JPH10226836A - Hydrogen storage alloy and its production - Google Patents

Hydrogen storage alloy and its production

Info

Publication number
JPH10226836A
JPH10226836A JP9030249A JP3024997A JPH10226836A JP H10226836 A JPH10226836 A JP H10226836A JP 9030249 A JP9030249 A JP 9030249A JP 3024997 A JP3024997 A JP 3024997A JP H10226836 A JPH10226836 A JP H10226836A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
storage alloy
amorphous structure
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9030249A
Other languages
Japanese (ja)
Inventor
Toru Yamamoto
徹 山本
Yoichiro Tsuji
庸一郎 辻
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9030249A priority Critical patent/JPH10226836A/en
Publication of JPH10226836A publication Critical patent/JPH10226836A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain a hydrogen storage alloy capable of giving a negative pole having high capacity and excellent in cycling characteristics by composing it of a specified combination of Mg, Ni, Nb, Cr, Fe or the like and forming the greater part of amorphous phases in an amorphous structure. SOLUTION: The compsn. of a hydrogen storage alloy is expressed by the general formula of MgMXM'YNZ, and the greater part of amorphous phases is formed in an amorphous structure. In this general formula, M denotes at least one kind of Nb and Ta, M' denotes at least one kind of element selected from Cr, Mo, W, V, Co, Fe, Cu, Pb, Ag, Al, Mn, Zn, Zr, In, Ga, Hf, Si, B, P and rare earth elements, and 0.02<=x<=0.5, 0<=y<=0.2 and 0.8<=z<=1.5 are regulated. Moreover, Mg, Ni, M and M' are uniformly dispersed to form the alloy phases having an amorphous structure. The alloy for a hydrogen storage alloy electrode capable of reversibly executing electrochemical hydrogen occlusion and discharge is obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素を可逆的に吸
蔵・放出する水素吸蔵合金、特に電気化学的な水素の吸
蔵・放出を可逆的に行える水素吸蔵合金電極のための水
素吸蔵合金及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy for storing and releasing hydrogen reversibly, and more particularly to a hydrogen storage alloy for a hydrogen storage alloy electrode capable of reversibly storing and releasing electrochemical hydrogen. It relates to the manufacturing method.

【0002】[0002]

【従来の技術】近年、ポータブル機器、コードレス機器
の発展に伴い、その電源である電池にはより一層の高エ
ネルギ−密度、高性能が要求されている。これらの要求
に対してリチウムイオン電池とほぼ同等の体積エネルギ
ー密度を持ち、水素吸蔵合金を負極に用いた過充電や過
放電に強いニッケル−水素蓄電池が注目されている。こ
のような水素吸蔵合金電極に用いられる合金としては、
MmNi5系の多元系合金が主流である。しかし、機器
の高性能化にともない放電容量がさらに大きいニッケル
−水素蓄電池が要求されるところから、負極水素吸蔵合
金としてはより水素吸蔵量の大きな合金が望まれてい
る。さらに、近年電動自転車等では出力特性に優れ、電
池重量の軽いものが要求されている。軽量で大きな水素
吸蔵量を持つ合金として、Mg2Ni系合金(特開昭6
1−199045号公報)は、理論吸蔵量が約1000
mAh/gと非常に大きく有望と考えられる。
2. Description of the Related Art In recent years, with the development of portable devices and cordless devices, batteries as power sources have been required to have higher energy density and higher performance. To meet these requirements, nickel-hydrogen storage batteries that have a volume energy density almost equal to that of a lithium ion battery and are resistant to overcharging and overdischarging using a hydrogen storage alloy as a negative electrode have attracted attention. As an alloy used for such a hydrogen storage alloy electrode,
MmNi 5-based multi-component alloy of the mainstream. However, a nickel-hydrogen storage battery having a larger discharge capacity is required as the performance of the device becomes higher. Therefore, an alloy having a larger hydrogen storage capacity is desired as the negative electrode hydrogen storage alloy. Furthermore, in recent years, electric bicycles and the like are required to have excellent output characteristics and light battery weight. As a lightweight alloy having a large hydrogen storage capacity, an Mg 2 Ni-based alloy (JP-A-6
No. 1-1199045) has a theoretical storage amount of about 1000.
mAh / g, which is considered very promising.

【0003】しかしながら、Mg2Ni系合金は、水素
吸蔵量は大きいが、圧力組成等温線図(以下PCT曲線
と呼ぶ)においてプラトー(平坦部)が非常に低圧域に
存在する。そのため、吸蔵された水素を室温付近では放
出できず、例えば、250℃以上の高温でしか水素の放
出(放電)ができない。従って、電極材料としては使用
できなかった。最近になって、ボールミルや遊星ボール
ミル等のメカニカルアロイング法でMgNi系合金を作
製し、さらに表面処理することにより、室温で高容量
(500mAh/g以上)が得られることが見出され
た。高周波溶解鋳造法やアーク溶解法で作製したMgN
i系合金は、結晶構造(立方晶系)を有しているが、メ
カニカルアロイング法によって作製した合金は、粉末X
線回折ピークがブロードでアモルファス構造を取り、か
つ活性な粒界を有する。これによって電気化学的な活性
が大幅に向上し、室温での充放電が可能となる。
[0003] However, although the Mg 2 Ni-based alloy has a large hydrogen storage capacity, a plateau (flat portion) exists in a very low pressure region in a pressure composition isotherm diagram (hereinafter referred to as a PCT curve). Therefore, the occluded hydrogen cannot be released near room temperature. For example, hydrogen can be released (discharged) only at a high temperature of 250 ° C. or higher. Therefore, it could not be used as an electrode material. Recently, it has been found that a high capacity (500 mAh / g or more) can be obtained at room temperature by preparing an MgNi-based alloy by a mechanical alloying method such as a ball mill or a planetary ball mill, and further performing a surface treatment. MgN produced by high frequency melting casting or arc melting
An i-based alloy has a crystal structure (cubic system), but an alloy produced by a mechanical alloying method has a powder X
The line diffraction peak has a broad and amorphous structure and has active grain boundaries. As a result, electrochemical activity is greatly improved, and charging and discharging at room temperature becomes possible.

