KR20020010005A - Poly-Si solar cell fabrication method by using a self-aligned grain boundary electrode - Google Patents

Poly-Si solar cell fabrication method by using a self-aligned grain boundary electrode Download PDF

Info

Publication number
KR20020010005A
KR20020010005A KR1020000043733A KR20000043733A KR20020010005A KR 20020010005 A KR20020010005 A KR 20020010005A KR 1020000043733 A KR1020000043733 A KR 1020000043733A KR 20000043733 A KR20000043733 A KR 20000043733A KR 20020010005 A KR20020010005 A KR 20020010005A
Authority
KR
South Korea
Prior art keywords
grain boundary
electrode
solar cell
polycrystalline
polycrystalline silicon
Prior art date
Application number
KR1020000043733A
Other languages
Korean (ko)
Inventor
준 신 이
임동건
Original Assignee
준 신 이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 준 신 이 filed Critical 준 신 이
Priority to KR1020000043733A priority Critical patent/KR20020010005A/en
Publication of KR20020010005A publication Critical patent/KR20020010005A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A method for manufacturing a polycrystalline solar cell using a self-aligned recess electrode in a grain boundary is provided to increase the lifetime of a carrier, by directly collecting electrons and holes from the grain boundary while the electrons and holes do not pass through the grain boundary. CONSTITUTION: The grain boundary(36a,36b) of polycrystalline silicon is selectively etched to form a pyramid structure on a polycrystalline substrate. An n-type polycrystalline silicon layer(32) is formed on the polycrystalline substrate to form a p-n junction. After aluminum is evaporated on the rear surface of the polycrystalline silicon to form a rear surface electrode, a heat treatment process is performed at 600 deg.C to form P¬+. The self-aligned recess electrode(31a,31b) is formed along the grain boundary.

Description

결정입계에 자기정열 함몰전극을 이용한 다결정 태양전지의 제조방법{Poly-Si solar cell fabrication method by using a self-aligned grain boundary electrode}Poly-Si solar cell fabrication method by using a self-aligned grain boundary electrode}

본 발명은 태양전지의 제조에 관한 것으로, 더욱 상세하게는 기존의 결정입계 영향이 무시될 수 있도록 결정입계로만 자동적으로 자기정열 방식으로 전극을 형성함으로써 변환효율을 향상시킨 다결정 태양전지의 제조방법에 관한 것이다.The present invention relates to the manufacture of a solar cell, and more particularly, a method of manufacturing a polycrystalline solar cell which improves the conversion efficiency by automatically forming an electrode in a self-aligned manner only at the grain boundary so that the existing grain boundary effect can be ignored. It is about.

태양전지는 빛을 조사하면 실리콘이 빛을 흡수하여 전자-정공쌍을 생성한다. 생성된 전자-정공쌍은 내부 p-n 접합 전계에 의하여 분리가 되고 외부 전극으로 전력을 공급할 수 있도록 한다. 공해나 오염배출물이 없이 자연친화적으로 청정한 전기를 생성하는 소자인 태양전지는 다양한 전자제품의 전력공급원으로 사용이 가능하다.In solar cells, when light is irradiated, silicon absorbs light to create electron-hole pairs. The generated electron-hole pairs are separated by an internal p-n junction electric field and can supply power to an external electrode. Solar cell, a device that generates electricity that is eco-friendly and clean without pollution or pollutants, can be used as a power source for various electronic products.

태양전지는 광에너지를 전기에너지로 변환하는 광-전변환 소자이다. 그런데, 현재의 태양전지는 상용전력에 비해 생산 단가가 높은 단점을 가지고 있다. 따라서, 태양전지의 생산단가를 낮추면서 높은 효율을 갖는 태양전지 제작에 관한 연구가 세계적으로 진행되고 있다. 태양전지 생산단가를 결정하는 중요한 요인은 실리콘 기판 재료비이다.Solar cells are photoelectric conversion devices that convert light energy into electrical energy. However, current solar cells have a disadvantage of higher production cost than commercial power. Therefore, researches on manufacturing solar cells having high efficiency while lowering the production cost of solar cells have been conducted worldwide. An important factor in determining the solar cell production cost is the silicon substrate material cost.

