JPH11345610A - Negative electrode for battery and manufacture thereof - Google Patents

Negative electrode for battery and manufacture thereof

Info

Publication number
JPH11345610A
JPH11345610A JP10152464A JP15246498A JPH11345610A JP H11345610 A JPH11345610 A JP H11345610A JP 10152464 A JP10152464 A JP 10152464A JP 15246498 A JP15246498 A JP 15246498A JP H11345610 A JPH11345610 A JP H11345610A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
magnesium
fine particles
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10152464A
Other languages
Japanese (ja)
Inventor
Toru Yamamoto
徹 山本
Teruhisa Kanbara
輝壽 神原
Shuji Ito
修二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10152464A priority Critical patent/JPH11345610A/en
Priority to US09/323,892 priority patent/US6265109B1/en
Publication of JPH11345610A publication Critical patent/JPH11345610A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery with Mg as a negative electrode, having a high energy density and high cycle characteristic. SOLUTION: A negative electrode is used which has fine particles of magnesium or magnesium alloy with average particle size not more than 70 μm. In this case, magnesium amount in the magnesium alloy is preferably not less than 70 wt.%. In manufacturing, fine particles of magnesium or magnesium alloy are produced by a gas atomizing method, a ball mill method or a planetary ball mill method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は負極としてマグネシ
ウムあるいはマグネシウム合金を用いた電池用負極およ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode for a battery using magnesium or a magnesium alloy as the negative electrode and a method for producing the same.

【0002】[0002]

【従来の技術】近年、ポータブル機器、コードレス機器
の発展に伴い、その電源である電池には、よりいっそう
の高いエネルギ−密度が要求される。この要求に対して
Liイオン電池やニッケル水素蓄電池が注目されてい
る。さらなる高エネルギー密度化に対しては、金属Li
を負極に用いた電池系が有力とされている。
2. Description of the Related Art In recent years, with the development of portable devices and cordless devices, batteries as power sources thereof are required to have higher energy density. Li-ion batteries and nickel-metal hydride batteries have attracted attention in response to this demand. For higher energy density, metal Li
A battery system using as a negative electrode is considered to be promising.

【0003】このように重量エネルギー密度の大きなL
iを負極に用いることによって、高エネルギー密度の電
池が得られるが、Li資源は海水や岩塩水中に希釈に存
在しており、コスト面で安くなる目処がない。
As described above, L having a large weight energy density
By using i for the negative electrode, a battery with a high energy density can be obtained, but Li resources are present in dilution in seawater or rock salt water, and there is no prospect of cost reduction.

【0004】これに対して、Mgを負極に用いた電池系
は、負極のMg1モルの反応で2電子が移動するため、
理論的に金属Liを上回る高体積エネルギー密度の電池
が期待できる。さらに、資源的にも豊富で安価であり、
環境面でも有害でないため非常に期待の大きな負極材料
である。これは、特開昭62−211861号公報、特
開平1−95469号公報、または特開平4−2817
2号公報で、提案されている。
On the other hand, in a battery system using Mg for the negative electrode, two electrons move by the reaction of 1 mol of Mg on the negative electrode,
A battery with a high volume energy density that is theoretically higher than that of metal Li can be expected. Furthermore, it is abundant and inexpensive in terms of resources,
Since it is not harmful to the environment, it is a very promising negative electrode material. This is disclosed in JP-A-62-211861, JP-A-1-95469, or JP-A-4-2817.
No. 2, proposed.

【0005】[0005]

【発明が解決しようとする課題】しかし、この電池系で
は負極表面に電気化学的に不活性のものが形成され易
く、電流が流れにくくなる(分極が大きい)。そのため
出力特性、容量、電圧及びサイクル特性が悪くなるとい
う課題があった。この対策として、合金を細かく粉砕
し、比表面積を増加させ、電流密度を確保する方法が考
えられる。しかし、通常のジェットミル法や湿式の機械
粉砕法では延性の大きなMgの粉砕は困難であり、ま
た、これら粉砕を行った場合、作業中に表面に酸化被膜
が形成される課題もあった。このため、従来は理論的に
高エネルギー密度が期待されるMgのわずか10%〜2
0%程度の負極利用率に止まっていた。
However, in this battery system, an electrochemically inactive substance is apt to be formed on the surface of the negative electrode, and it is difficult for a current to flow (polarization is large). Therefore, there is a problem that output characteristics, capacity, voltage and cycle characteristics are deteriorated. As a countermeasure, a method of pulverizing the alloy finely to increase the specific surface area and secure the current density can be considered. However, it is difficult to pulverize Mg having high ductility by a usual jet mill method or wet mechanical pulverization method, and when these pulverizations are performed, there is a problem that an oxide film is formed on the surface during the operation. For this reason, conventionally, only 10% to 2% of Mg, which is theoretically expected to have a high energy density,
The utilization rate of the negative electrode was only about 0%.

