JPH07142749A - Solar cell and its manufacture - Google Patents

Solar cell and its manufacture

Info

Publication number
JPH07142749A
JPH07142749A JP5284995A JP28499593A JPH07142749A JP H07142749 A JPH07142749 A JP H07142749A JP 5284995 A JP5284995 A JP 5284995A JP 28499593 A JP28499593 A JP 28499593A JP H07142749 A JPH07142749 A JP H07142749A
Authority
JP
Japan
Prior art keywords
substrate
solar cell
photovoltaic
film
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5284995A
Other languages
Japanese (ja)
Inventor
Tsutomu Mitani
力 三谷
Shigeo Suzuki
茂夫 鈴木
Hidenobu Shintaku
秀信 新宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5284995A priority Critical patent/JPH07142749A/en
Publication of JPH07142749A publication Critical patent/JPH07142749A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To make it possible to industrially realize solar cells having excellent conversion efficiency at a low cost by depositing a photovoltaic film on a supporting substrate and forming a plurality of semi-spherical projections with a particular height on the surface of the photovoltaic film. CONSTITUTION:This solar cell is produced by forming a polycrystalline silicon film 2 on a quartz glass substrate 3 as a supporting substrate and by forming almost semi-spherical projections 1 consisting of fine particles of silicon on the surface of the film. A solar cell having this kind of surface shape is almost perpendicular to the incident light near the apex of that shape, so that reflection loss of incident light can be considerably reduced compared with the conventional technology and thus the conversion efficiency can be further improved. Particularly, if the height of the semi-spherical projection is made equal to 0.1 to 10mum, the incident light can be efficiently taken into the solar cell and thus the height is optimum. Therefore, the solar cells having excellent conversion efficiency can be simply produced at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池とその製造方
法に関するものであって、特に太陽電池の表面を微粒子
によって粗面化することで入射光を閉じこめて電力への
変換効率を向上し、高効率の太陽電池を提供することに
係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell and a method for manufacturing the same, and in particular, the surface of the solar cell is roughened with fine particles to confine incident light and improve the conversion efficiency into electric power. , Providing a highly efficient solar cell.

【0002】[0002]

【従来の技術】太陽電池はクリーンエネルギーとして有
望であり、すでに屋外発電用素子としても一部実用化さ
れている。太陽電池に要求されることは、太陽光を電気
に変換する変換効率が高いこと、20年以上もの長期間に
わたっても発電能力が劣化せず安定であり信頼性が高い
こと、低コストなこと等であり、これらのことが太陽電
池を広く普及するために必要不可欠な重要課題となって
いる。
2. Description of the Related Art Solar cells are promising as clean energy and have already been partially put into practical use as elements for outdoor power generation. Solar cells are required to have high conversion efficiency to convert sunlight into electricity, stable and reliable power generation capability without deterioration over a long period of 20 years or more, low cost, etc. Therefore, these are important issues that are indispensable for the widespread use of solar cells.

【0003】中でも変換効率の向上は特に重要であっ
て、結晶系の太陽電池がアモルファス系のものより優れ
ており、結晶系の太陽電池に関しても効率をさらに向上
するために材料,構造,製造方法等に関する開発が積極
的に行われている。
Above all, it is important to improve the conversion efficiency, and the crystalline solar cells are superior to the amorphous solar cells, and the materials, structures, and manufacturing methods for the crystalline solar cells in order to further improve the efficiency. Development related to etc. is being actively conducted.

【0004】太陽電池の構造に関する開発も各種のもの
が行われている。例えば太陽電池の表面を粗面化した構
造によって、入射光を有効に電力に変換することが可能
となり変換効率が向上できることは周知の事実である。
Various developments have been made on the structure of solar cells. For example, it is a well-known fact that the structure in which the surface of the solar cell is roughened makes it possible to effectively convert incident light into electric power and improve the conversion efficiency.

【0005】例えば、図5は従来の単結晶シリコン太陽
電池の表面を粗面化した斜視断面図であり、テクスチャ
ー処理によって変換効率を向上する代表的な例を示す
(Advancements in Silicon Buried Contact Solar
Cells;S.R.Wenham,F.Zhang,C.M.Chong and M.A.G
reen;p.323〜p.326)。この単結晶シリコン太陽電池
は、各種太陽電池の中でも最も高い変換効率を得ること
ができるものである。この従来技術での太陽電池の粗面
化は、単結晶シリコン基板20をアルカリ性エッチング液
によって異方性エッチングをすることで、揃った形状の
ピラミッド状の突起21が形成されている。
For example, FIG. 5 is a perspective sectional view in which the surface of a conventional single crystal silicon solar cell is roughened, and shows a typical example in which conversion efficiency is improved by a texture treatment.
(Advancements in Silicon Buried Contact Solar)
Cells; SR Wenham, F. Zhang, CMChong and MAG
reen; p.323-p.326). This single crystal silicon solar cell can obtain the highest conversion efficiency among various solar cells. In the roughening of the surface of the solar cell in this conventional technique, the single crystal silicon substrate 20 is anisotropically etched with an alkaline etching solution to form pyramidal protrusions 21 having a uniform shape.

【0006】この従来例では、変換効率が21%以上もの
高いものが得られている。
In this conventional example, a conversion efficiency as high as 21% or more is obtained.

【0007】図5に示すような太陽電池の変換効率が向
上できる特異な表面形状は、基板である単結晶シリコン
基板20の方位と、エッチング液のエッチング方位選択性
が整合した場合に形成可能である。すなわち、太陽電池
としてある程度の大面積に揃った表面形状とするために
は、必然的に半導体産業で使用されているような大きい
単結晶基板が必要となるために、単結晶シリコン太陽電
池は高価なものとなっている。
The peculiar surface shape capable of improving the conversion efficiency of the solar cell as shown in FIG. 5 can be formed when the orientation of the single crystal silicon substrate 20 which is the substrate matches the etching orientation selectivity of the etching solution. is there. That is, a single crystal silicon solar cell is expensive because a large single crystal substrate that is used in the semiconductor industry is inevitably required in order to have a surface shape that is uniform over a large area as a solar cell. It has become.