실리콘은 결정 구조에 따라서 단결정 실리콘과 다결정 실리콘 그리고 비정질 실리콘으로 나눌 수 있다. 이들 재료 중에서 단결정 실리콘으로 만든 태양전지는 가장 효율이 높고 안정성도 좋은 반면에, 전지 제작시 그 면적이 제한되어 대면적으로 생산이 어렵고, 실리콘 웨이퍼가 원형으로 성장되기 때문에 태양전지 제작시Kerf 손실이 생기며, 생산 단가도 다결정 실리콘 태양전지보다 약 두배정도 높다. 비정질 실리콘은 가격은 저가이지만 효율도 많이 떨어지고, 열화현상 등, 그 안정성 측면에서 많은 결점을 가지고 있다.Silicon can be divided into monocrystalline silicon, polycrystalline silicon and amorphous silicon depending on the crystal structure. Of these materials, solar cells made of single-crystal silicon have the highest efficiency and good stability, while their area is limited when manufacturing the cells, making them difficult to produce in large areas. The production cost is about twice that of polycrystalline silicon solar cells. Amorphous silicon is inexpensive but low in efficiency and has many shortcomings in terms of stability such as degradation.

이에 비해서, 다결정 실리콘은 단결정 실리콘보다 가격이 싸고 효율도 단결정 실리콘만큼 우수하게 달성 가능하며, 외부조건 가변에 따른 안정성도 있어서 태양전지 제작에 널리 사용되고 있는 재료이다. 따라서, 최근에는 단결정 실리콘에 육박하는 전기적 특성과 비정질 실리콘 태양전지와 같은 낮은 가격으로 생산할 수 있는 다결정 실리콘 태양전지의 제조방법이 주로 연구되고 있다.On the other hand, polycrystalline silicon is cheaper than monocrystalline silicon and can be more efficiently achieved as monocrystalline silicon, and is also widely used in solar cell fabrication because of stability according to external conditions. Therefore, in recent years, a method of manufacturing polycrystalline silicon solar cells that can be produced at low cost such as amorphous silicon solar cells and electrical characteristics close to single crystal silicon has been mainly studied.

도 4는 종래기술에 따라 제조된 태양전지의 구조를 도식적으로 나타낸 도면이다.4 is a diagram schematically showing the structure of a solar cell manufactured according to the prior art.

도 4를 참조하면, 참조부호 10a, 10b, 10c, 10d는 상부전극을 나타내고, 11a, 11b, 11c는 결정입계(grain boundary)를 나타내며, 12는 n-type poly-Si, 13은 p-type poly-Si, 14는 p+ 층 poly-Si, 15는 하부 금속전극, 16a와 16b는 전자, 그리고 17a와 17b는 정공을 나타낸다.Referring to FIG. 4, reference numerals 10a, 10b, 10c, and 10d represent upper electrodes, 11a, 11b, and 11c represent grain boundaries, 12 is n-type poly-Si, and 13 is p-type. poly-Si, 14 is a p + layer poly-Si, 15 is a lower metal electrode, 16a and 16b are electrons, and 17a and 17b are holes.

도 4에 나타낸 바와 같이, 광흡수로 생성된 전자(17a,17b) 또는 정공(16a,16b)쌍은 내부 p-n 접합(12,13)의 전계에 의하여 분리되고 공핍층을 지나 외부 전극(10,17)으로 수집된다. 이때 종래의 태양전지는 생성된 반송자가 여러개의 결정입자(grain) 경계면을 통과하여 상부전극(10a,10b,10c,10d)에 수집되어 전기를 공급한다.As shown in FIG. 4, the light-absorbed electrons 17a, 17b or holes 16a, 16b pairs are separated by the electric field of the internal pn junctions 12, 13 and pass through the depletion layer to the external electrodes 10, 17) are collected. At this time, in the conventional solar cell, the generated carrier passes through a plurality of grain boundary surfaces and is collected at the upper electrodes 10a, 10b, 10c, and 10d to supply electricity.

