KR20020003742A - Anode materials of lithium secondary batteries - Google Patents

Anode materials of lithium secondary batteries Download PDF

Info

Publication number
KR20020003742A
KR20020003742A KR1020000037629A KR20000037629A KR20020003742A KR 20020003742 A KR20020003742 A KR 20020003742A KR 1020000037629 A KR1020000037629 A KR 1020000037629A KR 20000037629 A KR20000037629 A KR 20000037629A KR 20020003742 A KR20020003742 A KR 20020003742A
Authority
KR
South Korea
Prior art keywords
powder
lithium
lithium secondary
secondary battery
negative electrode
Prior art date
Application number
KR1020000037629A
Other languages
Korean (ko)
Inventor
손헌준
정구진
김영욱
강탁
주경희
Original Assignee
손헌준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손헌준 filed Critical 손헌준
Priority to KR1020000037629A priority Critical patent/KR20020003742A/en
Publication of KR20020003742A publication Critical patent/KR20020003742A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: Provided is a cathode material for a lithium secondary battery, which is produced by using metal powder capable of alloying lithium with ceramic powder, has mechanical stability, and can improve the cycle lifetime of the lithium secondary battery. CONSTITUTION: The cathode material is produced by compounding 50-95vol% of the metal powder capable of alloy with lithium and 5-50vol% of the ceramic powder, wherein the metal powder is one selected from the group consisting of Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, B, and Te and the ceramic powder is one selected from the group consisting of Al2O3, SiO2, Li2O, CuO, Fe2O3, Nb2O5, MgO, SiC, Al4C3, TiC, Fe3C, Co3C, Ni3C, Si3N4, BN, AlN, GaN, and AlB2.

Description

리튬이차전지의 음극물질{ANODE MATERIALS OF LITHIUM SECONDARY BATTERIES}Anode material of lithium secondary battery {ANODE MATERIALS OF LITHIUM SECONDARY BATTERIES}

본 발명은 리튬이차전지의 음극물질에 관한 것으로서, 더 상세하게는 세라믹 또는 금속간화합물 등의 강화제를 리튬과 합금이 가능한 금속분말 속에 분산시킨 복합재료를 합성한 음극물질에 의해 리튬이차전지용 리튬합금 음극에서 가장 중요시되는 기계적 안정성을 확보하고 리튬이차전지의 싸이클 수명을 향상시킬 수 있는 리튬이차전지의 음극물질에 관한 것이다.The present invention relates to a negative electrode material of a lithium secondary battery, and more particularly, to a lithium alloy for a lithium secondary battery by a negative electrode material synthesized with a composite material obtained by dispersing a reinforcing agent such as a ceramic or an intermetallic compound in a metal powder capable of alloying with lithium. The present invention relates to a negative electrode material of a lithium secondary battery, which may secure mechanical stability, which is most important in a negative electrode, and may improve cycle life of a lithium secondary battery.

휴대전화, 노트북 컴퓨터 등 휴대용 무선 정보통신기기의 급속한 발달에 따라 고에너지 밀도를 갖는 휴대용 전원으로서 리튬이차전지는 큰 주목을 끌고 있다.With the rapid development of portable wireless information communication devices such as mobile phones and notebook computers, lithium secondary batteries have attracted great attention as portable power sources having high energy density.

리튬이차전지의 음극재료로서 검토되는 물질 중 리튬금속은 다른 어떠한 재료의 경우보다 에너지밀도가 3860 mAh/g로 높기 때문에 리튬을 음극으로 갖는 전지의 성능이 가장 우수함을 예상할 수 있다.Among the materials considered as a negative electrode material of a lithium secondary battery, lithium metal has a higher energy density of 3860 mAh / g than that of any other material, and thus, a battery having lithium as a negative electrode can be expected to have the best performance.

하지만 충전시 수지상 성장에 의한 안전성 문제와 낮은 충방전 효율 등의 문제점들이 극복되지 못하고 있는 실정이다.However, problems such as safety problems due to dendritic growth during charging and low charge and discharge efficiency have not been overcome.

이러한 고용량을 나타내면서 이를 대치할 수 있는 물질로서 리튬합금의 연구가 현재 전 세계적으로 진행되고 있다.The research of lithium alloys as a material that can replace these with high capacity is currently underway around the world.

리튬합금 물질은 카본음극 물질의 제한된 용량보다 더 높은 무게당, 부피당 충방전 용량을 구현할 수 있으며, 그 외에도 높은 충방전 전류에도 사용이 가능한 장점과 높은 충방전 효율을 나타낸다.Lithium alloy material can realize the charge and discharge capacity per weight, volume per volume higher than the limited capacity of the carbon anode material, and also has the advantage that can be used for high charge and discharge current and high charge and discharge efficiency.