【0004】しかし、初期容量は高いが、充放電サイク
ルによる放電容量の低下が大きいという問題があり、実
用には適さない。従来、結晶性のMgNi系合金におい
ては、希土類元素やCa、Cu、Zn、Pb、Sn、I
n、Li、Cd、Al、Ag、Be、V、Cr、Fe、
Co、Mnなどを添加することにより、プラトー圧を上
げ、少しでも動作温度を下げる試みがなされて来た。し
かし、いずれの元素を添加しても、結晶性を有してい
て、150℃以下に動作温度を下げることは困難であ
り、サイクル特性も殆ど改善されていない(例えば、特
開昭61−199045号公報)。また、物理蒸着法
(PVD法)による多元系マルチフェーズMgNi薄膜
の検討も行われたが、サイクル特性の大幅な向上は見ら
れなかった(例えば、米国特許第5,506,069号)。
[0004] However, although the initial capacity is high, there is a problem that the discharge capacity is greatly reduced due to charge / discharge cycles, which is not suitable for practical use. Conventionally, in crystalline MgNi-based alloys, rare earth elements, Ca, Cu, Zn, Pb, Sn, I
n, Li, Cd, Al, Ag, Be, V, Cr, Fe,
Attempts have been made to increase the plateau pressure by adding Co, Mn, etc., and to lower the operating temperature even slightly. However, no matter which element is added, it has crystallinity, it is difficult to lower the operating temperature to 150 ° C. or less, and the cycle characteristics are hardly improved (for example, see Japanese Patent Application Laid-Open No. 61-199045). No.). In addition, although a multi-component multi-phase MgNi thin film was examined by physical vapor deposition (PVD), no significant improvement in cycle characteristics was found (for example, US Pat. No. 5,506,069).

【0005】[0005]

【発明が解決しようとする課題】本発明は、MgNi系
合金を合金組成の面および合金製造の面から改良して、
容量が高く、かつサイクル特性にも優れた水素吸蔵合金
電極を与える水素吸蔵合金を提供することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention is to improve an MgNi-based alloy in terms of alloy composition and alloy production,
It is an object of the present invention to provide a hydrogen storage alloy that provides a hydrogen storage alloy electrode having a high capacity and excellent cycle characteristics.

【0006】[0006]

【課題を解決するための手段】本発明は、MgNi系ア
モルファス合金における各種添加元素のサイクル特性に
及ぼす影響を鋭意検討した結果、NbあるいはTaを添
加した合金において、表面に形成される酸化被膜がMg
のアルカリ電解液(通常は31%KOH)への溶出を防
ぎ、サイクル特性が大きく改善できることを見いだした
ことに基づいている。本発明の水素吸蔵合金は、一般式
MgMxM’yNiz(MはNbおよびはTaの少なくと
も1種の元素、M’はCr、Mo、W、V、Co、F
e、Cu、Pb、Ag、Al、Mn、Zn、Zr、I
n、Ga、Hf、Si、B、P、および希土類元素から
なる群より選ばれる少なくとも1種の元素、0.02≦
x≦0.5、0≦y≦0.2、0.8≦z≦1.5、)で表
され、合金相の大部分がアモルファス構造を有する。
According to the present invention, as a result of diligent studies on the effects of various additive elements on the cycle characteristics of an MgNi-based amorphous alloy, an oxide film formed on the surface of an alloy containing Nb or Ta has been found. Mg
Is found to be able to prevent elution into an alkaline electrolyte (usually 31% KOH) and to greatly improve cycle characteristics. The hydrogen storage alloy of the present invention has a general formula MgM x M ′ y Ni z (M is at least one element of Nb and Ta, and M ′ is Cr, Mo, W, V, Co, F
e, Cu, Pb, Ag, Al, Mn, Zn, Zr, I
at least one element selected from the group consisting of n, Ga, Hf, Si, B, P, and a rare earth element; 0.02 ≦
x ≦ 0.5, 0 ≦ y ≦ 0.2, 0.8 ≦ z ≦ 1.5, and most of the alloy phase has an amorphous structure.

【0007】[0007]

【発明の実施の形態】本発明の水素吸蔵合金は、一般式
MgMxM’yNizで表され、合金相の大部分、約75
%以上がアモルファス構造を有する。この水素吸蔵合金
をさらに詳しく説明すると、以下のような形態に分けら
れる。
Hydrogen storage alloy of the embodiment of the present invention is represented by the general formula MgM x M 'y Ni z, the majority of the alloy phase, about 75
% Or more has an amorphous structure. The hydrogen storage alloy will be described in more detail below.

【0008】その第1は、Mg、Ni、MおよびM’が
均一に分散してアモルファス構造の合金相を形成してい
る合金である。第2は、Mg、NiおよびMがアモルフ
ァス構造の合金相を形成し、M’が合金内に偏析してい
る合金である。第3は、Mg、NiおよびM’がアモル
ファス構造の合金相を形成し、Mが合金内に偏析してい
る合金である。第4は、Mg、Niがアモルファス構造
の合金相を形成し、MおよびM’が合金内に偏析してい
る合金である。第5は、Mg、NiおよびM’がアモル
ファス構造の合金相を形成し、Mが合金粒子表面に偏析
している合金である。第6は、Mg、NiおよびMがア
モルファス構造の合金相を形成し、M’が合金粒子表面
に偏析している合金である。
The first is an alloy in which Mg, Ni, M and M 'are uniformly dispersed to form an alloy phase having an amorphous structure. The second is an alloy in which Mg, Ni and M form an alloy phase having an amorphous structure, and M ′ is segregated in the alloy. Third, an alloy in which Mg, Ni and M ′ form an alloy phase having an amorphous structure, and M is segregated in the alloy. The fourth is an alloy in which Mg and Ni form an alloy phase having an amorphous structure, and M and M ′ are segregated in the alloy. Fifth, Mg, Ni and M ′ form an alloy phase having an amorphous structure, and M is segregated on the surface of the alloy particles. Sixth, an alloy in which Mg, Ni and M form an alloy phase having an amorphous structure, and M ′ segregates on the surface of the alloy particles.

【0009】本発明の水素吸蔵合金は、ボールミルや遊
星ボールミル等のメカニカルアロイング法により製造す
ることができる。上記第1の合金は、所定量のMg、N
i、MおよびM’を同時に仕込んでメカニカルアロイン
グすることにより製造することができる。上記第2また
は第3の合金は、所定量のMg、NiおよびMまたは
M’を同時に仕込んでアモルファス相が若干形成される
程度までメカニカルアロイングを行った後、所定量の
M’またはMを添加し再びメカニカルアロイングを行う
ことにより製造することができる。第4の合金は、所定
量のMgおよびNiを同時に仕込んでアモルファス相が
若干形成される程度までメカニカルアロイングを行った
後、所定量のM’およびMを添加し再びメカニカルアロ
イングを行うことにより製造することができる。
The hydrogen storage alloy of the present invention can be manufactured by a mechanical alloying method such as a ball mill and a planetary ball mill. The first alloy contains a predetermined amount of Mg, N
It can be manufactured by simultaneously charging i, M, and M ′ and performing mechanical alloying. The second or third alloy is prepared by simultaneously charging a predetermined amount of Mg, Ni and M or M ′ and performing mechanical alloying until an amorphous phase is slightly formed. It can be manufactured by adding and performing mechanical alloying again. For the fourth alloy, a predetermined amount of Mg and Ni are simultaneously charged, and mechanical alloying is performed until an amorphous phase is slightly formed. Then, predetermined amounts of M 'and M are added, and mechanical alloying is performed again. Can be manufactured.