【0008】また、図6は従来の多結晶シリコン太陽電
池の表面を粗面化した斜視断面図であり、これはテクス
チャー処理によって変換効率を向上する代表的な例を示
す(薄型高効率多結晶シリコン太陽電池;町田智弘,岡
本論,岡本浩二,他;シャープ技報;第50号;1991年9
月;p.15〜p.19)。この多結晶シリコン太陽電池に用い
られる多結晶シリコン基板は、上記図5の技術例に示し
た単結晶シリコン基板より低コストであるので、低コス
トな太陽電池が提供できる。この従来技術での太陽電池
の粗面化は、多結晶シリコン基板10をダイシングによっ
て、間隔120μm,深さ70μmの溝22を前記基板全体に形
成することで行われている。この従来例では、変換効率
が16%以上のものが得られている。
FIG. 6 is a perspective sectional view showing a roughened surface of a conventional polycrystalline silicon solar cell, which shows a typical example in which conversion efficiency is improved by a texture treatment (thin high-efficiency polycrystalline). Silicon solar cell; Tomohiro Machida, Ron Okamoto, Koji Okamoto, etc .; Sharp Technical Report; No. 50; 1991, 9
Month; p.15-p.19). Since the polycrystalline silicon substrate used for this polycrystalline silicon solar cell has a lower cost than the single crystal silicon substrate shown in the technical example of FIG. 5, a low cost solar cell can be provided. The roughening of the surface of the solar cell according to this conventional technique is performed by dicing the polycrystalline silicon substrate 10 to form the grooves 22 having an interval of 120 μm and a depth of 70 μm on the entire substrate. In this conventional example, a conversion efficiency of 16% or more is obtained.

【0009】図6に示すような前記従来の技術の太陽電
池では、多結晶シリコン基板を用いているために、必然
的にダイシング等の機械加工によって表面を粗面化する
ことが要求される。その理由は、多結晶シリコン基板は
多数の結晶粒の集合体であるので、上記図5の技術に示
したエッチングでは、ピラミッドの方向が結晶粒によっ
てまちまちとなって制御困難となってしまうからであ
る。
In the conventional solar cell as shown in FIG. 6, since the polycrystalline silicon substrate is used, it is inevitably required to roughen the surface by machining such as dicing. The reason is that since the polycrystalline silicon substrate is an aggregate of a large number of crystal grains, in the etching shown in the technique of FIG. 5, the direction of the pyramid varies depending on the crystal grains, which makes control difficult. is there.

【0010】[0010]

【発明が解決しようとする課題】前記従来の技術の太陽
電池では、表面に形成された粗面化形状がピラミッド形
とか三角屋根形であるために、これら形状の斜面部分で
の入射光の反射損失も無視しえないほど大きくて、十分
な変換効率を達成するには何らかの形状に関する改良が
必要である。
In the solar cells of the prior art described above, since the roughened shape formed on the surface is a pyramid shape or a triangular roof shape, the incident light is reflected on the sloped portion of these shapes. The loss is also so large that it cannot be ignored, and some form improvement is necessary to achieve sufficient conversion efficiency.

【0011】また、前記従来の技術では、単結晶シリコ
ン太陽電池の場合、変換効率は最も高いものが得られる
ものの、高価なものとなってしまう。一方、多結晶シリ
コン太陽電池の場合には、ダイシング等の機械加工が余
分に必要となるために製造工程が複雑なものとなる。
Further, in the above-mentioned conventional technique, in the case of a single crystal silicon solar cell, although the highest conversion efficiency can be obtained, it becomes expensive. On the other hand, in the case of a polycrystalline silicon solar cell, an extra machining process such as dicing is required, which complicates the manufacturing process.

【0012】したがって、従来の技術では、高い変換効
率で、かつ製造工程も簡便で低コストな太陽電池を製造
し、広く普及させることは困難となる。
Therefore, according to the conventional technique, it is difficult to manufacture a solar cell having a high conversion efficiency, a simple manufacturing process and a low cost, and to widely disseminate it.

【0013】本発明はこのような事情に鑑み、優れた変
換効率で低コストな太陽電池を工業的に実現することを
目的とする。
In view of such circumstances, it is an object of the present invention to industrially realize a solar cell with excellent conversion efficiency and low cost.

【0014】[0014]

【課題を解決するための手段】本発明は上記課題を解決
し、目的を達成するため、第1の発明は、支持基板上に
堆積した光起電力膜上、もしくは光起電力基板上に前記
光起電力膜、あるいは前記基板の組成材料からなる半球
形状、もしくは略半球形状の高さが0.1μmないし10μm
である突起を複数配したことを特徴とする太陽電池であ
る。
In order to solve the above-mentioned problems and to achieve the object, the present invention relates to a photovoltaic film deposited on a supporting substrate or a photovoltaic substrate, Photovoltaic film or hemispherical or substantially hemispherical shape made of the composition material of the substrate has a height of 0.1 μm to 10 μm
The solar cell is characterized by arranging a plurality of protrusions.

【0015】また、第2の発明は、前記支持基板上に光
起電力膜を形成する工程、もしくは光起電力基板を形成
する工程と、前記光起電力膜上、もしくは基板上に光起
電力材料の微粒子を配する工程からなり、前記微粒子の
堆積と同時に前記光起電力膜、もしくは基板を前記微粒
子の融点近傍に加熱すること、あるいは前記微粒子を微
粒子の融点近傍に加熱することを特徴とする太陽電池の
製造方法である。
The second invention is the step of forming a photovoltaic film on the supporting substrate, or the step of forming a photovoltaic substrate, and the photovoltaic film on the photovoltaic film or on the substrate. A step of arranging fine particles of a material, wherein the photovoltaic film or the substrate is heated to near the melting point of the fine particles at the same time as the fine particles are deposited, or the fine particles are heated to near the melting point of the fine particles. It is a method of manufacturing a solar cell.

【0016】また、第3の発明は、前記支持基板上に光
起電力膜を形成する工程、もしくは光起電力基板を形成
する工程と、前記光起電力膜上、もしくは基板上に光起
電力材料の微粒子を配する工程からなり、前記微粒子の
堆積と同時に活性水素原子を前記光起電力膜、もしくは
基板の表面に照射してなることを特徴とする太陽電池の
製造方法である。
A third aspect of the invention is to form a photovoltaic film on the supporting substrate, or to form a photovoltaic substrate, and to form a photovoltaic film on the photovoltaic film or on the substrate. A method of manufacturing a solar cell, which comprises the step of arranging fine particles of a material, and irradiating the surface of the photovoltaic film or the substrate with active hydrogen atoms simultaneously with the deposition of the fine particles.