그런데, 다결정 실리콘 태양전지의 경우에는 전자(17a,17b)와 정공(16a,16b)쌍이 내부 p-n접합(12,13)의 전계에 의해 분리되어 전극으로 수집되는 과정에서, 결정입계(11a,11b,11c) 내에 존재하는 결함으로 인해 광생성된 반송자가 재결합으로 소멸되어 광전변환 효율감소를 가져온다. 결정입계는 또한 전위장벽을 형성하여 반송자의 흐름에 장벽을 주어 태양전지의 효율을 현저히 저하시킨다.By the way, in the case of the polycrystalline silicon solar cell, the grain boundaries 11a and 11b in the process in which the electrons 17a and 17b and the holes 16a and 16b are separated by the electric fields of the internal pn junctions 12 and 13 and collected by the electrodes. Due to the defects present in 11c), the photogenerated carriers disappear by recombination, resulting in a decrease in photoelectric conversion efficiency. The grain boundaries also form potential barriers, which impede the flow of carriers, significantly reducing the efficiency of the solar cell.

이러한 현상을 방지하기 위하여 종래의 다결정 실리콘을 사용한 태양전지의 상부 전극(10a,10b,10c)의 형태는 다양한 모양의 그리드(grid)를 형성하거나 기판 상부에 일정한 간격의 홈을 파서 그 안에 전극을 형성하는 방법이 채용되었다. 그러나, 전위 장벽이나 재결합 센터로 작용하는 결정입계의 영향을 줄이지 못해 태양전지의 효율 향상을 저해하는 문제점이 있었다. 또한, 결정입계로만 홈을 파는 것이 불가능하여 도 1처럼 결정입계와 무관한 표면에 전극을 형성하여 결정입계 영향을 줄일 수는 없었다.In order to prevent such a phenomenon, the shape of the upper electrodes 10a, 10b, and 10c of the solar cell using the conventional polycrystalline silicon forms a grid of various shapes or digs grooves at regular intervals on the substrate to form an electrode therein. Forming method was adopted. However, there is a problem in that it does not reduce the influence of grain boundaries acting as potential barriers or recombination centers, thereby inhibiting the improvement of solar cell efficiency. In addition, it is impossible to dig a groove only at the grain boundaries, and thus it was not possible to reduce the grain boundary effect by forming an electrode on a surface independent of the grain boundaries as shown in FIG. 1.

본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 기존의 결정입계 영향이 무시될 수 있도록 결정입계로만 자동적으로 자기정열 방식으로 전극을 형성함으로써 변환효율을 향상시킨 다결정 태양전지의 제조방법을 제공하는데 있다.The present invention has been made to solve the above-mentioned conventional problems, the object of the present invention is to improve the conversion efficiency by forming the electrode in the self-alignment method automatically only to the grain boundary so that the existing grain boundary effect can be ignored. It is to provide a method for producing a polycrystalline solar cell.

도 1은 본 발명의 바람직한 실시 예에 따른 다결정 태양전지의 제조공정도,1 is a manufacturing process diagram of a polycrystalline solar cell according to a preferred embodiment of the present invention,

도 2는 결정입계가 우선식각되고 결정표면에 피라미드 구조물이 형성된 다결정 실리콘 기판을 전자현미경으로 관측한 사진,2 is a photograph of an electron microscope of a polycrystalline silicon substrate on which crystal grain boundaries are preferentially etched and pyramidal structures are formed on the crystal surface thereof;

도 3는 본 발명의 바람직한 실시 예에 따라 제조된 태양전지의 구조를 도식적으로 나타낸 도면, 그리고3 is a view schematically showing the structure of a solar cell manufactured according to a preferred embodiment of the present invention, and

도 4는 종래기술에 따라 제조된 태양전지의 구조를 도식적으로 나타낸 도면이다.4 is a diagram schematically showing the structure of a solar cell manufactured according to the prior art.