【0010】第5または第6の合金は、所定量のMg、
NiおよびM’またはMを同時に仕込んでメカニカルア
ロイングを行いアモルファス構造のMg−Ni−M’ま
たはMg−Ni−M合金粒子を作製し、その後合金表面
にMまたはM’の微粒子を機械的に付着させることによ
り製造することができる。また、第5または第6の合金
は、所定量のMg、NiおよびM’またはMを同時に仕
込んでメカニカルアロイングを行いアモルファス構造の
Mg−Ni−M’またはMg−Ni−M合金粒子を作製
し、その後合金表面にメッキ法でMまたはM’層を形成
することにより製造することができる。
The fifth or sixth alloy comprises a predetermined amount of Mg,
Ni and M 'or M are simultaneously charged and mechanical alloying is performed to produce Mg-Ni-M' or Mg-Ni-M alloy particles having an amorphous structure, and then fine particles of M or M 'are mechanically formed on the alloy surface. It can be manufactured by attaching. The fifth or sixth alloy is prepared by simultaneously charging a predetermined amount of Mg, Ni and M ′ or M, and performing mechanical alloying to produce Mg—Ni—M ′ or Mg—Ni—M alloy particles having an amorphous structure. Then, it can be manufactured by forming an M or M ′ layer on the alloy surface by a plating method.

【0011】上記第5または第6の合金を製造する前者
の方法においては、MまたはM’の微粒子をMg−Ni
−M’またはMg−Ni−M合金に機械的に付着させる
方法としては、不活性ガス雰囲気中で遊星ボールミル、
ハイブリダイゼーション法、シータコンポーザまたはメ
カノフュージョン法を用いて行うのが好ましい。また、
上記第5または第6の合金を製造する前者および後者の
方法においては、Mg−Ni−M’またはMg−Ni−
M合金表面へMまたはM’層を形成後、真空中において
300℃以上600℃以下の温度で熱処理することが好
ましい。この熱処理によってサイクル特性はさらに向上
する。
In the former method for producing the fifth or sixth alloy, the M or M ′ fine particles are made of Mg—Ni
-M 'or Mg-Ni-M alloy can be mechanically attached to a planetary ball mill in an inert gas atmosphere.
It is preferable to use a hybridization method, theta composer or mechanofusion method. Also,
In the former and latter methods for producing the fifth or sixth alloy, Mg-Ni-M 'or Mg-Ni-
After forming the M or M 'layer on the surface of the M alloy, it is preferable to perform a heat treatment in a vacuum at a temperature of 300 ° C or more and 600 ° C or less. This heat treatment further improves the cycle characteristics.

【0012】上記の第1ないし第6の合金を製造する際
のメカニカルアロイングにおいては、ボールおよびポッ
トの表面に付着する合金層厚さをボールにかかる遠心力
で割った値αが3×10-6sec2/g以下となる条件
がアモルファス構造を形成する上で好ましい。
In the mechanical alloying for producing the above first to sixth alloys, the value α obtained by dividing the thickness of the alloy layer adhering to the surface of the ball and the pot by the centrifugal force applied to the ball is 3 × 10 The condition of -6 sec 2 / g or less is preferable for forming an amorphous structure.

【0013】[0013]

【実施例】以下に本発明の実施例を詳しく説明する。 《実施例1》市販のMg(100メッシュ以下)2.4
3gとNi(100メッシュ以下)5.87gとNb
(100メッシュ以下)0.93gを500ccのステ
ンレス鋼製のボールミルポットに投入し、その上に直径
約19mm(28g)のステンレス鋼ボールを40個投
入した。ポット内をアルゴンで置換した後、回転数60
rpmで10日間ボールミルを行い、MgNiNb0.1
合金を作製した。なお、ここに用いたポットの内壁面積
と全ボールの表面積の和は約760cm2、合金の体積
は2.1ccで、合金層厚さとしては2.8×10-3
mとなる。一方、ボールの遠心力は、ボールの重さが約
28g、ポットの半径が4cmであるから、28g×4
cm×(角速度2π/sec)2より4.42×103
・cm/sec2となる。よってα値は0.63×10-6
sec2/gとなる。この後、ポット内の合金を回収
し、粉末X線回折測定およびペレット電極の作製を行っ
た。
Embodiments of the present invention will be described below in detail. << Example 1 >> Commercially available Mg (100 mesh or less) 2.4
3g and Ni (less than 100 mesh) 5.87g and Nb
0.93 g (100 mesh or less) was charged into a 500 cc stainless steel ball mill pot, and 40 stainless steel balls having a diameter of about 19 mm (28 g) were charged thereon. After the inside of the pot was replaced with argon, the rotation speed was 60
Perform a ball mill at 10 rpm for 10 days, and then use MgNiNb 0.1
An alloy was made. The sum of the inner wall area of the pot and the surface area of all the balls used here was about 760 cm 2 , the volume of the alloy was 2.1 cc, and the thickness of the alloy layer was 2.8 × 10 −3 c.
m. On the other hand, the centrifugal force of the ball is 28 g × 4 because the weight of the ball is about 28 g and the radius of the pot is 4 cm.
cm × (angular velocity 2π / sec) 2 from 4.42 × 10 3 g
· The cm / sec 2. Therefore, the α value is 0.63 × 10 -6
sec 2 / g. Thereafter, the alloy in the pot was recovered, and powder X-ray diffraction measurement and production of a pellet electrode were performed.

