element and production thereof |
JPH11186621A (en) * | 1997-12-25 | 1999-07-09 | Aisin Seiki Co Ltd | Method and die for manufacturing thermoelectric semiconductor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005020339A1 (en) | Thermoelectric material, thermoelectric element and thermoelectric module, and method for manufacturing same | |
CN109371371A (en) | A kind of preparation method of selenium arsenic germanium multi-component Alloy Sputtering target | |
US5223077A (en) | Method of manufacturing single-crystal silicon | |
KR20160125132A (en) | Method for Bi-Te-based thermoelectric materials using Resistance Heat | |
CN112951975A (en) | Silicon carbide nano composite bismuth telluride-based thermoelectric material based on recycling of bismuth telluride processing waste and preparation method thereof | |
Vaidhyanathan et al. | Microwave assisted synthesis of technologically important transition metal silicides | |
JP3572939B2 (en) | Thermoelectric material and method for manufacturing the same | |
JP2004189549A (en) | Method of manufacturing aluminum nitride single crystal | |
KR20020040920A (en) | A Thermal Contaction Material Manufacturing Device And Manufacturing Method Thereof | |
JP2002026404A (en) | Thermoelectric material, and method and device for manufacturing it | |
KR101959448B1 (en) | Thermoelectric materials, thermoelectric device and method for manufacturing the same | |
CN114561707B (en) | Infrared heating zone smelting furnace and method for preparing N-type bismuth telluride alloy by using same | |
JP3571507B2 (en) | Method for manufacturing polycrystalline silicon ingot | |
JPS61232295A (en) | Production of silicon crystal semiconductor | |
JPH03201577A (en) | Manufacture of bi-sb-ti-se thermoelectric semiconductor material | |
JP2004349566A (en) | Unidirectional coagulation thermoelectric crystal material and its manufacturing method, thermoelectric component using the same and its manufatcuring method, and thermoelectric module | |
JP4553521B2 (en) | Powder thermoelectric material manufacturing apparatus and powder thermoelectric material manufacturing method using the same | |
KR19980039646A (en) | Sintering Method of Bi₂Te₃-based Thermoelectric Materials by Rapid Solidification | |
KR100440268B1 (en) | The method for manufacturing of thermocouple material | |
CN118026685B (en) | N-type bismuth telluride material and preparation method thereof | |
JP3478162B2 (en) | Manufacturing method of thermoelectric material | |
CN116804288B (en) | Preparation method of N-type bismuth telluride zone-melting cast ingot for thermoelectric refrigerator | |
JP2012101972A (en) | Method and apparatus for producing crystal semiconductor | |
JPH04219398A (en) | Production of single crystalline silicon | |
Ivanova et al. | New technologies for obtaining thermoelectric materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
NORF | Unpaid initial registration fee |