【0017】また、第4の発明は、不活性ガス雰囲気
中、もしくは水素ガス雰囲気中で光起電力材料の微粒子
を生成する工程と、前記微粒子を前記支持基板上に形成
した光起電力膜上、もしくは光起電力基板上に配してそ
の表面粗さを0.1μmないし10μmとする工程からなるこ
とを特徴とする太陽電池の製造方法である。
A fourth aspect of the present invention is a step of producing fine particles of a photovoltaic material in an inert gas atmosphere or a hydrogen gas atmosphere, and a step of forming the fine particles on a photovoltaic film formed on the supporting substrate. Alternatively, it is a method for producing a solar cell, which comprises a step of arranging it on a photovoltaic substrate so as to have a surface roughness of 0.1 μm to 10 μm.

【0018】[0018]

【作用】第1の発明によれば、太陽電池の表面を半球形
状、もしくは略半球形状とする表面形状の太陽電池は、
それら形状の頂点近傍において入射光に対して直角に近
いため、入射光の反射損失が前記従来の技術に比べて格
段に低減することが可能となって、変換効率がさらに向
上できるものである。
According to the first invention, a solar cell having a surface shape in which the surface of the solar cell is hemispherical or substantially hemispherical is provided.
The reflection loss of the incident light can be significantly reduced as compared with the above-mentioned conventional technique because the light is nearly perpendicular to the incident light in the vicinity of the apexes of these shapes, and the conversion efficiency can be further improved.

【0019】上記のように変換効率を向上するために
は、半球形状、もしくは略半球形状の突起の高さを0.1
μm〜10μmとすると、入射光が効率的に太陽電池へ取り
込まれるので好ましい。
In order to improve the conversion efficiency as described above, the height of the hemispherical or substantially hemispherical protrusion is set to 0.1.
It is preferable that the thickness is 10 μm to 10 μm because incident light is efficiently taken into the solar cell.

【0020】また、突起は、その形成方法にもよるが、
例えば光起電力膜上、もしくは光起電力基板上に、前記
光起電力膜、もしくは基板とは別個に形成される場合、
突起と膜、もしくは基板との界面には原子のダングリン
グボンドが存在し、太陽電池の特性に悪影響を及ぼすこ
ともあるので、水素などでダングリングボンドを終端す
ることが望ましい。水素は、その原子半径が最も小さい
ので前記のような固体界面へも容易に侵入しやすい。ま
た、特にシリコン太陽電池に対しては、シリコンと水素
は結合しやすい。これらの理由から、水素で終端するこ
とが好ましいのである。
Further, the projection depends on the forming method,
For example, when it is formed separately from the photovoltaic film or the substrate on the photovoltaic film or the photovoltaic substrate,
Since atomic dangling bonds exist at the interface between the projection and the film or the substrate, which may adversely affect the characteristics of the solar cell, it is desirable to terminate the dangling bond with hydrogen or the like. Since hydrogen has the smallest atomic radius, hydrogen easily penetrates into the solid interface as described above. Further, especially for a silicon solar cell, silicon and hydrogen are likely to bond with each other. For these reasons, termination with hydrogen is preferred.

【0021】次に第2の発明によれば、前記第1の発明
の太陽電池を製造する場合、太陽電池の表面形状を形成
する微粒子の堆積と同時に前記膜、もしくは基板を前記
微粒子の融点近傍に加熱するので、前記膜、もしくは基
板上に堆積した微粒子の結晶方位が、前記膜、もしくは
基板の結晶方位と揃いやすくなる。すなわち、膜、もし
くは基板と、突起である微粒子との界面がなくなり、高
い変換効率の太陽電池を製造することが可能となるもの
である。
Next, according to the second aspect of the invention, when the solar cell of the first aspect of the invention is manufactured, at the same time as the deposition of the fine particles forming the surface shape of the solar cell, the film or the substrate is placed near the melting point of the fine particles. Since it is heated to the above, the crystal orientation of the fine particles deposited on the film or the substrate is easily aligned with the crystal orientation of the film or the substrate. That is, the interface between the film or the substrate and the fine particles that are the protrusions is eliminated, and it becomes possible to manufacture a solar cell with high conversion efficiency.

【0022】次に第3の発明によれば、前記第1の発明
の太陽電池を製造する場合、太陽電池の表面形状を形成
する微粒子の堆積と同時に活性水素原子(原子状水素、
あるいは水素ラジカル)を前記膜、もしくは基板の表面
に照射する。前記活性水素原子は、前記のように容易に
固体界面へも侵入するが、そのためには膜、もしくは基
板の温度を例えば300℃以上に加熱することが要求さ
れる。本発明では、突起を形成する微粒子の堆積と同時
に活性水素原子を前記膜、もしくは基板の表面に照射す
ることで、このような加熱が不要となるものである。
Next, according to the third invention, when the solar cell of the first invention is manufactured, active hydrogen atoms (atomic hydrogen,
Alternatively, hydrogen radicals) are applied to the surface of the film or the substrate. The active hydrogen atoms easily penetrate into the solid interface as described above, but for that purpose, it is required to heat the temperature of the film or the substrate to, for example, 300 ° C. or higher. In the present invention, such heating is unnecessary by irradiating the surface of the film or the substrate with active hydrogen atoms simultaneously with the deposition of the fine particles forming the protrusions.

【0023】次に第4の発明によれば、前記第1の発明
の太陽電池を製造する場合、不活性ガス雰囲気中、もし
くは水素ガス雰囲気中で生成した光起電力材料の微粒子
を前記雰囲気中において、支持基板上に形成した光起電
力膜上、もしくは光起電力基板上に配する。
Next, according to a fourth aspect of the invention, when the solar cell of the first aspect of the invention is manufactured, fine particles of the photovoltaic material generated in an inert gas atmosphere or in a hydrogen gas atmosphere are used in the atmosphere. In above, it is arranged on the photovoltaic film formed on the supporting substrate or on the photovoltaic substrate.