【0014】図1は得られた合金の粉末X線回折パター
ンを示す。パターンはブロードで、アモルファス構造を
有することがわかる。また、電子線プローブマイクロア
ナライザー(EPMA)で合金粒子断面および表面の元
素分布を観察したところ、各元素が均質に混合されてい
ることが確認された。ペレット電極は、上記の合金粉末
1gにNi粉末(粒径数μm)3gおよびポリエチレン
粉末0.12gを添加してよく混合した後、5トンのプ
レス圧で直径25mmの円柱状のペレットに成形したも
のを用いた。このペレット電極を負極とし、正極には負
極容量の数倍の容量を有する燒結式水酸化ニッケル正極
を用いて、か性カリ水溶液からなる電解液がリッチな開
放系電池を作製し、電極特性を調べた。図2は充放電サ
イクル特性を示す。図中Aは上記の電極を用いた電池の
特性をしめす。Bは、比較のためにNbを添加しない合
金を負極に用いた電池の特性を示す。図2から明らかな
ように、Nbの添加によって最大放電容量486mAh
/g(1サイクル目)は若干向上し、サイクル特性が大
幅に改善されていることがわかる。なお、上記のボール
ミルを用いた合金製造において、ボールの回転数を落と
し、α値が3×10-6sec2/gを越えると、ボール
ミルの時間を長くしてもアモルファス化が困難でなっ
た。
FIG. 1 shows a powder X-ray diffraction pattern of the obtained alloy. It can be seen that the pattern is broad and has an amorphous structure. Further, when the element distribution on the cross section and the surface of the alloy particles was observed with an electron probe microanalyzer (EPMA), it was confirmed that the respective elements were homogeneously mixed. The pellet electrode was prepared by adding 3 g of Ni powder (particle size: several μm) and 0.12 g of polyethylene powder to 1 g of the above alloy powder and mixing well, and then formed into a cylindrical pellet having a diameter of 25 mm under a pressing pressure of 5 tons. Was used. Using this pellet electrode as the negative electrode, and using a sintered nickel hydroxide positive electrode having several times the capacity of the negative electrode as the positive electrode, an open-cell battery rich in an electrolytic solution consisting of an aqueous solution of potassium hydroxide was produced to improve the electrode characteristics. Examined. FIG. 2 shows charge / discharge cycle characteristics. A in the figure shows the characteristics of the battery using the above-mentioned electrode. B shows the characteristics of a battery using an alloy to which Nb was not added for the negative electrode for comparison. As apparent from FIG. 2, the maximum discharge capacity is 486 mAh by adding Nb.
/ G (first cycle) is slightly improved, indicating that the cycle characteristics are greatly improved. In the alloy production using the above ball mill, if the number of revolutions of the ball is reduced and the α value exceeds 3 × 10 −6 sec 2 / g, it becomes difficult to form an amorphous phase even when the ball mill time is extended. .

【0015】《実施例2》実施例1と同様の条件でMg
2.43gとNi5.87gとTa(100メッシュ以
下)1.81gをボールミルポットに投入し、10日間
ボールミルを行い、MgNiTa0.1合金を作製した。
この後、実施例1と同様にペレット電極を作製し、充放
電特性を測定した。最大放電容量および容量維持率を表
1に示す。容量維持率は、(10サイクル目容量)/
(1サイクル目容量)×100(%)で表す。Nbの代
わりにTaを用いると、最大放電容量はほぼ変わらず、
サイクル特性は、Nbほどではないが、無添加のものと
比べ大幅に向上した。
<< Embodiment 2 >> Mg under the same conditions as in Embodiment 1
2.43 g, 5.87 g of Ni, and 1.81 g of Ta (100 mesh or less) were put into a ball mill pot, and ball-milled for 10 days to produce a MgNiTa 0.1 alloy.
Thereafter, a pellet electrode was prepared in the same manner as in Example 1, and the charge / discharge characteristics were measured. Table 1 shows the maximum discharge capacity and the capacity retention rate. The capacity retention rate is (capacity at the 10th cycle) /
(1st cycle capacity) × 100 (%). When Ta is used instead of Nb, the maximum discharge capacity is almost unchanged,
The cycle characteristics were not as good as those of Nb, but were significantly improved as compared with those without the addition.

【0016】《実施例3》実施例1と同様の条件でMg
2.43gとNi5.87gとNb0.93gおよびT
a0.905gをボールミルポットに投入し、10日間
ボールミルを行い、MgNiNb0.1Ta0.05合金を作
製した。この後、実施例1と同様にペレット電極を作製
し、充放電特性を測定した。最大放電容量および容量維
持率を表1に示す。最大放電容量は実施例1より若干低
下したが、サイクル特性はやや向上した。
<< Embodiment 3 >> Mg under the same conditions as in Embodiment 1
2.43 g, Ni 5.87 g, Nb 0.93 g and T
0.905 g of a was charged into a ball mill pot, and ball milled for 10 days to prepare an MgNiNb 0.1 Ta 0.05 alloy. Thereafter, a pellet electrode was prepared in the same manner as in Example 1, and the charge / discharge characteristics were measured. Table 1 shows the maximum discharge capacity and the capacity retention rate. Although the maximum discharge capacity was slightly lower than that in Example 1, the cycle characteristics were slightly improved.

【0017】《実施例4》実施例1においてNbの仕込
量を0.185g、0.463g、2.78g、4.6
3g、および6.48gにしてそれぞれ合金MgNiN
0.02、MgNiNb0.05、MgNiNb0.3、MgN
iNb0.5、およびMgNiNb0.7を作製した。これら
の合金を負極に用いた電池の最大放電容量と容量維持率
を表1に示す。Nb量を0.02原子程度まで少なくし
てもサイクル劣化が抑えられ、また0.5原子まで添加
しても大きな容量の低下は見られなかった。しかし、
0.7原子までNbを添加すると、容量低下が大きくな
った。よってNbの添加量としては0.02原子以上
0.5原子以下が有効である。この範囲はTa添加にお
いても同様であった。
Example 4 In Example 1, the charged amount of Nb was 0.185 g, 0.463 g, 2.78 g, 4.6.
3g, and 6.48g, respectively, alloy MgNiN
b 0.02 , MgNiNb 0.05 , MgNiNb 0.3 , MgN
iNb 0.5 and MgNiNb 0.7 were produced. Table 1 shows the maximum discharge capacity and capacity retention of batteries using these alloys for the negative electrode. Even if the amount of Nb was reduced to about 0.02 atoms, cycle deterioration was suppressed, and even if added to 0.5 atoms, no significant reduction in capacity was observed. But,
When Nb was added up to 0.7 atoms, the capacity reduction became large. Therefore, it is effective that the amount of Nb added is 0.02 or more and 0.5 or less. This range was the same when Ta was added.

【0018】《実施例5》実施例1においてMg量とN
b量を固定し、Ni量を0.6原子、0.8原子、1.
5原子、2.0原子と変化させ、同様の条件でボールミ
ルを10日間行った。こうして作製した合金を負極に用
いた電池の最大放電容量と容量維持率を表1に示す。N
i量が0.6原子では最大放電容量が低く、サイクル特
性も低下した。一方、Ni量が2.0原子では最大放電
容量が大幅に低下した。よってNi量としては0.8原
子以上1.5原子以下が望ましい。
Example 5 In Example 1, the amount of Mg and N
The amount of Ni is fixed at 0.6 atom, 0.8 atom, and 1.b.
The ball mill was performed for 10 days under the same conditions while changing the number to 5 atoms and 2.0 atoms. Table 1 shows the maximum discharge capacity and the capacity retention of the battery using the alloy thus produced for the negative electrode. N
When the i amount was 0.6 atoms, the maximum discharge capacity was low, and the cycle characteristics were also reduced. On the other hand, when the amount of Ni was 2.0 atoms, the maximum discharge capacity was significantly reduced. Therefore, the Ni content is desirably from 0.8 to 1.5 atoms.