하지만 충방전시 상변화로 인한 부피변화가 발생, 이로 인해 발생되는 응력이 활물질의 파괴를 일으켜 싸이클에 따른 용량 감소의 큰 문제점을 보이며 이러한 전극의 기계적 불안정성 문제를 극복하고자 현재 전 세계적으로 금속간화합물, 전극 활물질의 초미립화, 나노복합물질의 개발 등을 통한 싸이클 성능 향상에 대한 연구가 활발히 이루어지고 있다.However, the volume change occurs due to the phase change during charge and discharge, and the stress caused by this causes the destruction of the active material, which shows a big problem of the capacity reduction due to the cycle. In recent years, research has been actively conducted to improve cycle performance through ultrafine atomization of electrode active materials and development of nanocomposites.

리튬이차전지계의 음극용으로 이용되는 리튬합금의 가장 큰 문제점은 충방전시 리튬합금의 부피변화로 인한 파괴현상과 이로 인한 싸이클에 따른 용량감소 현상이라 할 수 있다.The biggest problem of the lithium alloy used for the negative electrode of the lithium secondary battery system may be a breakdown phenomenon due to the volume change of the lithium alloy during charging and discharging and a capacity reduction phenomenon due to the cycle thereof.

이러한 문제점을 극복하고자 하는 연구 중, 리튬과 반응하는 물질(active phase)에 리튬과 반응하지 않는 비반응 물질(inactive phase)을 첨가, 복합물질을 합성하여 합금반응에 있어 나타나는 부피변화에 의한 전극파괴 현상을 억제할 수 있는 반응물질/비반응물질로 구성된 초미립복합 음극물질 개발에 대한 연구가 한 주류를 차지하고 있으나 아직까지 그 향상된 특성의 원인 및 특성향상 기구의 해석 등이 모호한 상태이다.During the research to overcome this problem, electrode destruction by volume change in alloy reaction by synthesizing composite material by adding inactive phase which does not react with lithium to active phase with lithium Research into the development of ultrafine composite anodes composed of reactants / non-reactants that can suppress phenomena occupies a mainstream, but the cause of the improved characteristics and the interpretation of the mechanism for improvement are still vague.

본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로서, 리튬이차전지계의 음극으로 이용되는 리튬합금재료의 기계적 강도 특성을 향상시켜 싸이클 수명이 향상된 고용량 전지를 구현할 수 있는 리튬이차전지의 음극물질을 제공하는데 그 목적이 있는 것이다.The present invention has been made to solve the above-described problems, and to improve the mechanical strength characteristics of the lithium alloy material used as a negative electrode of the lithium secondary battery system to improve the cycle life of the lithium secondary battery negative electrode material The purpose is to provide.

상술한 목적을 달성하기 위하여, 본 발명은 리튬과 합금이 가능한 금속분말(Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, B, Te)중 어느 하나의 분말과 세라믹 분말(Al2O3, SiO2, Li2O, CuO, Fe2O3, Nb2O5, MgO, SiC, Al4C3, TiC, Fe3C, Co3C Ni3C, Si3N4, BN, AlN, GaN, AlB2)중 어느 하나의 분말을 복합한 것을 특징으로 하는 리튬이차전지의 음극물질을 제공하고자 한다.In order to achieve the above object, the present invention is a metal powder capable of alloying with lithium (Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca Ceramic powder (Al 2 O 3 , SiO 2 , Li 2 O, CuO, Fe 2 O 3 , Nb 2 O 5 , MgO, SiC, Al 4 C 3 , TiC, Fe) 3 C, Co 3 C Ni 3 C, Si 3 N 4 , BN, AlN, GaN, AlB 2 ) To provide a negative electrode material of a lithium secondary battery characterized in that the composite of any one of the powders.

도 1은 본 발명의 일실시예 따른 기계적 합성방법을 통한 Al(80 vol%)과 SiC(20 vol%)간 음극물질의 싸이클 특성도,1 is a cycle characteristic diagram of a negative electrode material between Al (80 vol%) and SiC (20 vol%) through a mechanical synthesis method according to an embodiment of the present invention,

도 2는 본 발명의 다른 실시예에 따른 기계적 합성방법을 통한 Al(80 vol%)과 Al2O3(20 vol%)간 음극물질의 싸이클 특성도,2 is a cycle characteristic diagram of the anode material between Al (80 vol%) and Al 2 O 3 (20 vol%) through a mechanical synthesis method according to another embodiment of the present invention,

도 3은 본 발명의 또 다른 실시예에 따른 기계적 합성방법과 열처리를 통한 Al과 Al6Mn간 음극물질의 싸이클 특성도.3 is a cycle characteristic diagram of the anode material between Al and Al 6 Mn through a mechanical synthesis method and heat treatment according to another embodiment of the present invention.