【0024】このような方法で生成した微粒子は清浄で
あって、その表面に太陽電池の特性に悪影響を及ぼす不
純物がほとんどない。また、微粒子を不活性ガス雰囲気
中、もしくは水素ガス雰囲気中で膜、もしくは基板上に
堆積すると、突起である微粒子と前記膜、もしくは基板
との界面には、太陽電池の特性に悪影響を及ぼす不純物
がほとんどないために、清浄な結合面を形成することが
できる。すなわち、高い変換効率の太陽電池を製造する
ことが可能となるものである。
The fine particles produced by such a method are clean, and there are almost no impurities on the surface thereof which adversely affect the characteristics of the solar cell. Further, when fine particles are deposited on a film or a substrate in an inert gas atmosphere or a hydrogen gas atmosphere, impurities that adversely affect the characteristics of the solar cell may be present at the interface between the fine particles that are protrusions and the film or the substrate. Since there is almost no, a clean bonding surface can be formed. That is, it becomes possible to manufacture a solar cell with high conversion efficiency.

【0025】[0025]

【実施例】図1は第1の発明の一実施例における多結晶
シリコン太陽電池の構造例を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a structural example of a polycrystalline silicon solar cell in one embodiment of the first invention.

【0026】この実施例の太陽電池は、支持基板である
石英ガラス基板3に多結晶シリコン膜2を形成し、前記
膜の表面にシリコンの微粒子からなる略半球形状突起1
を形成したものである。
In the solar cell of this embodiment, a polycrystalline silicon film 2 is formed on a quartz glass substrate 3 which is a supporting substrate, and a substantially hemispherical projection 1 made of silicon fine particles is formed on the surface of the film.
Is formed.

【0027】多結晶シリコン膜2は、原料に水素ガスで
希釈したSi26とPCl3との混合ガスを用いて熱CV
Dで形成した。形成した膜は、N型であって、膜の厚み
は10μm、各結晶の平均結晶粒径は約50μmであった。こ
のようなサイズの多結晶シリコン膜は太陽電池用の光起
電力膜として申し分のないものである。また、PN接合
を形成するために、前記膜の形成後、水素ガスで希釈し
たB26の熱拡散を行った。
The polycrystalline silicon film 2 is subjected to thermal CV using a mixed gas of Si 2 H 6 diluted with hydrogen gas and PCl 3 as a raw material.
Formed in D. The formed film was N-type, the film thickness was 10 μm, and the average crystal grain size of each crystal was about 50 μm. A polycrystalline silicon film of such a size is satisfactory as a photovoltaic film for solar cells. Further, in order to form a PN junction, thermal diffusion of B 2 H 6 diluted with hydrogen gas was performed after the formation of the film.

【0028】このような多結晶シリコン膜2上に形成す
る略半球形状突起1は、第2の発明に基づいて製作され
た。図2は第2の発明を実施する製造装置の構成図を示
す。図中、4は減圧容器、5はシリコン微粉末、6はア
ルゴンガス、7はRFプラズマトーチ、8は熱プラズ
マ、9は半溶融状態シリコン微粉末、矢印Aは真空排気
方向を示す。この製造装置における略半球形状突起1の
形成方法の基本は、平均粒径が5μmのシリコン微粉末
を原料とするRFプラズマ溶射で、その溶射条件を最適
化することである。
The substantially hemispherical protrusion 1 formed on the polycrystalline silicon film 2 is manufactured according to the second invention. FIG. 2 shows a block diagram of a manufacturing apparatus for carrying out the second invention. In the figure, 4 is a decompression container, 5 is silicon fine powder, 6 is argon gas, 7 is RF plasma torch, 8 is thermal plasma, 9 is semi-molten silicon fine powder, and arrow A indicates the evacuation direction. The basis of the method of forming the substantially hemispherical protrusion 1 in this manufacturing apparatus is to optimize the spraying conditions by RF plasma spraying using silicon fine powder having an average particle diameter of 5 μm as a raw material.

【0029】溶射条件の一例として、前記多結晶シリコ
ン膜2が形成された石英ガラス基板3を減圧容器4内に
設置し、RFプラズマトーチ7にプラズマガスとしてア
ルゴンガス6を流量で7l/min導入し、減圧容器4の
圧力を20000Paとする。続いて前記RFプラズマトーチ
7に周波数が27kHz、出力が10kWのRF電力を印加する
と、前記アルゴンガス6の熱プラズマ8が発生する。し
かるのちに、前記シリコン微粉末5をRFプラズマトー
チ7に投入すると、シリコン微粉末5は前記熱プラズマ
8によって加熱されるために半溶融状態シリコン微粉末
9となる。このような軟化した半溶融状態シリコン微粉
末9を、前記多結晶シリコン膜2上に堆積させると、図
1に示すような略半球形状突起1が形成される。この略
半球形状突起1の高さは、0.6μm〜3.8μmであって、多
結晶シリコン膜2のほぼ前面に形成した。
As an example of thermal spraying conditions, the quartz glass substrate 3 on which the polycrystalline silicon film 2 is formed is placed in a decompression container 4, and an argon gas 6 as a plasma gas is introduced into the RF plasma torch 7 at a flow rate of 7 l / min. Then, the pressure in the decompression container 4 is set to 20000 Pa. Subsequently, when RF power having a frequency of 27 kHz and an output of 10 kW is applied to the RF plasma torch 7, the thermal plasma 8 of the argon gas 6 is generated. After that, when the silicon fine powder 5 is put into the RF plasma torch 7, the silicon fine powder 5 is heated by the thermal plasma 8 and becomes a semi-molten silicon fine powder 9. When such softened semi-molten silicon fine powder 9 is deposited on the polycrystalline silicon film 2, the substantially hemispherical projection 1 as shown in FIG. 1 is formed. The height of the substantially hemispherical protrusion 1 was 0.6 μm to 3.8 μm, and was formed almost on the front surface of the polycrystalline silicon film 2.

【0030】以上の操作で3cm角の多結晶シリコン太陽
電池を作製して、AM0の評価条件で特性を測定したと
ころ、17.4%の変換効率が得られた。
A 3 cm square polycrystalline silicon solar cell was produced by the above operation, and its characteristics were measured under the evaluation conditions of AM0. As a result, a conversion efficiency of 17.4% was obtained.