【0019】《実施例6》実施例1と同様の条件でMg
2.43gとNi5.87gをあらかじめ7日間ボール
ミルし、アモルファス化が若干進んだ時点でNbを0.
93g加えて、再びアルゴン雰囲気下でボールミルを4
日間行った。出来上がった合金粒子の断面をEPMA分
析したところ、アモルファス構造のMgNi相の中にN
bが偏析しているのが観察された。ここで得られた合金
を負極に用いた電池の最大放電容量と容量維持率を表1
に示す。実施例1の各元素が均一に分散のものと比べ
て、最大放電容量が470mAh/gと若干低下した
が、サイクル特性に向上が見られた。
<< Embodiment 6 >> Mg under the same conditions as in Embodiment 1.
2.43 g and 5.87 g of Ni were ball-milled in advance for 7 days.
93 g, and the ball mill was again operated under an argon atmosphere.
Went for days. An EPMA analysis of the cross section of the completed alloy particles showed that Ng was contained in the MgNi phase having an amorphous structure.
b was observed to be segregated. Table 1 shows the maximum discharge capacity and capacity retention of a battery using the alloy obtained here as a negative electrode.
Shown in Although the maximum discharge capacity was slightly reduced to 470 mAh / g as compared with the case where the elements of Example 1 were uniformly dispersed, the cycle characteristics were improved.

【0020】《実施例7》実施例1と同様の条件でMg
2.43gとNi5.87gだけで10日間ボールミル
し、MgNiアモルファス合金を作製した。次に、この
MgNiアモルファス合金5gと粒径0.5μmのTa
微粒子0.5g(Nb0.05相当)をシータコンポーザ
(徳寿工作所THC−70ラボ型)の容器に投入し、ア
ルゴン雰囲気中で外回転150rpm、内回転3500
rpmで30分間表面処理を行った。この後、回収した
合金の約半分を真空中400℃で2時間の熱処理を行っ
た。出来上がった合金粒子の断面をEPMA分析したと
ころ、いずれもアモルファス構造のMgNi合金粒子の
表面部のみにNbが偏析していることが観察された。そ
して、熱処理をしていない合金に比べると、熱処理をし
た合金の方がやや合金内部までNbの拡散が認められ
た。
<< Embodiment 7 >> Mg under the same conditions as in Embodiment 1
Ball milling was performed for 10 days using only 2.43 g and 5.87 g of Ni to produce an MgNi amorphous alloy. Next, 5 g of this MgNi amorphous alloy and Ta having a particle size of 0.5 μm were used.
0.5 g of fine particles (equivalent to 0.05 of Nb) are charged into a container of Theta Composer (Tokuju Kosakusho THC-70 lab type), and 150 rpm external rotation and 3500 internal rotation in an argon atmosphere.
The surface treatment was performed at rpm for 30 minutes. Thereafter, about half of the recovered alloy was subjected to a heat treatment at 400 ° C. for 2 hours in a vacuum. EPMA analysis of the cross section of the completed alloy particles showed that Nb was segregated only on the surface of the MgNi alloy particles having an amorphous structure. The diffusion of Nb was slightly recognized in the heat-treated alloy as compared to the alloy without the heat treatment.

【0021】この合金を負極に用いた電池の最大放電容
量と容量維持率を表1に示す。実施例1の均一分散のも
のと比べて、最大放電容量はほとんど変わらず、サイク
ル特性はさらに向上した。なお、表面処理法としては、
遊星ボールミルやメカノフュージョン、ハイブリダイゼ
ーションなどの方法も同様の効果が得られた。熱処理温
度としては、300℃以上600℃以下が望ましく、6
00℃を越す温度ではMgNiの結晶化が生じ、放電容
量の低下を招いた。
Table 1 shows the maximum discharge capacity and capacity retention of a battery using this alloy as a negative electrode. The maximum discharge capacity was hardly changed as compared with the uniform dispersion of Example 1, and the cycle characteristics were further improved. In addition, as the surface treatment method,
Methods such as a planetary ball mill, mechanofusion, and hybridization also provided similar effects. The heat treatment temperature is desirably 300 ° C. or more and 600 ° C. or less.
At a temperature exceeding 00 ° C., crystallization of MgNi occurred, resulting in a decrease in discharge capacity.

【0022】《実施例8》実施例7と同様の方法でMg
Niアモルファス合金を作製した。次に、このMgNi
アモルファス合金4gをNbCl3の5%水溶液50c
c中に浸漬し、スターラで攪拌しながら陽極にNb板、
陰極にNi板を用いて電圧をかけ30分間置換メッキを
行った。MgNi中の表面MgとNbが僅かに置換され
ることがEPMAによる組成分析より確認できた。この
後、回収した合金の約半分を真空中500℃で1時間の
熱処理を行った。出来上がった合金粒子の断面をEPM
A分析したところ、いずれもアモルファス構造のMgN
i合金粒子の表面部のみにNbが偏析(Nb0.02相当)
していることが観察された。熱処理をしないものに比べ
て、熱処理したものの方がやや合金内部までNbの拡散
が認められた。この合金を負極に用いた電池の最大放電
容量と容量維持率を表1に示す。実施例6のものと比べ
最大放電容量は変わらなかったが、サイクル特性はやや
低下した。これはNb量が少ないためと思われる。
<< Embodiment 8 >> Mg in the same manner as in Embodiment 7
A Ni amorphous alloy was produced. Next, this MgNi
4 g of an amorphous alloy is used as a 50% aqueous solution of NbCl 3 50 c
immersed in c, stirred with a stirrer, Nb plate on the anode,
Using a Ni plate as a cathode, voltage was applied and displacement plating was performed for 30 minutes. It was confirmed from the composition analysis by EPMA that the surface Mg and Nb in MgNi were slightly substituted. Thereafter, about half of the recovered alloy was heat-treated at 500 ° C. for 1 hour in vacuum. The cross section of the completed alloy particles is EPM
A analysis showed that all of the amorphous MgN
Nb segregates only at the surface of i-alloy particles (Nb 0.02 equivalent)
Was observed. Diffusion of Nb was observed in the heat-treated one, as compared with the non-heat-treated one, to the inside of the alloy. Table 1 shows the maximum discharge capacity and capacity retention of a battery using this alloy as a negative electrode. Although the maximum discharge capacity was not changed as compared with that of Example 6, the cycle characteristics were slightly lowered. This seems to be due to the small amount of Nb.