【0006】[0006]

【課題を解決するための手段】以上の課題の解決のため
本発明の電池用負極は、平均粒径が70μm以下であ
る、マグネシウムの粒子もしくはマグネシウム合金の粒
子を有することを特徴とする。
Means for Solving the Problems To solve the above problems, the negative electrode for a battery according to the present invention is characterized by having magnesium particles or magnesium alloy particles having an average particle diameter of 70 μm or less.

【0007】このとき、In,Ga,Sn,Pb,C
d,Mn,Co,Znの少なくとも1種類を含有するこ
とが効果的である。
At this time, In, Ga, Sn, Pb, C
It is effective to contain at least one of d, Mn, Co, and Zn.

【0008】また、マグネシウムの粒子もしくはマグネ
シウム合金の粒子の表面にNiを添加することが有効で
ある。
[0008] It is effective to add Ni to the surface of magnesium particles or magnesium alloy particles.

【0009】このとき、マグネシウム合金中のマグネシ
ウム量が70重量%以上であることが望ましい。
At this time, it is desirable that the amount of magnesium in the magnesium alloy is 70% by weight or more.

【0010】以上の材料を製造する方法は、ガスアトマ
イズ法、ボールミル法、または遊星ボールミル法でマグ
ネシウムの粒子もしくはマグネシウム合金の粒子を作製
することが効果的である。
As a method for producing the above materials, it is effective to produce magnesium particles or magnesium alloy particles by a gas atomization method, a ball mill method, or a planetary ball mill method.

【0011】また、10重量%以下の量のNiの混合、
メカノフュージョン法、またはメッキ法により、Niを
添加することが有用である。
A mixture of Ni in an amount of 10% by weight or less;
It is useful to add Ni by mechanofusion or plating.

【0012】[0012]

【発明の実施の形態】我々は鋭意検討を重ねた結果、不
活性ガスによるガスアトマイズ法、あるいは不活性ガス
中でのボールミル法や遊星ボールミル法などのメカニカ
ルアロイング法によりMgあるいはMg合金を作製する
と、電池の分極を下げることが出来、負極の利用率を大
きく増加させ、サイクル特性にも優れた電池を実現する
ことができた。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of intensive studies, it has been found that Mg or Mg alloy is produced by a gas atomizing method using an inert gas, or a mechanical alloying method such as a ball mill method or a planetary ball mill method in an inert gas. In addition, the polarization of the battery could be reduced, the utilization rate of the negative electrode was greatly increased, and a battery having excellent cycle characteristics could be realized.

【0013】Mgを負極に用いると、理論上はLiを上
回る体積エネルギー密度の電池が得られる。しかし、実
際にはMg表面に酸化被膜や有機被膜などの電気化学的
に不活性の被膜が形成される。そのため、これを用いた
電池では、分極が大きくなり、電池電圧が低くなり、ま
た電流密度も取れず、大きなエネルギー密度が得られな
い。
When Mg is used for the negative electrode, a battery having a volume energy density that is theoretically higher than that of Li can be obtained. However, in practice, an electrochemically inactive coating such as an oxide coating or an organic coating is formed on the Mg surface. Therefore, in a battery using this, the polarization increases, the battery voltage decreases, the current density cannot be obtained, and a large energy density cannot be obtained.

【0014】以上の課題を解決するためには、比表面積
を大きくすることが有効な手段と考えられる。しかし、
従来のジェットミルや湿式の機械粉砕法ではMgの延性
が大きいため、うまく粉砕できず、さらに粉砕できたと
してもMg表面に絶縁膜が形成され、分極が大きくなる
という課題があった。微粒子化の方法としては不活性ガ
スによるガスアトマイズ法や不活性ガス中でのボールミ
ル法や遊星ボールミル法(MA法)のように予め微粒子
が得られる方法が有効である。平均粒径としては負極利
用率及び出力特性の点から70μm以下が望ましい。
In order to solve the above problems, it is considered effective to increase the specific surface area. But,
In a conventional jet mill or wet mechanical pulverization method, the ductility of Mg is large, so that it cannot be pulverized well. Even if pulverization is possible, an insulating film is formed on the Mg surface and polarization is increased. As a method for forming fine particles, a method in which fine particles are obtained in advance, such as a gas atomizing method using an inert gas, a ball mill method in an inert gas, or a planetary ball mill method (MA method) is effective. The average particle size is desirably 70 μm or less from the viewpoint of the negative electrode utilization factor and the output characteristics.