【0031】また、上記突起を形成する実施例で、RF
プラズマトーチ7へ印加するRF電力が過大であった
り、あるいはプラズマガスの流量が過多であると、突起
が偏平しすぎたり、いびつな形状となって、太陽電池用
の突起としては良好な形状のものを形成することが困難
となりやすい。これは、シリコン微粉末が加熱されすぎ
たり、あるいは加熱されたシリコン微粉末の速度が大き
くなりすぎるためである。
In the embodiment in which the protrusion is formed, RF is used.
If the RF power applied to the plasma torch 7 is too large or the flow rate of the plasma gas is too large, the projections will be too flat, or will be distorted, resulting in a good shape as a projection for a solar cell. It is easy to form things. This is because the silicon fine powder is heated too much, or the speed of the heated silicon fine powder becomes too high.

【0032】次に、図3は第3の発明を実施する製造装
置の構成図を示す。図中、10は多結晶シリコン基板、11
は水素ガスであり、その他、前記図2と同一部材には同
一符号を付し、その説明を省略する。
Next, FIG. 3 shows a block diagram of a manufacturing apparatus for carrying out the third invention. In the figure, 10 is a polycrystalline silicon substrate, 11
Is hydrogen gas, and the same members as those in FIG. 2 are denoted by the same reference numerals and the description thereof will be omitted.

【0033】本実施例では、光起電力基板として多結晶
シリコン基板を用いて、その基板上にシリコンからなる
突起を形成した。
In this example, a polycrystalline silicon substrate was used as the photovoltaic substrate, and the protrusions made of silicon were formed on the substrate.

【0034】シリコンの突起の形成は、活性水素原子を
含むRFプラズマ溶射法で行った。溶射条件の一例とし
て、前記多結晶シリコン基板10を減圧容器4内に設置
し、RFプラズマトーチ7にプラズマガスとして水素ガ
ス11を、流量で5l/minとアルゴンガス6を流量で3
l/minとを導入し、続いて前記RFプラズマトーチ7
に周波数が27kHz、出力が10kWのRF電力を印加する
と、前記水素とアルゴンとの混合ガスの熱プラズマ8が
発生する。しかるのちに、前記シリコン微粉末5をRF
プラズマトーチ7に投入すると、シリコン微粉末5は、
前記熱プラズマ8によって加熱されるために半溶融状態
シリコン微粉末9となる。このような軟化した半溶融状
態シリコン微粉末9を前記多結晶シリコン基板10上に堆
積させると、図1に示すような略半球形状突起1が形成
される。
The silicon protrusions were formed by RF plasma spraying containing active hydrogen atoms. As an example of thermal spraying conditions, the polycrystalline silicon substrate 10 is placed in a decompression container 4, and hydrogen gas 11 as a plasma gas in an RF plasma torch 7 at a flow rate of 5 l / min and an argon gas 6 at a flow rate of 3
1 / min and then the RF plasma torch 7
When RF power having a frequency of 27 kHz and an output of 10 kW is applied to the, a thermal plasma 8 of the mixed gas of hydrogen and argon is generated. After that, RF the silicon fine powder 5
When charged into the plasma torch 7, the silicon fine powder 5
Since it is heated by the thermal plasma 8, it becomes semi-molten silicon fine powder 9. When such softened semi-molten silicon fine powder 9 is deposited on the polycrystalline silicon substrate 10, a substantially hemispherical projection 1 as shown in FIG. 1 is formed.

【0035】本実施例では、前記突起の形成と同時に水
素ガス11を含んだ熱プラズマ8が多結晶シリコン基板10
に照射される。この熱プラズマ8中には、水素ガス11が
解離して発生した活性水素原子が多量に存在するので、
前記突起と基板の界面にダングリングボンドが存在して
いても、活性水素原子が強固に終端することができる。
In the present embodiment, the thermal plasma 8 containing hydrogen gas 11 is simultaneously formed on the polycrystalline silicon substrate 10 at the same time when the protrusions are formed.
Is irradiated. Since a large amount of active hydrogen atoms generated by dissociation of hydrogen gas 11 exist in this thermal plasma 8,
Even if a dangling bond is present at the interface between the protrusion and the substrate, active hydrogen atoms can be strongly terminated.

【0036】以上の操作で3cm角の多結晶シリコン太陽
電池を作製して、AM0の評価条件で特性を測定したと
ころ、17.9%の変換効率が得られた。
A 3 cm square polycrystalline silicon solar cell was produced by the above operation, and its characteristics were measured under the AM0 evaluation conditions. As a result, a conversion efficiency of 17.9% was obtained.

【0037】次に、図4は第4の発明を実施する製造装
置の構成図(a)と、製造された多結晶シリコン太陽電池
の構造例を示す図(b),(c)である。図中、12は基板送り
出し室、13は微粒子堆積室、14は微粒子生成室、15はシ
リコン電極、16はアーク放電、17は微粒子搬送管であ
る。18はアニール室、19は基板取り出し室である。その
他、前記図2および図3と同一部材には同一符号を付
し、その説明を省略する。
Next, FIG. 4 is a configuration diagram (a) of a manufacturing apparatus for carrying out the fourth invention and diagrams (b) and (c) showing an example of the structure of the manufactured polycrystalline silicon solar cell. In the figure, 12 is a substrate delivery chamber, 13 is a particle deposition chamber, 14 is a particle generation chamber, 15 is a silicon electrode, 16 is arc discharge, and 17 is a particle transfer tube. 18 is an annealing chamber, and 19 is a substrate take-out chamber. In addition, the same members as those in FIG. 2 and FIG.

【0038】本実施例では、光起電力基板として多結晶
シリコン基板を用いて、その基板上にシリコンからなる
突起を形成した。図4(a)はシリコンの結晶質微粒子の
生成と、多結晶シリコン基板上への前記微粒子の堆積
と、シリコン突起の形成との概略を示す。各工程の室
は、図示してはいないが、真空ポンプによって排気され
ている。
In this example, a polycrystalline silicon substrate was used as the photovoltaic substrate, and the protrusions made of silicon were formed on the substrate. FIG. 4 (a) shows an outline of the generation of crystalline fine particles of silicon, the deposition of the fine particles on a polycrystalline silicon substrate, and the formation of silicon protrusions. Although not shown, the chamber of each process is evacuated by a vacuum pump.