【0023】《実施例9》実施例1と同様の条件でMg
2.43gとNi5.87gとNb0.93gにCrを
各々0.52g(0.05原子)、1.04g(0.1
原子)、2.08g(0.2原子)、3.12g(0.
3原子)加えてメカニカルアロイングを行った。表2に
各々の合金を負極に用いた電池の最大放電容量と容量維
持率を示す。第4元素の添加によって最大放電容量は若
干低下したが反面、サイクル特性は向上した。ただし、
第4元素の添加量が0.2原子を越えると最大放電容量
が大きく低下した。
Example 9 Mg under the same conditions as in Example 1
In each of 2.43 g, 5.87 g of Ni, and 0.93 g of Nb, 0.52 g (0.05 atom) and 1.04 g (0.1 atom) of Cr were added.
Atoms), 2.08 g (0.2 atoms), 3.12 g (0.
3 atoms) and mechanical alloying was performed. Table 2 shows the maximum discharge capacity and capacity retention of the batteries using each alloy for the negative electrode. Although the maximum discharge capacity was slightly reduced by the addition of the fourth element, the cycle characteristics were improved. However,
When the addition amount of the fourth element exceeded 0.2 atoms, the maximum discharge capacity was greatly reduced.

【0024】《実施例10》実施例1と同様の条件でM
g2.43g、Ni5.87g、およびNb0.93g
をあらかじめ7日間ボールミルし、アモルファス化が若
干進んだ時点でZrを0.457g加えて、再びアルゴ
ン雰囲気中でボールミルを4日間行った。出来上がった
合金粒子の断面をEPMA分析したところ、アモルファ
ス構造のMgNiNb相の中にZrが偏析しているのが
観察された。この合金を負極に用いた電池の最大放電容
量と容量維持率を表2に示す。最大放電容量はやや低下
したが、サイクル特性に向上が見られた。
<< Embodiment 10 >> M under the same conditions as in Embodiment 1.
g 2.43 g, Ni 5.87 g, and Nb 0.93 g
Was subjected to ball milling for 7 days in advance, and 0.457 g of Zr was added when amorphization was slightly advanced, and ball milling was performed again in an argon atmosphere for 4 days. EPMA analysis of the cross section of the completed alloy particles showed that Zr was segregated in the MgNiNb phase having an amorphous structure. Table 2 shows the maximum discharge capacity and capacity retention of a battery using this alloy as a negative electrode. Although the maximum discharge capacity was slightly reduced, the cycle characteristics were improved.

【0025】《実施例11》実施例1と同様の条件でM
g2.43g、Ni5.87g、およびV0.509g
をあらかじめ7日間ボールミルし、アモルファス化が若
干進んだ時点でNbを0.93g加えて、再びアルゴン
雰囲気中でボールミルを4日間行った。出来上がった合
金粒子の断面をEPMA分析したところ、アモルファス
構造のMgNiV相の中にNbが偏析しているのが観察
された。この合金を負極に用いた電池の最大放電容量と
容量維持率を表2に示す。最大放電容量はやや低下した
が、サイクル特性に向上が見られた。
<< Embodiment 11 >> M under the same conditions as in Embodiment 1.
g 2.43 g, Ni 5.87 g, and V 0.509 g
Was subjected to ball milling for 7 days in advance, and 0.93 g of Nb was added at the time when the amorphization was slightly advanced, and the ball mill was again performed in an argon atmosphere for 4 days. When the cross section of the completed alloy particles was analyzed by EPMA, it was observed that Nb was segregated in the MgNiV phase having an amorphous structure. Table 2 shows the maximum discharge capacity and capacity retention of a battery using this alloy as a negative electrode. Although the maximum discharge capacity was slightly reduced, the cycle characteristics were improved.

【0026】《実施例12》実施例7においてCrの代
わりにMo、W、Fe、Pb、Ag、Al、Mn、Z
n、In、Ga、Hf、Si、B、PまたはLaを0.
05原子相当添加してメカニカルアロイングを行った。
得られた合金を負極に用いた電池の最大放電容量と容量
維持率を表2に示す。この条件下で得られた合金は、い
ずれもアモルファス構造で、最大放電容量は若干低下し
たが、サイクル特性は向上した。また、その添加量の影
響もほぼCrの場合と同様であった。
Example 12 In Example 7, instead of Cr, Mo, W, Fe, Pb, Ag, Al, Mn, and Z were used.
n, In, Ga, Hf, Si, B, P, or La at 0.
Mechanical alloying was performed by adding an amount equivalent to 05 atoms.
Table 2 shows the maximum discharge capacity and capacity retention of the battery using the obtained alloy as the negative electrode. All of the alloys obtained under these conditions had an amorphous structure and the maximum discharge capacity was slightly reduced, but the cycle characteristics were improved. The effect of the addition amount was almost the same as in the case of Cr.

【0027】《実施例13》実施例7と同様の条件でM
g2.43gとNi5.87gおよびNb0.93gを
10日間ボールミルし、MgNiNb0.1アモルファス
合金を作製した。次に、このMgNiNb0.1アモルフ
ァス合金5gと粒径0.1μmのCo微粒子0.5g
(Co0.14相当)を遊星ボールミル(フィリッチェ社製
P−5型)でアルゴン雰囲気中、6Gの加速で10分
間混合を行った。この後、回収した合金の約半分を真空
中600℃で30分間の熱処理を行った。出来上がった
合金粒子の断面をEPMA分析したところ、アモルファ
ス構造のMgNiNb合金粒子の表面部のみにCoが偏
析していることが観察された。そして、熱処理しないも
のに比べて、熱処理したものの方がやや合金内部までC
oの拡散が認められた。この合金を負極に用いた電池の
最大放電容量と容量維持率を表2に示す。最大放電容量
はMgNiアモルファス合金とほとんど変わらず、サイ
クル特性は向上した。
<< Embodiment 13 >> M under the same conditions as in Embodiment 7.
The g2.43g and Ni5.87g and Nb0.93g ball mill for 10 days to prepare a MgNiNb 0.1 amorphous alloy. Next, 5 g of the MgNiNb 0.1 amorphous alloy and 0.5 g of Co fine particles having a particle size of 0.1 μm.
(Equivalent to 0.14 Co) was mixed in a planetary ball mill (P-5, manufactured by Philitchie) at an acceleration of 6 G for 10 minutes in an argon atmosphere. Thereafter, about half of the recovered alloy was subjected to a heat treatment in vacuum at 600 ° C. for 30 minutes. An EPMA analysis of the cross section of the completed alloy particles showed that Co was segregated only on the surface of the MgNiNb alloy particles having an amorphous structure. Then, the heat-treated one has C
The diffusion of o was observed. Table 2 shows the maximum discharge capacity and capacity retention of a battery using this alloy as a negative electrode. The maximum discharge capacity was almost the same as that of the MgNi amorphous alloy, and the cycle characteristics were improved.