이하 본 발명을 첨부된 도면 도 1 내지 도 3을 참고로 하여 설명하면 다음과 같다.Hereinafter, the present invention will be described with reference to the accompanying drawings, FIGS. 1 to 3.

도 1은 본 발명의 일실시예 따른 기계적 합성방법을 통한 Al(80 vol%)과 SiC(20 vol%)간 음극물질의 싸이클 특성도이고, 도 2는 본 발명의 다른 실시예에 따른 기계적 합성방법을 통한 Al(80 vol%)과 Al2O3(20 vol%)간 음극물질의 싸이클 특성도이며, 도 3은 본 발명의 또 다른 실시예에 따른 기계적 합성방법과 열처리를 통한 Al과 Al6Mn간 음극물질의 싸이클 특성도이다.1 is a cycle characteristic diagram of a cathode material between Al (80 vol%) and SiC (20 vol%) through a mechanical synthesis method according to an embodiment of the present invention, Figure 2 is a mechanical synthesis according to another embodiment of the present invention Cyclic characteristics of the anode material between Al (80 vol%) and Al 2 O 3 (20 vol%) through the method, Figure 3 is Al and Al through a mechanical synthesis method and heat treatment according to another embodiment of the present invention This is a cycle characteristic diagram of a negative electrode material between 6 Mn.

먼저 본 발명의 기본적인 구성을 살펴보면, 리튬과 합금이 가능한 금속분말(Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, B, Te)중 어느 하나의 분말과 세라믹 분말(Al2O3, SiO2, Li2O, CuO, Fe2O3, Nb2O5, MgO, SiC, Al4C3, TiC, Fe3C, Co3C Ni3C, Si3N4, BN, AlN, GaN, AlB2)중 어느 하나의 분말을 복합한 것을 특징으로 한다.First, the basic configuration of the present invention, a metal powder capable of alloying with lithium (Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, B Ceramic powder (Al 2 O 3 , SiO 2 , Li 2 O, CuO, Fe 2 O 3 , Nb 2 O 5 , MgO, SiC, Al 4 C 3 , TiC, Fe 3 C , Co 3 C Ni 3 C, Si 3 N 4 , BN, AlN, GaN, AlB 2 ) It is characterized in that any one of the powders are combined.

이하 실시예를 통하여 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the following examples.

단, 하기의 실시예는 본 발명의 예시일 뿐, 본 발명을 실시예 범위로만 제한하는 것은 아니다.However, the following examples are only examples of the present invention, and the present invention is not limited only to the examples.

<실시예 1><Example 1>

리튬과 합금이 가능한 금속분말(Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, B, Te)중 어느 하나의 분말과 세라믹 분말(Al2O3, SiO2, Li2O, CuO, Fe2O3, Nb2O5, MgO, SiC, Al4C3, TiC, Fe3C, Co3C Ni3C, Si3N4, BN, AlN, GaN, AlB2)중 어느 하나의 분말을 복합하였다.Powder of any one of metal powder (Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, B, Te) Ceramic powder (Al 2 O 3 , SiO 2 , Li 2 O, CuO, Fe 2 O 3 , Nb 2 O 5 , MgO, SiC, Al 4 C 3 , TiC, Fe 3 C, Co 3 C Ni 3 C, Si 3 N 4 , BN, AlN, GaN, AlB 2 ) powder of any one of the composite.

상기 분말의 복합은 리튬이차전지의 음극물질리튬과 합금이 가능한 금속분말(Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, B, Te)중 어느 하나의 분말 50-95 vol%에 세라믹 분말(Al2O3, SiO2, Li2O, CuO, Fe2O3, Nb2O5, MgO, SiC, Al4C3, TiC, Fe3C, Co3C Ni3C, Si3N4, BN, AlN, GaN, AlB2)중 어느 하나의 분말 5∼50 vol%를 섞은 후, 지름 5.5cm, 높이 9cm의 SKD11 재질의 원통형 바이얼에 3/8 인치 크기의 볼과 함께 잠입하여 볼밀기기(일명:vibrating mill)에 장착시킨 후 분당 600-1000회의 회전속도로 기계적 합성을 수행하여 이루어 졌다.The composite of the powder is a metal powder (Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, which can be alloyed with lithium secondary battery negative electrode material) Ceramic powder (Al 2 O 3 , SiO 2 , Li 2 O, CuO, Fe 2 O 3 , Nb 2 O 5 , MgO, SiC, Al 4 C 3 , TiC, Fe 3 C, Co 3 C Ni 3 C, Si 3 N 4 , BN, AlN, GaN, AlB 2 ) After mixing 5-50 vol% of any powder, 5.5cm in diameter, 9cm in height It was made by inserting a 3/8 inch ball into a cylindrical vial made of SKD11, mounted on a ball mill (aka vibrating mill), and then performing mechanical synthesis at a rotation speed of 600-1000 revolutions per minute.