【0015】また、MgにIn,Ga,Sn,Pb,C
d,Mn,Co,Znの少なくとも1種類を含有したマ
グネシウム合金とすることで表面にできる酸化膜等が半
導体化し電池電圧、負極利用率及びサイクル特性が大幅
に改善できることがわかった。この際、Mg量としては
70重量%以上が高エネルギー密度化のために必要であ
る。さらに、マグネシウムあるいはマグネシウム合金の
表面にNiを存在させることで電気化学特性とサイクル
特性の一層の向上が図れた。この手段としては、合金組
成にNiを少量添加するか、メカノフュージョン法等の
機械的表面処理で付ける方法さらにはメッキ法等が有効
である。
In addition, Mg, In, Ga, Sn, Pb, C
It was found that by using a magnesium alloy containing at least one of d, Mn, Co, and Zn, an oxide film or the like formed on the surface became a semiconductor, and the battery voltage, negative electrode utilization factor, and cycle characteristics could be significantly improved. At this time, 70% by weight or more of Mg is necessary for increasing the energy density. Furthermore, the presence of Ni on the surface of magnesium or a magnesium alloy further improved the electrochemical characteristics and cycle characteristics. As this means, a method of adding a small amount of Ni to the alloy composition, a method of applying a mechanical surface treatment such as a mechanofusion method, and a plating method are effective.

【0016】以下に本発明の実施例を詳しく説明する。Hereinafter, embodiments of the present invention will be described in detail.

【0017】[0017]

【実施例】(実施例1)Mgを高周波真空溶解炉で溶解
した後、Arガスを用いたガスアトマイズ法で溶湯を急
冷凝固させた。このようにして得られたMg微粒子は、
ほぼ球形をしており、平均粒径は70μmであった。
EXAMPLES (Example 1) After Mg was melted in a high-frequency vacuum melting furnace, the molten metal was rapidly solidified by a gas atomizing method using Ar gas. The Mg fine particles obtained in this way are:
It was almost spherical and had an average particle size of 70 μm.

【0018】次に、このMg粉末にジメチルアセトアミ
ド(DMAA)を溶媒として、0.5molの過塩素酸マグ
ネシウムと1molの水とを溶解させた電解質を添加し
て、混合体を作製し負極ペーストとした。この負極ペー
ストを用いて、図1の構造の空気電池を作製した。図1
において、1は酸素極(空気極)、2はガス拡散性はあ
るが液体は通過しないPTFE(ホ゜リテトラフルオロエチレン)からな
る撥水膜、3は空気取り入れ孔、4は酸素極の支持と空
気の拡散を行う拡散紙、5は電解液をしみ込ませたセパ
レータ、6はガスケット、7は負極ペーストである。こ
のように、従来の空気亜鉛電池と同様の構造のMg負極
空気電池(一次電池)を作製した。但し、これらの組立
工程はすべてArガス雰囲気中で行った。
Next, an electrolyte obtained by dissolving 0.5 mol of magnesium perchlorate and 1 mol of water using dimethylacetamide (DMAA) as a solvent was added to the Mg powder to form a mixture, and a negative electrode paste was prepared. did. An air battery having the structure shown in FIG. 1 was manufactured using the negative electrode paste. FIG.
1 is an oxygen electrode (air electrode), 2 is a water-repellent film made of PTFE (polytetrafluoroethylene) which has gas diffusivity but does not allow liquid to pass through, 3 is an air intake hole, 4 is an oxygen electrode support and air 5 is a separator impregnated with an electrolytic solution, 6 is a gasket, and 7 is a negative electrode paste. Thus, a Mg negative electrode air battery (primary battery) having the same structure as the conventional zinc-air battery was manufactured. However, all of these assembling steps were performed in an Ar gas atmosphere.