【0039】基板送り出し室12から多結晶シリコン基板
10が微粒子堆積室13へ搬送される。以下に、微粒子堆積
室13でのシリコン微粒子5の堆積過程を説明する。微粒
子生成室14には一対のシリコン電極15,15が対向して設
置されており、真空ポンプ(図示せず)によって真空排気
されている。この微粒子生成室14へアルゴンガス6を供
給し、所定の圧力に設定する。続いて前記シリコン電極
15,15間に交流電源(図示せず)から交流電力を印加して
アーク放電16を発生させることで生成した。
From the substrate delivery chamber 12 to a polycrystalline silicon substrate
10 is transferred to the particle deposition chamber 13. The deposition process of the silicon fine particles 5 in the fine particle deposition chamber 13 will be described below. A pair of silicon electrodes 15, 15 are installed to face each other in the particle generation chamber 14 and are evacuated by a vacuum pump (not shown). Argon gas 6 is supplied to the particle generation chamber 14 to set a predetermined pressure. Then the silicon electrode
It was generated by applying AC power from an AC power supply (not shown) between 15 and 15 to generate arc discharge 16.

【0040】シリコン微粒子5は、微粒子生成室14と微
粒子堆積室13とのガス圧力差によって、微粒子搬送管17
内を搬送されて、図4(b)に示すように多結晶シリコン
基板10上に球状に堆積する。
The silicon fine particles 5 are transferred to the fine particle transfer pipe 17 by the gas pressure difference between the fine particle generation chamber 14 and the fine particle deposition chamber 13.
It is transported inside and deposited spherically on the polycrystalline silicon substrate 10 as shown in FIG. 4 (b).

【0041】前記シリコン微粒子5が堆積した多結晶シ
リコン基板10は、次にアニール室18へ搬送される。本実
施例では、アニール方法は、高温水素プラズマでの加熱
を用いた。すなわち、RFプラズマトーチ7に水素ガス
11を導入し、熱プラズマ8を発生させて、この熱プラズ
マ8の熱で前記シリコン微粒子5を加熱するものであ
る。
The polycrystalline silicon substrate 10 on which the silicon fine particles 5 are deposited is then transferred to the annealing chamber 18. In this example, the annealing method used was heating with high-temperature hydrogen plasma. That is, hydrogen gas is applied to the RF plasma torch 7.
11 is introduced to generate the thermal plasma 8 and the silicon fine particles 5 are heated by the heat of the thermal plasma 8.

【0042】この熱プラズマは、太陽電池の特性に悪影
響を及ぼす不純物が問題とならない程度に少なく、また
熱エネルギーが大きい。そのために多結晶シリコン基板
10上に堆積したシリコン微粒子5を溶融し、図4(c)に
示すような太陽電池用として良好な形状の略半球形状シ
リコン突起1を形成するには適したものである。さら
に、水素ガスの熱プラズマ中には、活性水素原子が多量
に存在するために、形成された突起と基板との界面に残
りやすいダングリングボンドを終端し、高品質な突起を
有する多結晶シリコン基板を製造することができるもの
である。
This thermal plasma has a large amount of impurities, which does not pose a problem with impurities that adversely affect the characteristics of the solar cell, and has a large thermal energy. For that purpose polycrystalline silicon substrate
It is suitable for melting the silicon fine particles 5 deposited on the surface 10 to form a substantially hemispherical silicon protrusion 1 having a good shape for a solar cell as shown in FIG. 4 (c). Furthermore, since a large amount of active hydrogen atoms are present in the thermal plasma of hydrogen gas, dangling bonds that tend to remain at the interface between the formed protrusion and the substrate are terminated, and polycrystalline silicon having a high-quality protrusion is formed. A substrate can be manufactured.

【0043】上記製造工程に従って、各製造工程での条
件を選定して多結晶シリコン太陽電池を製造する際の製
造条件例と、その結果、製造した太陽電池の特性を説明
する。
An example of manufacturing conditions for manufacturing a polycrystalline silicon solar cell by selecting the conditions in each manufacturing step according to the above manufacturing steps, and the characteristics of the manufactured solar cell will be described below.

【0044】シリコン微粒子5の生成は、微粒子生成室
14のアルゴンガス6の圧力を40Torr、シリコン電極15,1
5でのアーク電圧を60V、電流を130Aとし、また、微粒
子堆積室13の雰囲気は、微粒子生成室14から流入するア
ルゴンガス6によって、アルゴンガス圧力で1Torrとし
た。その結果、生成したシリコン微粒子5は、粒径が約
0.5〜2.8μmに分布し、平均粒径が約1.6μmのものであ
った。
The silicon fine particles 5 are generated in the fine particle generation chamber.
The pressure of the argon gas 6 of 14 is 40 Torr, the silicon electrode 15,1
The arc voltage at 5 was set to 60 V, the current was set to 130 A, and the atmosphere in the particle deposition chamber 13 was set to 1 Torr by argon gas 6 flowing from the particle generation chamber 14. As a result, the generated silicon fine particles 5 have a particle size of about
The average particle size was about 1.6 μm with a distribution of 0.5 to 2.8 μm.

【0045】アニール室18での水素ガス11の熱プラズマ
8の発生条件は、アニール室18の圧力を0.1Torr、水素
ガス11の流量を2l/min、熱プラズマ8の発生電力を5
0kWとした。
The conditions for generating the thermal plasma 8 of the hydrogen gas 11 in the annealing chamber 18 are as follows: the pressure of the annealing chamber 18 is 0.1 Torr, the flow rate of the hydrogen gas 11 is 2 l / min, and the generated power of the thermal plasma 8 is 5 Torr.
It was set to 0kW.

【0046】図4(c)はその結果できた表面に突起が形
成された多結晶シリコン基板である。 さらに、この製
膜後に前記多結晶シリコン基板は、イオンドーピング
法、あるいは熱拡散法等の後工程でP型、あるいはN型
等の半導体薄膜とされる。
FIG. 4 (c) shows the resulting polycrystalline silicon substrate having protrusions formed on its surface. Further, after this film formation, the polycrystalline silicon substrate is made into a P-type or N-type semiconductor thin film in a subsequent step such as an ion doping method or a thermal diffusion method.

【0047】以上の操作で3cm角の多結晶シリコン太陽
電池を作製して、AM0の評価条件で特性を測定したと
ころ、17.5%の変換効率が得られた。
A 3 cm square polycrystalline silicon solar cell was produced by the above operation, and its characteristics were measured under the evaluation condition of AM0. As a result, a conversion efficiency of 17.5% was obtained.