【0028】《実施例14》実施例11と同様の条件で
MgNiNb0.1アモルファス合金を作製した。次に、
このMgNiNb0.1アモルファス合金5gを5wt%
硫酸銅水溶液に10分間浸漬し、置換メッキにより、合
金粒子表面にCu層(Cu0.05相当)を形成した。この
後、回収した合金の約半分を真空中450℃で1時間の
熱処理を行った。出来上がった合金粒子の断面をEPM
A分析したところ、いずれもアモルファス構造のMgN
iNb合金粒子の表面部のみにCuが偏析していること
が観察された。そして、熱処理しないものに比べて熱処
理したものの方がやや合金内部までCuの拡散が認めら
れた。この合金を負極に用いた電池の最大放電容量と容
量維持率を表2に示す。最大放電容量はMgNiアモル
ファス合金とほとんど変わらず、サイクル特性は向上し
た。
Example 14 An MgNiNb 0.1 amorphous alloy was produced under the same conditions as in Example 11. next,
5 wt% of this MgNiNb 0.1 amorphous alloy 5 g
A Cu layer (corresponding to Cu 0.05 ) was formed on the surface of the alloy particles by immersion in a copper sulfate aqueous solution for 10 minutes and displacement plating. Thereafter, about half of the recovered alloy was subjected to a heat treatment at 450 ° C. for 1 hour in a vacuum. The cross section of the completed alloy particles is EPM
A analysis showed that all of the amorphous MgN
It was observed that Cu was segregated only on the surface of the iNb alloy particles. The diffusion of Cu was slightly recognized in the alloy which had been subjected to the heat treatment as compared with the case where the heat treatment was not performed. Table 2 shows the maximum discharge capacity and capacity retention of a battery using this alloy as a negative electrode. The maximum discharge capacity was almost the same as that of the MgNi amorphous alloy, and the cycle characteristics were improved.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】なお、メカニカルアロイングとしては、ボ
ールミル以外に遊星ボールミルが有効であった。遊星ボ
ールミルでは遠心力が強くかかるため、短時間で合金化
が可能となる利点がある。真空中での熱処理温度として
は、MgNiが再結晶化しない温度で、かつ表面金属が
熱拡散する温度が好ましく、300℃以上600℃以下
が最適であった。
As mechanical alloying, a planetary ball mill other than a ball mill was effective. The planetary ball mill has an advantage that alloying can be performed in a short time because a strong centrifugal force is applied. The heat treatment temperature in a vacuum is preferably a temperature at which MgNi does not recrystallize and a temperature at which the surface metal is thermally diffused, and most preferably 300 ° C. or more and 600 ° C. or less.

【0032】[0032]

【発明の効果】以上のように本発明によれば、従来のM
gNi二成分合金やMgNiM’の多成分合金に比べ
て、高容量でサイクル特性に優れた負極を与える水素吸
蔵合金をうることができる。
As described above, according to the present invention, the conventional M
As compared with a gNi binary alloy or a MgNiM 'multi-component alloy, a hydrogen storage alloy which provides a negative electrode having a high capacity and excellent cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における水素吸蔵合金の粉末
X線回折パターンを示す図である。
FIG. 1 is a view showing a powder X-ray diffraction pattern of a hydrogen storage alloy in one example of the present invention.