볼과 분말과의 무게비는 16∼24:1로 유지하였으며 산소의 영향을 최대한 억제하기 위해서 아르곤 가스 분위기의 글러브 박스(glove box) 내에서 준비하였다.The weight ratio between the ball and the powder was maintained at 16 to 24: 1 and prepared in a glove box under argon gas atmosphere to suppress the effect of oxygen as much as possible.

일예로서 리튬과 합금이 가능한 Al과 리튬과 반응하지 않고 강화제 역할을 하는 세라믹 물질 중 SiC간의 복합물질을 80 vol% : 20 vol%로 섞은 후, 지름 5.5cm, 높이 9cm의 SKD11 재질의 원통형 바이얼에 3/8 인치 크기의 볼과 함께 잠입하여 볼밀기기(일명:vibrating mill)에 장착시킨 후 분당 800회의 회전속도로 기계적 합성을 수행하였다.For example, after mixing 80 vol%: 20 vol% of a composite material between Al capable of alloying with lithium and SiC among ceramic materials that do not react with lithium as a reinforcing agent, a cylindrical vial of SKD11 material having a diameter of 5.5 cm and a height of 9 cm It was infiltrated with a 3/8 inch ball, mounted on a ball mill (aka vibrating mill), and mechanical synthesis was performed at 800 revolutions per minute.

이때 볼과 분말과의 무게비는 20:1로 유지하였으며 산소의 영향을 최대한 억제하기 위해서 아르곤 가스 분위기의 글러브(glove box)내에서 준비하였다.At this time, the weight ratio of the ball and the powder was maintained at 20: 1 and prepared in a glove box of argon gas atmosphere to suppress the influence of oxygen as much as possible.

도 1은 상기의 기계적 합성방법을 통하여 음극물질을 제조한 후, 리튬이차전지의 전극물질로서 그 특성을 확인한 실험 결과로서 Al 복합물질 전극이 단순히 Al을 사용하는 경우보다 향상된 싸이클 수명을 보여주고 있음을 알 수 있다.FIG. 1 shows the improved cycle life of the Al composite electrode as compared to the case of simply using Al as an experimental result of fabricating a negative electrode material through the mechanical synthesis method and confirming its characteristics as an electrode material of a lithium secondary battery. It can be seen.

다른 예로서 리튬과 합금이 가능한 Al과 리튬과 반응하지 않고 강화제 역할을 하는 세라믹 물질 중 Al2O3간의 복합물질을 80 vol% : 20 vol%로 섞은 후, 지름 5.5cm, 높이 9cm의 SKD11 재질의 원통형 바이얼에 3/8 인치 크기의 볼과 함께 잠입하여 볼밀기기(일명:vibrating mill)에 장착시킨 후 분당 800회의 회전속도로 기계적 합성을 수행하였다.As another example, SKD11 material with a diameter of 5.5cm and a height of 9cm was mixed after mixing a composite material between Al capable of alloying with lithium and Al 2 O 3 in a ceramic material that does not react with lithium and Al 2 O 3 as a reinforcing material. It was immersed with a 3/8 inch size ball in a cylindrical vial of and mounted on a ball mill (aka vibrating mill), and then mechanical synthesis was performed at a speed of 800 revolutions per minute.

이때 볼과 분말과의 무게비는 20:1로 유지하였으며 산소의 영향을 최대한 억제하기 위해서 아르곤 가스 분위기의 글러브(glove box)내에서 준비하였다.At this time, the weight ratio of the ball and the powder was maintained at 20: 1 and prepared in a glove box of argon gas atmosphere to suppress the influence of oxygen as much as possible.