【0048】[0048]

【発明の効果】以上説明したように、本発明は、多結晶
薄膜および多結晶基板の上に太陽電池用として良好な形
状の突起が形成できるものであって、優れた変換効率で
低コストな、しかも製造工程が簡便な太陽電池を提供す
る。
As described above, according to the present invention, a projection having a good shape for a solar cell can be formed on a polycrystalline thin film and a polycrystalline substrate, which has excellent conversion efficiency and low cost. Moreover, a solar cell having a simple manufacturing process is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の発明の一実施例における多結晶
シリコン太陽電池の構造例を示す図である。
FIG. 1 is a diagram showing a structural example of a polycrystalline silicon solar cell in one example of the first invention of the present invention.

【図2】本発明の第2の発明を実施する製造装置の構成
図である。
FIG. 2 is a configuration diagram of a manufacturing apparatus for carrying out a second invention of the present invention.

【図3】本発明の第3の発明を実施する製造装置の構成
図である。
FIG. 3 is a configuration diagram of a manufacturing apparatus for carrying out a third invention of the present invention.

【図4】本発明の第4の発明を実施する製造装置の構成
図と、多結晶シリコン太陽電池の構造例を示す図であ
る。
FIG. 4 is a configuration diagram of a manufacturing apparatus for carrying out a fourth invention of the present invention and a diagram showing a structural example of a polycrystalline silicon solar cell.

【図5】従来の単結晶シリコン太陽電池の表面を粗面化
した斜視断面図である。
FIG. 5 is a perspective cross-sectional view in which the surface of a conventional single crystal silicon solar cell is roughened.

【図6】従来の多結晶シリコン太陽電池の表面を粗面化
した斜視断面図である。
FIG. 6 is a perspective cross-sectional view in which the surface of a conventional polycrystalline silicon solar cell is roughened.

【符号の説明】[Explanation of symbols]

1…略半球形状の突起、 2…多結晶シリコン膜、 3
…石英ガラス基板、 4…減圧容器、 5…シリコン微
粉末、 8…熱プラズマ、 9…半溶融状態シリコン微
粉末、 10…多結晶シリコン基板、 11…水素ガス、
12…基板送り出し室、 13…微粒子堆積室、 14…微粒
子生成室、 15…シリコン電極、 16…アーク放電、
17…微粒子搬送管、 18…アニール室、 19…基板取り
出し室。
1 ... Approximately hemispherical protrusion, 2 ... Polycrystalline silicon film, 3
... quartz glass substrate, 4 ... decompression container, 5 ... silicon fine powder, 8 ... thermal plasma, 9 ... semi-molten state silicon fine powder, 10 ... polycrystalline silicon substrate, 11 ... hydrogen gas,
12 ... Substrate delivery chamber, 13 ... Fine particle deposition chamber, 14 ... Fine particle generation chamber, 15 ... Silicon electrode, 16 ... Arc discharge,
17 ... Particle transfer tube, 18 ... Annealing room, 19 ... Substrate removal room.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 支持基板上に堆積した光起電力膜上、も
しくは光起電力基板上に前記光起電力膜、あるいは前記
基板の組成材料からなる半球形状、もしくは略半球形状
の高さが0.1μmないし10μmである突起を複数配したこ
とを特徴とする太陽電池。
1. A hemispherical shape or a substantially hemispherical shape made of the composition material of the photovoltaic film or the substrate on the photovoltaic film deposited on the supporting substrate or on the photovoltaic substrate has a height of 0.1. A solar cell having a plurality of projections of μm to 10 μm.
【請求項2】 前記半球形状、もしくは略半球形状の突
起が、光起電力材料の微粒子で形成されたことを特徴と
する請求項1記載の太陽電池。
2. The solar cell according to claim 1, wherein the hemispherical or substantially hemispherical projections are formed of fine particles of a photovoltaic material.
【請求項3】 前記支持基板上に堆積した光起電力膜
上、もしくは光起電力基板上に形成した微粒子によって
形成された突起と、前記光起電力膜、もしくは前記基板
との界面の原子のダングリングボンドを水素によって終
端したことを特徴とする請求項1記載の太陽電池。
3. A projection formed by fine particles formed on the photovoltaic film deposited on the supporting substrate or on the photovoltaic substrate, and atoms at the interface between the photovoltaic film and the substrate. The solar cell according to claim 1, wherein the dangling bond is terminated with hydrogen.
【請求項4】 前記支持基板上に光起電力膜を形成する
工程、もしくは光起電力基板を形成する工程と、前記光
起電力膜上、もしくは基板上に光起電力材料の微粒子を
配する工程からなり、前記微粒子の堆積と同時に前記光
起電力膜、もしくは基板を前記微粒子の融点近傍に加熱
すること、あるいは前記微粒子を微粒子の融点近傍に加
熱することを特徴とする太陽電池の製造方法。
4. A step of forming a photovoltaic film on the supporting substrate, or a step of forming a photovoltaic substrate, and disposing fine particles of a photovoltaic material on the photovoltaic film or on the substrate. And a step of heating the photovoltaic film or the substrate to a temperature near the melting point of the particles, or heating the particles to a temperature near the melting point of the particles. .
【請求項5】 前記支持基板上に光起電力膜を形成する
工程、もしくは光起電力基板を形成する工程と、前記光
起電力膜上、もしくは基板上に光起電力材料の微粒子を
配する工程からなり、前記微粒子の堆積と同時に活性水
素原子を前記光起電力膜、もしくは基板の表面に照射し
てなることを特徴とする太陽電池の製造方法。
5. A step of forming a photovoltaic film on the support substrate, or a step of forming a photovoltaic substrate, and disposing fine particles of a photovoltaic material on the photovoltaic film or on the substrate. A method for manufacturing a solar cell, comprising the steps of: irradiating the surface of the photovoltaic film or the substrate with active hydrogen atoms simultaneously with the deposition of the fine particles.
【請求項6】 不活性ガス雰囲気中、もしくは水素ガス
雰囲気中で光起電力材料の微粒子を生成する工程と、前
記微粒子を前記支持基板上に形成した光起電力膜上、も
しくは光起電力基板上に配してその表面粗さを0.1μmな
いし10μmとする工程からなることを特徴とする太陽電
池の製造方法。
6. A step of producing fine particles of a photovoltaic material in an inert gas atmosphere or a hydrogen gas atmosphere, and on a photovoltaic film on which the fine particles are formed on the supporting substrate, or a photovoltaic substrate. A method for manufacturing a solar cell, which comprises a step of disposing the surface layer on the surface of the solar cell so as to have a surface roughness of 0.1 μm to 10 μm.
JP5284995A 1993-11-15 1993-11-15 Solar cell and its manufacture Pending JPH07142749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5284995A JPH07142749A (en) 1993-11-15 1993-11-15 Solar cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5284995A JPH07142749A (en) 1993-11-15 1993-11-15 Solar cell and its manufacture