【図2】本発明の一実施例における水素吸蔵合金を負極
に用いた電池の充放電サイクル特性を示す図である。
FIG. 2 is a diagram showing charge / discharge cycle characteristics of a battery using a hydrogen storage alloy according to one embodiment of the present invention for a negative electrode.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 一般式MgMxM’yNiz(MはNbお
よびはTaの少なくとも1種の元素、M’はCr、M
o、W、V、Co、Fe、Cu、Pb、Ag、Al、M
n、Zn、Zr、In、Ga、Hf、Si、B、P、お
よび希土類元素からなる群より選ばれる少なくとも1種
の元素、0.02≦x≦0.5、0≦y≦0.2、0.8≦
z≦1.5、)で表され、合金相の大部分がアモルファ
ス構造であることを特徴とする水素吸蔵合金。
1. The general formula MgM x M ′ y Ni z (M is at least one element of Nb and Ta, M ′ is Cr, M
o, W, V, Co, Fe, Cu, Pb, Ag, Al, M
at least one element selected from the group consisting of n, Zn, Zr, In, Ga, Hf, Si, B, P, and a rare earth element; 0.02 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.2 , 0.8 ≦
A hydrogen storage alloy represented by z ≦ 1.5), wherein most of the alloy phase has an amorphous structure.
【請求項2】 Mg、Ni、MおよびM’が均一に分散
してアモルファス構造の合金相を形成している請求項1
記載の水素吸蔵合金。
2. An alloy phase having an amorphous structure in which Mg, Ni, M and M ′ are uniformly dispersed.
The hydrogen storage alloy according to the above.
【請求項3】 Mg、NiおよびMがアモルファス構造
の合金相を形成し、M’が合金内に偏析している請求項
1記載の水素吸蔵合金。
3. The hydrogen storage alloy according to claim 1, wherein Mg, Ni and M form an alloy phase having an amorphous structure, and M ′ segregates in the alloy.
【請求項4】 Mg、NiおよびM’がアモルファス構
造の合金相を形成し、Mが合金内に偏析している請求項
1記載の水素吸蔵合金。
4. The hydrogen storage alloy according to claim 1, wherein Mg, Ni and M ′ form an alloy phase having an amorphous structure, and M is segregated in the alloy.
【請求項5】 Mg、Niがアモルファス構造の合金相
を形成し、MおよびM’が合金内に偏析している請求項
1記載の水素吸蔵合金。
5. The hydrogen storage alloy according to claim 1, wherein Mg and Ni form an alloy phase having an amorphous structure, and M and M ′ are segregated in the alloy.
【請求項6】 Mg、NiおよびM’がアモルファス構
造の合金相を形成し、Mが合金粒子表面に偏析している
請求項1記載の水素吸蔵合金。
6. The hydrogen storage alloy according to claim 1, wherein Mg, Ni and M ′ form an alloy phase having an amorphous structure, and M segregates on the surface of the alloy particles.
【請求項7】 Mg、NiおよびMがアモルファス構造
の合金相を形成し、M’が合金粒子表面に偏析している
請求項1記載の水素吸蔵合金。
7. The hydrogen storage alloy according to claim 1, wherein Mg, Ni and M form an alloy phase having an amorphous structure, and M ′ segregates on the surface of the alloy particles.
【請求項8】 所定量のMg、Ni、MおよびM’を同
時に仕込んでメカニカルアロイングすることを特徴とす
る請求項2記載の水素吸蔵合金の製造方法。
8. The method for producing a hydrogen storage alloy according to claim 2, wherein predetermined amounts of Mg, Ni, M and M ′ are simultaneously charged and mechanically alloyed.
【請求項9】 所定量のMg、NiおよびMまたはM’
を同時に仕込んでメカニカルアロイングをアモルファス
相が若干形成される程度まで行った後、所定量のM’ま
たはMを添加し再びメカニカルアロイングを行うことを
特徴とする請求項3または4記載の水素吸蔵合金の製造
方法。
9. Predetermined amounts of Mg, Ni and M or M ′
5. The hydrogenation according to claim 3, wherein the metal alloying is performed at the same time, the mechanical alloying is performed to the extent that an amorphous phase is slightly formed, and then a predetermined amount of M 'or M is added and the mechanical alloying is performed again. Manufacturing method of occlusion alloy.
【請求項10】 所定量のMgおよびNiを同時に仕込
んでメカニカルアロイングをアモルファス相が若干形成
される程度まで行った後、所定量のM’およびMを添加
し再びメカニカルアロイングを行うことを特徴とする請
求項5記載の水素吸蔵合金の製造方法。
10. A method in which predetermined amounts of Mg and Ni are simultaneously charged and mechanical alloying is performed until an amorphous phase is slightly formed, and then predetermined amounts of M ′ and M are added and mechanical alloying is performed again. The method for producing a hydrogen storage alloy according to claim 5, characterized in that:
【請求項11】 所定量のMg、NiおよびM’または
Mを同時に仕込んでメカニカルアロイングを行いアモル
ファス構造のMg−Ni−M’またはMg−Ni−M合
金粒子を作製し、その後合金表面にMまたはM’の微粒
子を機械的に付着させることを特徴とする請求項6また
は7記載の水素吸蔵合金の製造方法。
11. A method in which predetermined amounts of Mg, Ni and M ′ or M are simultaneously charged and subjected to mechanical alloying to produce Mg—Ni—M ′ or Mg—Ni—M alloy particles having an amorphous structure. The method for producing a hydrogen storage alloy according to claim 6, wherein M or M 'fine particles are mechanically attached.
【請求項12】 所定量のMg、NiおよびM’または
Mを同時に仕込んでメカニカルアロイングを行いアモル
ファス構造のMg−Ni−M’またはMg−Ni−M合
金粒子を作製し、その後合金表面にメッキ法でMまたは
M’層を形成することを特徴とする請求項6または7記
載の水素吸蔵合金の製造方法。
12. A predetermined amount of Mg, Ni and M ′ or M are simultaneously charged and subjected to mechanical alloying to produce Mg—Ni—M ′ or Mg—Ni—M alloy particles having an amorphous structure, and then to the alloy surface. The method for producing a hydrogen storage alloy according to claim 6 or 7, wherein the M or M 'layer is formed by a plating method.
【請求項13】 請求項1〜7のいずれかに記載の水素
吸蔵合金を用いた水素吸蔵合金電極。
13. A hydrogen storage alloy electrode using the hydrogen storage alloy according to claim 1.
JP9030249A 1997-02-14 1997-02-14 Hydrogen storage alloy and its production Pending JPH10226836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9030249A JPH10226836A (en) 1997-02-14 1997-02-14 Hydrogen storage alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9030249A JPH10226836A (en) 1997-02-14 1997-02-14 Hydrogen storage alloy and its production

Publications (1)

Publication Number Publication Date
JPH10226836A true JPH10226836A (en) 1998-08-25

Family

ID=12298446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9030249A Pending JPH10226836A (en) 1997-02-14 1997-02-14 Hydrogen storage alloy and its production

Country Status (1)

Country Link
JP (1) JPH10226836A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217640A (en) * 1998-01-29 1999-08-10 Agency Of Ind Science & Technol Magnesium-type hydrogen storage alloy
KR20120129914A (en) * 2010-01-19 2012-11-28 오보닉 배터리 컴퍼니, 아이엔씨. Low-cost, high power, high energy density, solid-state, bipolar metal hydride batteries

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217640A (en) * 1998-01-29 1999-08-10 Agency Of Ind Science & Technol Magnesium-type hydrogen storage alloy
KR20120129914A (en) * 2010-01-19 2012-11-28 오보닉 배터리 컴퍼니, 아이엔씨. Low-cost, high power, high energy density, solid-state, bipolar metal hydride batteries
JP2013517614A (en) * 2010-01-19 2013-05-16 オヴォニック バッテリー カンパニー インコーポレイテッド Low cost, high power, high energy density bipolar solid state metal hydride battery

Similar Documents

Publication Publication Date Title
US20070259264A1 (en) Hydrogen absorbing alloy and secondary battery
JP6608558B1 (en) Nickel metal hydride secondary battery negative electrode active material and nickel metal hydride secondary battery that do not require surface treatment
JP6276031B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JP7311507B2 (en) Large-capacity and long-life La-Mg-Ni type negative electrode hydrogen storage material for secondary chargeable nickel-metal hydride battery and method for producing the same
JPH03191040A (en) Hydrogen storage alloy electrode
JP2895848B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
JP4815738B2 (en) Method for producing hydrogen storage alloy powder
JPH07286225A (en) Hydrogen storage alloy and nickel-hydrogen storage battery using the same
JPH10226836A (en) Hydrogen storage alloy and its production
JPH10147827A (en) Hydrogen storage alloy and its production
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2004124132A (en) Hydrogen occlusion alloy powder, hydrogen occlusion alloy electrode, and nickel-hydrogen storage battery using the same
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
JPH0765833A (en) Hydrogen storage alloy electrode
JP3264168B2 (en) Nickel-metal hydride battery
JP2011102433A (en) Hydrogen storage alloy powder and method for producing the same, hydrogen storage alloy electrode and nickel-hydrogen storage battery using the same
JP3470987B2 (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP3011437B2 (en) Hydrogen storage alloy electrode
JP3189361B2 (en) Alkaline storage battery
JP4601754B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP2000054042A (en) Production of hydrogen storage alloy
JPH06176756A (en) Hydrogen storage alloy electrode for battery
JP2002141061A (en) Hydrogen storage alloy electrode and its manufacturing method
JP2929716B2 (en) Hydrogen storage alloy electrode
JP2586752B2 (en) Hydrogen storage alloy electrode