도 2는 상기의 기계적 합성방법을 통하여 음극물질을 제조한 후, 리튬이차전지의 전극물질로서 그 특성을 확인한 실험 결과로서 Al 복합물질 전극이 단순히 Al을 사용하는 경우보다 향상된 싸이클 수명을 보여주고 있음을 역시 알 수 있다.FIG. 2 shows the improved cycle life of the Al composite electrode as compared to the case of simply using Al as an experimental result of fabricating a negative electrode material through the mechanical synthesis method and confirming its characteristics as an electrode material of a lithium secondary battery. It can also be seen.

<실시예 2><Example 2>

본 발명의 다른 예는 리튬과 합금이 가능한 금속분말(Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, B, Te)중 어느 하나의 분말과 금속간화합물(Al3Ti, Al3Fe, Al3Nb, Al6Mn, Al3Cr, Al3Co, Al3Ni, Al2Cu, Al4Cu9, Al3Zr, TiSi2, CrSi2, MoSi2)중 어느 하나의 화합물을 복합하는 것을 특징으로 한다.Another example of the present invention is a metal powder capable of alloying with lithium (Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, B, Te) Any one of powders and intermetallic compounds (Al 3 Ti, Al 3 Fe, Al 3 Nb, Al 6 Mn, Al 3 Cr, Al 3 Co, Al 3 Ni, Al 2 Cu, Al 4 Cu 9 , Al 3 Zr , TiSi 2 , CrSi 2 , MoSi 2 ) compound.

상기 분말과 화합물간의 복합은 리튬과 합금이 가능한 금속분말(Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, B, Te)중 어느 하나의 분말 50-95 vol%에 금속간화합물(Al3Ti, Al3Fe, Al3Nb, Al6Mn, Al3Cr, Al3Co, Al3Ni, Al2Cu, Al4Cu9, Al3Zr, TiSi2, CrSi2, MoSi2)중 어느 하나의 화합물 5∼50 vol%를 섞은 분말과 볼을 중량비 1:16∼24로 유지하여 바이얼에 잠입한 상태에서, 볼밀기기에 장착시킨 후 분당 600∼1000회의 회전속도로 기계적 합성을 수행한 다음, 아르곤 가스 분위기의 300∼600℃ 온도에서 10분∼24시간의 열처리를 행하여 이루어진다.The composite between the powder and the compound is a metal powder capable of alloying with lithium (Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, B, Te Intermetallic compounds (Al 3 Ti, Al 3 Fe, Al 3 Nb, Al 6 Mn, Al 3 Cr, Al 3 Co, Al 3 Ni, Al 2 Cu, Al 4 ) in 50-95 vol% of either powder Ball mill in a state in which the powder and the ball mixed with 5 to 50 vol% of any one compound of Cu 9 , Al 3 Zr, TiSi 2 , CrSi 2 , and MoSi 2 are kept in a weight ratio of 1:16 to 24 and infiltrated into a vial. After mounting to the apparatus, mechanical synthesis is carried out at a rotational speed of 600 to 1000 times per minute, followed by heat treatment for 10 minutes to 24 hours at a temperature of 300 to 600 ° C. in an argon gas atmosphere.

도 3은 Al과 Al6Mn간의 복합재료를 리튬전지의 음극으로 그 특성을 확인한 그림으로서 Al과 Mn 분말간의 기계적 합성을 통하여 Mn안에 Al을 충분히 고용시킨 후 500℃에서 12시간동안 아르곤 가스 분위기 하에서 열처리를 수행하여 Al과 Al6Mn간의 복합재료를 합성하였다.3 is a diagram showing the characteristics of the composite material between Al and Al 6 Mn as a negative electrode of a lithium battery. After Al is sufficiently dissolved in Mn through a mechanical synthesis between Al and Mn powder, it is under an argon gas atmosphere at 500 ° C. for 12 hours. Heat treatment was performed to synthesize a composite material between Al and Al 6 Mn.

이러한 복합재료를 리튬이차전지의 음극으로 사용할 경우 역시 단순히 Al을 전극으로 사용하였을 경우보다 향상된 싸이클 수명을 보여주고 있다.When the composite material is used as a negative electrode of a lithium secondary battery, it also shows an improved cycle life than when Al is used as an electrode.

이상에서처럼 본 발명은 종래 복합재료 전극의 입자 내부구조 및 각 상들의 역할 등의 기본개념과는 차이를 보이는 새로운 개념의 리튬합금 복합재료를 개발한 것이다.As described above, the present invention is to develop a lithium alloy composite material of a new concept showing a difference from the basic concepts such as the particle internal structure of the composite electrode and the role of each phase.