〈도면의 주요부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

30a,30b,30c : 전면전극 31a,31b : 결정입계 함몰전극30a, 30b, 30c: front electrode 31a, 31b: grain boundary depression electrode

32 : n-type 다결정 실리콘 33 : p-type 다결정 실리콘 기판32: n-type polycrystalline silicon 33: p-type polycrystalline silicon substrate

34 : p+후면전계층 35 : 후면전극층34: p + back field layer 35: back electrode layer

36a,36b : 결정입계 37a,37b : 정공36a, 36b: grain boundaries 37a, 37b: holes

38a,38b : 전자38a, 38b: electron

상기와 같은 목적을 달성하기 위해서, 본 발명은,In order to achieve the above object, the present invention,

다결정 실리콘의 결정입계를 선택적으로 식각하여 상기 다결정 기판 표면에 피라미드구조물을 형성하는 단계(S1);Selectively etching grain boundaries of polycrystalline silicon to form a pyramid structure on the surface of the polycrystalline substrate (S1);

상기 다결정 기판 표면상에 n-type 다결정 실리콘층을 형성하여 p-n 접합을 형성하는 단계(S2);Forming a p-n junction by forming an n-type polycrystalline silicon layer on a surface of the polycrystalline substrate (S2);

상기 다결정 실리콘의 후면에 알루미늄을 증착하여 후면전극을 형성한 다음 600℃에서 열처리를 하여 P+를 형성시키는 단계(S3); 그리고Depositing aluminum on the back side of the polycrystalline silicon to form a back electrode and then performing heat treatment at 600 ° C. to form P + (S3); And

상기 결정입계를 따라 자기정렬 함몰전극을 형성시키는 단계(S4)를 포함하는 것을 특징으로 하는 태양전지의 제조방법을 제공한다.It provides a solar cell manufacturing method comprising the step (S4) of forming a self-aligning depression electrode along the grain boundaries.

상기 단계(S4)에서는 먼저 식각된 결정입계에 스피닝법(spinning), 무전해도금법, 증착법(evaporation), 또는 스퍼터링법(sputtering)을 이용하여 전면에 균일하게 금속층을 형성하고, 상기 다결정 실리콘 기판은 식각하지않고 전면 전극만 선택적으로 식각을 하여 결정입계에만 전극을 형성한후, 전면에 그리드 전극을 증착하는 것을 특징으로 한다.In the step S4, first, a metal layer is uniformly formed on the entire surface of the etched grain boundary by using a spinning method, an electroless plating method, an evaporation method, or a sputtering method, and the polycrystalline silicon substrate is Forming an electrode only at the grain boundaries by selectively etching only the front electrode without etching, the grid electrode is deposited on the front surface.

이상에서 언급한 바와 같이, 본 발명에 따르면, 다결정 실리콘 태양전지에서 효율을 크게 저하시키는 다결정 입계면을 따라서 자기정렬 방식으로 함몰전극을 형성시킴으로서, 기존의 결정입계가 전위장벽을 형성하여 반송자의 흐름에 장벽을 주거나 입계면 내에 존재하는 결함으로 인해 광흡수로 생성된 반송자가 재결합하게 되는 것을 완전히 줄여서 고효율의 다결정 실리콘 태양전지를 제조한다.As mentioned above, according to the present invention, by forming a recessed electrode in a self-aligned manner along the polycrystalline grain boundary surface which greatly reduces the efficiency in the polycrystalline silicon solar cell, the existing grain boundary forms a potential barrier to flow the carrier High efficiency polycrystalline silicon solar cells are manufactured by completely reducing the recombination of carriers generated by light absorption due to barriers or defects present in grain boundaries.