Publications (1)

Publication Number Publication Date
JPH07142749A true JPH07142749A (en) 1995-06-02

Family

ID=17685785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5284995A Pending JPH07142749A (en) 1993-11-15 1993-11-15 Solar cell and its manufacture

Country Status (1)

Country Link
JP (1) JPH07142749A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020010005A (en) * 2000-07-28 2002-02-02 준 신 이 Poly-Si solar cell fabrication method by using a self-aligned grain boundary electrode
JP2003332605A (en) * 2002-05-15 2003-11-21 Sharp Corp Surface roughening method of semiconductor substrate and solar battery
JP2004356163A (en) * 2003-05-27 2004-12-16 Toyota Central Res & Dev Lab Inc Silicon-based thin film, method of manufacturing the same and photoelectric conversion element
JP2006093256A (en) * 2004-09-22 2006-04-06 Jsr Corp Silicon film and its formation method
US7026542B2 (en) * 2001-12-13 2006-04-11 Asahi Glass Company, Limited Cover glass for a solar battery, a method for producing the cover glass and a solar battery module using the cover glass
KR100545703B1 (en) * 1996-12-30 2006-06-13 주식회사 하이닉스반도체 Semiconductor device manufacturing method
JP2007221112A (en) * 2006-01-18 2007-08-30 Semiconductor Energy Lab Co Ltd Photoelectric converter and its manufacturing method
WO2008147486A2 (en) * 2007-04-02 2008-12-04 The University Of Utah Research Foundation Methods of fabricating nanostructured zno electrodes for efficient dye sensitized solar cells
US8729386B2 (en) 2006-01-18 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100545703B1 (en) * 1996-12-30 2006-06-13 주식회사 하이닉스반도체 Semiconductor device manufacturing method
KR20020010005A (en) * 2000-07-28 2002-02-02 준 신 이 Poly-Si solar cell fabrication method by using a self-aligned grain boundary electrode
US7026542B2 (en) * 2001-12-13 2006-04-11 Asahi Glass Company, Limited Cover glass for a solar battery, a method for producing the cover glass and a solar battery module using the cover glass
JP4518731B2 (en) * 2002-05-15 2010-08-04 シャープ株式会社 Method for forming irregularities on the surface of a polycrystalline silicon substrate
JP2003332605A (en) * 2002-05-15 2003-11-21 Sharp Corp Surface roughening method of semiconductor substrate and solar battery
JP2004356163A (en) * 2003-05-27 2004-12-16 Toyota Central Res & Dev Lab Inc Silicon-based thin film, method of manufacturing the same and photoelectric conversion element
JP2006093256A (en) * 2004-09-22 2006-04-06 Jsr Corp Silicon film and its formation method
JP4617795B2 (en) * 2004-09-22 2011-01-26 Jsr株式会社 Method for forming silicon film
JP2007221112A (en) * 2006-01-18 2007-08-30 Semiconductor Energy Lab Co Ltd Photoelectric converter and its manufacturing method
US8729386B2 (en) 2006-01-18 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2008147486A2 (en) * 2007-04-02 2008-12-04 The University Of Utah Research Foundation Methods of fabricating nanostructured zno electrodes for efficient dye sensitized solar cells
WO2008147486A3 (en) * 2007-04-02 2009-07-09 Univ Utah Res Found Methods of fabricating nanostructured zno electrodes for efficient dye sensitized solar cells
US7804149B2 (en) 2007-04-02 2010-09-28 The University Of Utah Research Foundation Nanostructured ZnO electrodes for efficient dye sensitized solar cells
US7972900B2 (en) 2007-04-02 2011-07-05 University Of Utah Research Foundation Methods of fabricating nanostructured ZnO electrodes for efficient dye sensitized solar cells

Similar Documents

Publication Publication Date Title
JP3152328B2 (en) Polycrystalline silicon device
US20080188062A1 (en) Method of forming microcrystalline silicon film
JP2004235274A (en) Polycrystalline silicon substrate and method of roughing its surface
TWI445197B (en) Apparatus and method for producing photovoltaic element, and photovoltaic element
US20100258169A1 (en) Pulsed plasma deposition for forming microcrystalline silicon layer for solar applications
KR100677374B1 (en) Manufacturing method of porous solar cells using thin silicon wafer
JP4183688B2 (en) Method for manufacturing photoelectric conversion device and photoelectric conversion device
JPH07142749A (en) Solar cell and its manufacture
US20150206990A1 (en) Solar cell production method, and solar cell produced by same production method
JP4467218B2 (en) Surface roughening method for solar cell substrates
KR101447162B1 (en) Plasma processing apparatus for film deposition and deposition method of micro crystalline silicon layer using the same
JP2002076404A (en) Surface roughening method of silicon substrate
CN116864548A (en) P-type back junction TOPCON battery and preparation method thereof
JPH0992860A (en) Photovoltaic element
JP2002280590A (en) Multi-junction type thin-film solar battery and method for manufacturing the same
JP3697199B2 (en) Solar cell manufacturing method and solar cell
CN113066896A (en) Preparation method of solar cell emitter junction
JPH10313125A (en) Formation of thin film
JP3898599B2 (en) Manufacturing method of solar cell
JP2005072388A (en) Method for manufacturing solar battery element
JP3898621B2 (en) Manufacturing method of solar cell
JPH07263731A (en) Polycrystalline silicon device
JP3513504B2 (en) Plasma CVD apparatus, photoelectric conversion element, and method of manufacturing photoelectric conversion element
JPH02382A (en) Metallic substrate for solar cell, manufacture thereof and solar cell using said metallic substrate
JPH03101274A (en) Manufacture of amorphous solar cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20070813

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090813

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090813

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110813

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110813

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120813

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120813

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130813

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 14

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130813

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250