즉, 본 발명은 리튬합금 물질과 강화제 역할을 하는 세라믹 또는 금속간화합물 간의 복합재료를 합성하여 리튬이차전지의 음극물질에 이용함으로써 리튬합금 물질의 기계적 강도 특성이 향상되어 충방전 반응시 전극의 파괴현상을 억제하며 그로 인하여 싸이클 수명특성을 향상시킬 수 있는 것이다.That is, the present invention synthesizes a composite material between a lithium alloy material and a ceramic or intermetallic compound serving as a reinforcing agent and uses it as a negative electrode material of a lithium secondary battery, thereby improving mechanical strength characteristics of the lithium alloy material, thereby destroying electrodes during charge and discharge reactions. This can suppress the phenomenon and thereby improve the cycle life characteristics.

이상에서 살펴본 바와 같이, 본 발명은 세라믹 또는 금속간화합물 등의 강화제를 리튬과 합금이 가능한 금속 분말 속에 분산시킨 복합재료를 합성하여 리튬이차전지의 음극물질로 이용하는 것에 의해 리튬이차전지용 리튬합금 음극에서 가장 중요시되는 기계적 안정성을 확보하여 리튬 전지의 싸이클 수명을 향상시킬 수 있는 유용한 발명인 것이다.As described above, the present invention synthesizes a composite material in which a reinforcing agent, such as a ceramic or an intermetallic compound, is dispersed in a metal powder capable of alloying with lithium, and then used as a negative electrode material of a lithium secondary battery in a lithium alloy negative electrode for a lithium secondary battery. It is a useful invention that can improve the cycle life of a lithium battery by securing the most important mechanical stability.

Claims (4)

리튬과 합금이 가능한 금속분말(Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, B, Te)중 어느 하나의 분말과 세라믹 분말(Al2O3, SiO2, Li2O, CuO, Fe2O3, Nb2O5, MgO, SiC, Al4C3, TiC, Fe3C, Co3C Ni3C, Si3N4, BN, AlN, GaN, AlB2)중 어느 하나의 분말을 복합한 것을 특징으로 하는 리튬이차전지의 음극물질.Powder of any one of metal powder (Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, B, Te) Ceramic powder (Al 2 O 3 , SiO 2 , Li 2 O, CuO, Fe 2 O 3 , Nb 2 O 5 , MgO, SiC, Al 4 C 3 , TiC, Fe 3 C, Co 3 C Ni 3 C, Si 3 N 4 , BN, AlN, GaN, AlB 2 ) The negative electrode material of the lithium secondary battery, characterized in that the composite of any one of the powders. 제 1 항에 있어서 상기 분말의 복합은 리튬과 합금이 가능한 금속 분말(Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, B, Te)중 어느 하나의 분말 50-95 vol%에 세라믹 분말(Al2O3, SiO2, Li2O, CuO, Fe2O3, Nb2O5, MgO, SiC, Al4C3, TiC, Fe3C, Co3C Ni3C, Si3N4, BN, AlN, GaN, AlB2)중 어느 하나의 분말 5∼50 vol%를 섞은 분말과 볼을 중량비 1:16∼24로 유지하여 바이얼에 잠입한 상태에서, 볼밀기기에 장착시킨 후 분당 600∼1000회의 회전속도로 기계적 합성을 수행하여 이루어짐을 특징으로 하는 리튬이차전지의 음극물질.The method of claim 1, wherein the composite of the powder is a metal powder capable of alloying with lithium (Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, 50-95 vol% of any one of powders B, Te, ceramic powder (Al 2 O 3 , SiO 2 , Li 2 O, CuO, Fe 2 O 3 , Nb 2 O 5 , MgO, SiC, Al 4 C 3 , TiC, Fe 3 C, Co 3 C Ni 3 C, Si 3 N 4 , BN, AlN, GaN, AlB 2 ) powders and balls mixed with 5 to 50 vol% of any one powder by weight ratio 1:16 to 24 A negative electrode material of a lithium secondary battery, characterized in that the mechanical synthesis is performed at a rotational speed of 600 to 1000 times per minute after being mounted in a ball mill and kept in the vial. 리튬과 합금이 가능한 금속분말(Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, B, Te)중 어느 하나의 분말과 금속간화합물(Al3Ti, Al3Fe,Al3Nb, Al6Mn, Al3Cr, Al3Co, Al3Ni, Al2Cu, Al4Cu9, Al3Zr, TiSi2, CrSi2, MoSi2)중 어느 하나의 화합물을 복합한 것을 특징으로 하는 리튬이차전지의 음극물질.Powder of any one of metal powder (Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, B, Te) Intermetallic Compounds (Al 3 Ti, Al 3 Fe, Al 3 Nb, Al 6 Mn, Al 3 Cr, Al 3 Co, Al 3 Ni, Al 2 Cu, Al 4 Cu 9 , Al 3 Zr, TiSi 2 , CrSi 2 , MoSi 2 ) a negative electrode material of a lithium secondary battery characterized in that the compound of any one. 제 3 항에 있어서, 상기 분말과 화합물간의 복합은 리튬과 합금이 가능한 금속분말(Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, B, Te)중 어느 하나의 분말 50-95 vol%에 금속간화합물(Al3Ti, Al3Fe, Al3Nb, Al6Mn, Al3Cr, Al3Co, Al3Ni, Al2Cu, Al4Cu9, Al3Zr, TiSi2, CrSi2, MoSi2)중 어느 하나의 화합물 5∼50 vol%를 섞은 분말과 볼을 중량비 1:16∼24로 유지하여 바이얼에 잠입한 상태에서, 볼밀기기에 장착시킨 후 분당 600∼1000회의 회전속도로 기계적 합성을 수행한 다음, 아르곤 가스 분위기의 300∼600℃ 온도에서 10분∼24시간의 열처리를 행하여 이루어짐을 특징으로 하는 리튬이차전지의 음극물질.The method of claim 3, wherein the composite between the powder and the compound is a metal powder capable of alloying with lithium (Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd Intermetallic compounds (Al 3 Ti, Al 3 Fe, Al 3 Nb, Al 6 Mn, Al 3 Cr, Al 3 Co, Al 3 Ni, Al 2 Cu, Al 4 Cu 9 , Al 3 Zr, TiSi 2 , CrSi 2 , MoSi 2 ) powders and balls mixed with 5-50 vol% of the compound is maintained at a weight ratio of 1:16 to 24 to the vial In the immersed state, the ball mill was mounted on a ball mill, and then mechanically synthesized at a rotational speed of 600 to 1000 times per minute, followed by heat treatment for 10 minutes to 24 hours at 300 to 600 ° C. in an argon gas atmosphere. Anode material of lithium secondary battery.
KR1020000037629A 2000-07-03 2000-07-03 Anode materials of lithium secondary batteries KR20020003742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000037629A KR20020003742A (en) 2000-07-03 2000-07-03 Anode materials of lithium secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000037629A KR20020003742A (en) 2000-07-03 2000-07-03 Anode materials of lithium secondary batteries