이하, 첨부된 도면을 참조하여 본 발명에 따른 태양전지의 제조방법에 대하여 상세히 설명하면 다음과 같다.Hereinafter, a method for manufacturing a solar cell according to the present invention will be described in detail with reference to the accompanying drawings.

기존의 다결정 실리콘 태양전지에 있어서 가장 큰 문제점은 결정입계의 문제인데, 이를 해결하기 위한 종래의 방법으로는 다결정 입계에 전극을 형성하기 위하여 수작업으로 직접 전극을 형성하거나 레이저 등과 같은 광학 시스템을 사용하여 홈을 파고 전극을 형성하였다.The biggest problem in the existing polycrystalline silicon solar cell is the problem of grain boundaries, and the conventional method for solving this problem is to form an electrode directly by hand or to use an optical system such as a laser to form an electrode at the polycrystalline grain boundary. Grooves were formed to form electrodes.

그러나, 본 발명에서는 다결정 입계에 함몰전극이 자동적인 자기정열 방식으로 태양전지 전극을 형성한다. 즉, 화학적 식각을 통하여 소수 반송자의 수명을 단축시키는 결정입계면을 선택적으로 식각하고 이 결정입계면에 자기정렬 함몰전극을 형성함으로써, 다결정 태양전지의 결정입계에서의 손실을 줄이는 것이다. 이와 동시에 다결정 표면에는 광수집 효율이 높은 피라미드 구조물이 형성되어 빛의 유효 통과 길이를 증가시키는 효과를 얻을 수 있다. 게다가, 원천기판 물질의 저가화와, 기존에 손실요소로 작용하던 결정입계면 처리와 자기정열방식의 결정입계면 전극 사용을 통해서 고효율 다결정 태양전지의 제조가 가능하다.However, in the present invention, the recessed electrode at the polycrystalline grain boundary forms a solar cell electrode by an automatic self-alignment method. In other words, by selectively etching crystal grain boundaries that shorten the life of minority carriers through chemical etching and forming self-aligning recessed electrodes on the grain boundaries, the loss at grain boundaries of the polycrystalline solar cell is reduced. At the same time, a pyramidal structure having high light collection efficiency is formed on the polycrystalline surface, thereby obtaining an effect of increasing the effective passage length of light. In addition, it is possible to manufacture high-efficiency polycrystalline solar cells by lowering the cost of the source substrate material, using the grain boundary treatment and the self-aligned grain boundary electrode which have been previously used as loss factors.

도 1은 본 발명의 바람직한 실시 예에 따른 다결정 태양전지의 제조공정도이다.1 is a manufacturing process chart of a polycrystalline solar cell according to a preferred embodiment of the present invention.

도 1을 참조하면, 먼저 다결정 실리콘의 결정입계를 선택적으로 식각을 하게 된다. 참조부호 (S1)은 결정입계 우선식각과 다결정 기판 표면에 피라미드구조물이 형성된 것을 나타낸다. 식각의 방법은 입자경계면 만을 통해 먼저 식각하는 화학물에 의한 방법을 이용할 수 있다. 화학적 식각 방법으로 CrO3+HF+H2O를 일정비율로 조합하여 다결정 실리콘의 결정입계를 선택적으로 식각을 하게 된다. 이때에 표면 Texturing 효과와 함께 결정입계의 식각이 된다. 화학물 이용법은 대량 생산 단계에서 용이하다는 장점이 있다. 결정입계 우선식각과 결정표면에 피라미드 구조물이 형성된 다결정 실리콘 기판을 전자현미경으로 관측한 사진을 도 3에 나타내었다.Referring to FIG. 1, first, the grain boundaries of polycrystalline silicon are selectively etched. Reference numeral S1 denotes grain boundary preferential etching and pyramidal structures formed on the surface of the polycrystalline substrate. The etching method may be a method of chemically etching first through the particle boundary surface only. By chemical etching, CrO 3 + HF + H 2 O is combined at a constant ratio to selectively etch the grain boundaries of polycrystalline silicon. At this time, the grain boundary is etched together with the surface texturing effect. The use of chemicals has the advantage of ease of mass production. Fig. 3 shows a photograph of the grain boundary preferential etching and a polycrystalline silicon substrate having a pyramid structure formed on the crystal surface thereof under an electron microscope.

다음으로, n-type poly-Si 층을 형성하여 p-n 접합을 형성하고(S2), 후면에 알루미늄을 증착하여 후면전극을 형성한 다음 600℃에서 열처리를 하여 P+를 형성시킨다(S3).Next, an n-type poly-Si layer is formed to form a pn junction (S2), aluminum is deposited on the backside to form a back electrode, and then heat treated at 600 ° C. to form P + (S3).

그런후에는, 결정입계를 따라 자기정렬 함몰전극을 형성시키는데, 먼저 식각된 결정입계에 스피닝법(spinning)을 사용하거나, 무전해도금을 사용하거나, 증착법(evaporation)을 이용하거나, 스퍼터링법(sputtering)을 통해서 전면에 균일하게 금속층을 형성시킨다(S4).Thereafter, a self-aligning depression electrode is formed along the grain boundaries, first using spinning, electroless plating, evaporation, or sputtering on the etched grain boundaries. Through) to form a metal layer on the front surface (S4).

다음에는, 기판인 Si은 식각하지않고 전면 전극만 선택적으로 식각을 하여 결정입계에만 전극을 형성시킨다(S5). 그런 후에, 전면에 그리드 전극을 증착함(S6)으로써, 본 발명에 따른 태양전지가 완성된다.Next, Si, which is a substrate, is selectively etched without etching the front electrode to form an electrode only at the grain boundaries (S5). Then, by depositing a grid electrode on the front surface (S6), the solar cell according to the present invention is completed.

도 3는 본 발명의 바람직한 실시 예에 따라 제조된 태양전지의 구조를 도식적으로 나타낸 도면이다.3 is a diagram schematically showing the structure of a solar cell manufactured according to a preferred embodiment of the present invention.

도 3을 참조하면, 참조부호 (30a,30b,30c)는 전면전극을 나타내고, (31a,31b)는 결정입계 함몰전극, (32)는 n-type 다결정 실리콘, (33)은 p-type 다결정 실리콘 기판, (34)는 p+ 후면전계층, (35)는: 후면전극층, (36a,36b)는 결정입계, (37a,37b)는 정공, 그리고 (38a,38b)는 전자를 나타낸다.Referring to FIG. 3, reference numerals 30a, 30b and 30c denote front electrodes, 31a and 31b denote grain boundary depression electrodes, 32 denote n-type polycrystalline silicon, and 33 denote p-type polycrystalline. The silicon substrate (34) is a p + backside field layer, (35) is a back electrode layer, (36a, 36b) is a grain boundary, (37a, 37b) is a hole, and (38a, 38b) is an electron.

이상에서 설명한 바와같이, 본 발명에 따른 태양전지의 제조방법에서는, 결정입계 우선식각 뿐만 아니라 표면에 light trapping 효과를 나타내어 실제 광 통과 길이를 증가시킬 수 있는 표면 texturing 효과를 병행할 것으로 기대된다.As described above, in the method of manufacturing a solar cell according to the present invention, it is expected that not only the grain boundary preferential etching but also the surface texturing effect which can increase the actual light passage length by showing the light trapping effect on the surface.

또한, 기존의 다결정 실리콘 태양전지는 다결정입자(grain) 경계면 (boundary)에서의 악 영향을 제거할 수 없었지만, 본 발명에 따른 태양전지는 광에 의해 생성된 전자와 정공은 결정 경계면을 통과하지 않고 항상 결정입계에서 직접 수집이 되어 반송자의 수명을 늘여주는 효과가 있다.In addition, although the existing polycrystalline silicon solar cell was not able to eliminate the adverse effects at the polycrystalline grain boundary, the solar cell according to the present invention does not pass through the crystal boundary electrons and holes generated by the light It is always collected directly at the grain boundary, which has the effect of extending the life of the carrier.