Publications (1)

Publication Number Publication Date
KR20020003742A true KR20020003742A (en) 2002-01-15

Family

ID=19675826

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000037629A KR20020003742A (en) 2000-07-03 2000-07-03 Anode materials of lithium secondary batteries

Country Status (1)

Country Link
KR (1) KR20020003742A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100522678B1 (en) * 1999-04-29 2005-10-19 삼성에스디아이 주식회사 Composition for cathode active material of lithium secondary battery and manufacturing method of cathode active material using the same
KR101166900B1 (en) * 2004-04-15 2012-07-18 에프엠씨 코포레이션 Composite materials of nano-dispersed silicon and tin and methods of making the same
US9054365B2 (en) 2010-10-27 2015-06-09 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery
US9525175B2 (en) 2010-05-25 2016-12-20 Samsung Sdi Co., Ltd. Negative electrode for secondary lithium battery, and secondary lithium battery
CN106532021A (en) * 2017-01-11 2017-03-22 安徽工业大学 Fe<3>C@onion-shaped carbon/amorphous carbon nanocomposite and preparation method and application thereof
CN106602033A (en) * 2017-01-11 2017-04-26 安徽工业大学 ZrC@ onion-like carbon/amorphous carbon nano-composite and preparation method and application thereof
CN106654280A (en) * 2017-01-11 2017-05-10 安徽工业大学 W2C@onion-shaped carbon/amorphous carbon nanometer composite and preparing method and application thereof
CN106654281A (en) * 2017-01-11 2017-05-10 安徽工业大学 TaC@onion-like carbon/amorphous carbon nanocomposite as well as preparation method and application thereof
CN106711422A (en) * 2017-01-11 2017-05-24 安徽工业大学 Co3C@onion-shaped carbon/amorphous carbon nano-composite as well as preparation method and application thereof
US10374228B2 (en) 2006-10-13 2019-08-06 Fmc Lithium Usa Corp. Stabilized lithium metal powder for li-ion application composition
CN111029531A (en) * 2020-01-02 2020-04-17 北京航空航天大学 Monoatomic dispersed MXene material and application thereof to lithium battery negative electrode