게다가, 결정입계에 함몰전극을 형성시킴으로서 다결정 실리콘 기판 자체에서의 반송자의 재결합을 줄여주는 효과를 얻을 수 있다. 따라서, 본 발명에 의해 다결정 태양전지의 광-전 변환효율을 향상시키면 기존의 태양전지보다 높은 전력을 얻을 수 있다.In addition, by forming the recessed electrode at the grain boundaries, it is possible to obtain an effect of reducing the recombination of carriers in the polycrystalline silicon substrate itself. Therefore, by improving the photoelectric conversion efficiency of the polycrystalline solar cell according to the present invention it is possible to obtain a higher power than conventional solar cells.

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당기술 분야의 숙련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할수 있을 것이다.Although the above has been described with reference to a preferred embodiment of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. It will be appreciated.

Claims (2)

다결정 실리콘의 결정입계를 선택적으로 식각하여 상기 다결정 기판 표면에 피라미드구조물을 형성하는 단계(S1);Selectively etching grain boundaries of polycrystalline silicon to form a pyramid structure on the surface of the polycrystalline substrate (S1); 상기 다결정 기판 표면상에 n-type 다결정 실리콘층을 형성하여 p-n 접합을 형성하는 단계(S2);Forming a p-n junction by forming an n-type polycrystalline silicon layer on a surface of the polycrystalline substrate (S2); 상기 다결정 실리콘의 후면에 알루미늄을 증착하여 후면전극을 형성한 다음 600℃에서 열처리를 하여 P+를 형성시키는 단계(S3); 그리고Depositing aluminum on the back side of the polycrystalline silicon to form a back electrode and then performing heat treatment at 600 ° C. to form P + (S3); And 상기 결정입계를 따라 자기정렬 함몰전극을 형성시키는 단계(S4)를 포함하는 것을 특징으로 하는 태양전지의 제조방법.Forming a self-aligning depression electrode along the grain boundary (S4). 제 1 항에 있어서, 상기 단계(S4)에서는 먼저 식각된 결정입계에 스피닝법(spinning), 무전해도금법, 증착법(evaporation), 또는 스퍼터링법 (sputtering)을 이용하여 전면에 균일하게 금속층을 형성하고, 상기 다결정 실리콘 기판은 식각하지않고 전면 전극만 선택적으로 식각을 하여 결정입계에만 전극을 형성한후, 전면에 그리드 전극을 증착하는 것을 특징으로 하는 태양전지의 제조방법.The method of claim 1, wherein in step S4, a metal layer is uniformly formed on the entire surface by spinning, electroless plating, evaporation, or sputtering at the etched grain boundaries. And forming an electrode only at a grain boundary by selectively etching only the front electrode without etching the polycrystalline silicon substrate, and then depositing a grid electrode on the front surface thereof.
KR1020000043733A 2000-07-28 2000-07-28 Poly-Si solar cell fabrication method by using a self-aligned grain boundary electrode KR20020010005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000043733A KR20020010005A (en) 2000-07-28 2000-07-28 Poly-Si solar cell fabrication method by using a self-aligned grain boundary electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000043733A KR20020010005A (en) 2000-07-28 2000-07-28 Poly-Si solar cell fabrication method by using a self-aligned grain boundary electrode

Publications (1)

Publication Number Publication Date
KR20020010005A true KR20020010005A (en) 2002-02-02

Family

ID=19680572

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000043733A KR20020010005A (en) 2000-07-28 2000-07-28 Poly-Si solar cell fabrication method by using a self-aligned grain boundary electrode

Country Status (1)