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100522678B1 (en) * 1999-04-29 2005-10-19 삼성에스디아이 주식회사 Composition for cathode active material of lithium secondary battery and manufacturing method of cathode active material using the same
US10003070B2 (en) 2004-04-15 2018-06-19 Fmc Corporation Composite materials of nano-dispersed silicon and tin and methods of making the same
KR101166900B1 (en) * 2004-04-15 2012-07-18 에프엠씨 코포레이션 Composite materials of nano-dispersed silicon and tin and methods of making the same
US8231810B2 (en) 2004-04-15 2012-07-31 Fmc Corporation Composite materials of nano-dispersed silicon and tin and methods of making the same
US8753779B2 (en) 2004-04-15 2014-06-17 Fmc Corporation Composite materials of nano-dispersed silicon and tin and methods of making the same
US10374228B2 (en) 2006-10-13 2019-08-06 Fmc Lithium Usa Corp. Stabilized lithium metal powder for li-ion application composition
US9525175B2 (en) 2010-05-25 2016-12-20 Samsung Sdi Co., Ltd. Negative electrode for secondary lithium battery, and secondary lithium battery
US9054365B2 (en) 2010-10-27 2015-06-09 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery
CN106532021A (en) * 2017-01-11 2017-03-22 安徽工业大学 Fe<3>C@onion-shaped carbon/amorphous carbon nanocomposite and preparation method and application thereof
CN106654281A (en) * 2017-01-11 2017-05-10 安徽工业大学 TaC@onion-like carbon/amorphous carbon nanocomposite as well as preparation method and application thereof
CN106711422A (en) * 2017-01-11 2017-05-24 安徽工业大学 Co3C@onion-shaped carbon/amorphous carbon nano-composite as well as preparation method and application thereof
CN106654280A (en) * 2017-01-11 2017-05-10 安徽工业大学 W2C@onion-shaped carbon/amorphous carbon nanometer composite and preparing method and application thereof
CN106602033A (en) * 2017-01-11 2017-04-26 安徽工业大学 ZrC@ onion-like carbon/amorphous carbon nano-composite and preparation method and application thereof
CN111029531A (en) * 2020-01-02 2020-04-17 北京航空航天大学 Monoatomic dispersed MXene material and application thereof to lithium battery negative electrode

Similar Documents

Publication Publication Date Title
RU2313858C2 (en) Negative active material for lithium storage battery and its production process
KR20170131239A (en) A material of negative electrode for lithium secondary battary
JP6374678B2 (en) Negative electrode materials for electricity storage devices
KR20020003742A (en) Anode materials of lithium secondary batteries
KR101482478B1 (en) Si based negative electrode material
CN104995771B (en) The Si systems eutectic alloy and its manufacturing method of the negative electrode active material of electric energy storage device
KR20160132826A (en) Negative-electrode material for electricity-storage device
KR20170057235A (en) Si-BASED ALLOY NEGATIVE ELECTRODE MATERIAL FOR ELECTRICITY STORAGE DEVICES AND ELECTRODE USING SAME
KR100922282B1 (en) Composite, method for preparing the same, rechargeable battery comprising the composite and method for using the rechargeable battery
JP2009152201A (en) Complex anode active material, its manufacturing method, and anode and lithium battery using the same
KR101600358B1 (en) SECONDARY BATTERY USING Te OR Te COMPOSITE
KR101725381B1 (en) Methods for manufacturing composite including Si, Si-transition metal compound, graphite and amorphous carbon, anode material for secondary battery including composite manufactured thereby, and Li-ion secondary battery comprising the same
JPH11345610A (en) Negative electrode for battery and manufacture thereof
KR20020050676A (en) Amorphous anode materials of lithium secondary batteries
JP4372451B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JPH10302776A (en) Totally solid lithium secondary battery
JP2000302551A (en) Carbon material for negative electrode of lithium secondary battery and accelerator for graphitization
JP6630632B2 (en) Anode materials for power storage devices
JP2004285406A (en) Hydrogen storage alloy and electrode for nickel-hydrogen battery using the same
JPH11345611A (en) Negative electrode for battery and its manufacture
JP3141140B2 (en) Method for producing hydrogen storage alloy for battery
JPH04187733A (en) Hydrogen storage alloy electrode
KR20170030188A (en) ANODE ACTIVE MATERIAL OF Co-Sn COMPOUNG, METAL CARBIDES AND CARBON COMPOSITE, AND THE MANUFACTURING METHOD THEREOF, AND LITHIUM SECONDARY BATTERY USING THE SAME
JPH05179372A (en) Production of hydrogen occluding alloy powder
JPH10226836A (en) Hydrogen storage alloy and its production

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application