Country Link
KR (1) KR20020010005A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100543535B1 (en) * 2003-05-07 2006-01-20 준 신 이 Fabrication method of high efficiency multi-crystalline silicon solar cell with a minimized leakage current
KR101160114B1 (en) * 2009-05-07 2012-06-26 주식회사 효성 A fabricating method of buried contact solar cell
KR20140077265A (en) * 2012-12-13 2014-06-24 한국전자통신연구원 Solar cell and method for forming the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125988A (en) * 1987-11-11 1989-05-18 Hitachi Ltd Solar cell element
JPH07142749A (en) * 1993-11-15 1995-06-02 Matsushita Electric Ind Co Ltd Solar cell and its manufacture
JPH10117005A (en) * 1996-10-15 1998-05-06 Matsushita Electric Ind Co Ltd Solar battery
KR20000031624A (en) * 1998-11-05 2000-06-05 이준신 Production method of polycrystalline solar battery using crystalline grain boundary etching

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125988A (en) * 1987-11-11 1989-05-18 Hitachi Ltd Solar cell element
JPH07142749A (en) * 1993-11-15 1995-06-02 Matsushita Electric Ind Co Ltd Solar cell and its manufacture
JPH10117005A (en) * 1996-10-15 1998-05-06 Matsushita Electric Ind Co Ltd Solar battery
KR20000031624A (en) * 1998-11-05 2000-06-05 이준신 Production method of polycrystalline solar battery using crystalline grain boundary etching

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100543535B1 (en) * 2003-05-07 2006-01-20 준 신 이 Fabrication method of high efficiency multi-crystalline silicon solar cell with a minimized leakage current
KR101160114B1 (en) * 2009-05-07 2012-06-26 주식회사 효성 A fabricating method of buried contact solar cell
KR20140077265A (en) * 2012-12-13 2014-06-24 한국전자통신연구원 Solar cell and method for forming the same

Similar Documents

Publication Publication Date Title
EP0548863B1 (en) Method of fabricating a solar cell and solar cell
KR101561682B1 (en) Deep grooved rear contact photovoltaic solar cells
KR101000064B1 (en) Hetero-junction silicon solar cell and fabrication method thereof
US7071018B2 (en) Process for manufacturing a solar cell
US10658529B2 (en) Solar cell and manufacturing method thereof
KR100847741B1 (en) Point-contacted heterojunction silicon solar cell having passivation layer between the interface of p-n junction and method for fabricating the same
KR101225978B1 (en) Sollar Cell And Fabrication Method Thereof
KR100997113B1 (en) Solar Cell and Method for Manufacturing thereof
AU2002257979A1 (en) Process for manufacturing a solar cell
KR20130052627A (en) Back junction solar cell with selective front surface field
KR101085382B1 (en) Method for fabricating solar cell comprising selective emitter
KR102148427B1 (en) Photoelectric device and the manufacturing method thereof
KR20140140200A (en) Solar cell and method for manufacturing the same
KR20020010005A (en) Poly-Si solar cell fabrication method by using a self-aligned grain boundary electrode
KR101382585B1 (en) black silicon solar cell with Ultra-Shallow Emitter, and manufacturing method thereof
KR101024322B1 (en) Method of manufacturing wafer for solar cell, a wafer for solar cell manufactured by the method and method of manufacturing solar cell using the wafer
KR101068800B1 (en) Method of manufacturing solar cell
KR100514580B1 (en) Method for manufacturing polycrystalline solar cell using grain boundary first etching
KR20130061346A (en) Solar cell and method of manufacturing the same
KR100537439B1 (en) A method to fabricate a high/low junction solar cell by using a optical heating system
JP2005333016A (en) Back surface electrode solar cell, and method for manufacturing the same
KR101431266B1 (en) Method for manufacturing solar cell
JP2000332268A (en) Thin-film polycrystalline silicon, solar battery using the same, and manufacture of thin-film polycrystalline silicon
JPH11307796A (en) Solar cell and its manufacture
JP2005129680A (en) Photoelectric converter

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application