【0019】次に放電試験を放電電流1mA/g、1.2V
カットの条件で放電試験を行った。比較例1の電池とし
て、従来のように鋳造Mgブロックを機械粉砕と湿式粉
砕で平均粒径70μmにまで粉砕した合金微粒子を負極
とし、同一の製造方法、構造の空気電池を作製した。ま
た、比較例2としては、本実施例と同様にガスアトマイ
ズ法で作製したものを分級し、平均粒径75μmのMg
粒子を得た。これを用いて本実施例と同一の製造方法、
構造の空気電池を作製した。
Next, a discharge test was conducted at a discharge current of 1 mA / g and 1.2 V.
A discharge test was performed under cut conditions. As a battery of Comparative Example 1, an air battery having the same manufacturing method and structure was manufactured by using alloy fine particles obtained by grinding a cast Mg block by mechanical grinding and wet grinding to an average particle diameter of 70 μm as a conventional negative electrode. Further, as Comparative Example 2, a sample produced by a gas atomization method in the same manner as in this example was classified, and Mg having an average particle diameter of 75 μm was classified.
Particles were obtained. Using this, the same manufacturing method as the present embodiment,
An air battery having the structure was manufactured.

【0020】表1に平均放電電圧及び負極利用率(実容
量/理論容量)の比較を示した。表1からわかるよう
に、本実施例の空気電池は従来の機械粉砕Mg(比較例
1)に比べ平均放電電圧が高く、負極利用率も高くなっ
た。これは機械粉砕Mgでは表面に強固な酸化被膜や水
酸化被膜あるいは有機被膜が形成され、分極が大きくな
るためと考えられる。
Table 1 shows a comparison between the average discharge voltage and the negative electrode utilization rate (actual capacity / theoretical capacity). As can be seen from Table 1, the air battery of this example had a higher average discharge voltage and a higher negative electrode utilization than the conventional mechanically pulverized Mg (Comparative Example 1). This is considered to be because strong oxidized film, hydroxylated film or organic film is formed on the surface by mechanically pulverized Mg, and polarization is increased.

【0021】また、Mgの粒径が大きい場合(比較例
2)は、平均放電電圧の低下はあまり大きくないが、負
極利用率は大きく低下した。これは比表面積が減少する
ことでレート特性に影響を与えたためと考えられる。こ
のことより平均粒径は70μm以下が有効であることが
わかった。
When the particle size of Mg was large (Comparative Example 2), the reduction of the average discharge voltage was not so large, but the utilization rate of the negative electrode was greatly reduced. This is considered to be because the reduction in the specific surface area affected the rate characteristics. From this, it was found that an average particle size of 70 μm or less was effective.

【0022】[0022]

【表1】 [Table 1]

【0023】(実施例2)Mg(100メッシュ以下)1
8gとCo(100メッシュ以下)2gとを1Lのステン
レス製のボールミルポットに挿入し、その上に直径19
mmのステンレスボールを50個、直径12mmのステ
ンレスボールを60個挿入した。ポット内をアルゴン置
換した後、回転数100rpmで10日間ボールミル
(メカニカルアロイング)を行った。回収したMgCo
合金微粒子は平均粒径が21μmであった。この合金粉
末を用いて実施例1と同様の方法、構造の空気電池を作
製した。
(Example 2) Mg (100 mesh or less) 1
8 g and 2 g of Co (100 mesh or less) are inserted into a 1 L stainless steel ball mill pot, and a diameter of 19 g is placed thereon.
50 mm stainless steel balls and 60 stainless steel balls having a diameter of 12 mm were inserted. After the inside of the pot was replaced with argon, a ball mill (mechanical alloying) was performed at a rotation speed of 100 rpm for 10 days. MgCo recovered
The alloy fine particles had an average particle size of 21 μm. Using this alloy powder, an air battery having the same method and structure as in Example 1 was manufactured.

【0024】次に放電試験を放電電流1mA/g、1.2V
カットの条件で放電試験を行った結果、実施例1よりも
放電平均電圧が高くなり、負極利用率も高くなった。こ
れは負極Mg合金表面に形成される酸化被膜の導電性が
良くなり、分極が抑えられたためと考えられる。
Next, a discharge test was conducted at a discharge current of 1 mA / g and 1.2 V.
As a result of performing a discharge test under cut conditions, the discharge average voltage was higher than in Example 1, and the negative electrode utilization rate was higher. This is considered to be because the conductivity of the oxide film formed on the surface of the negative electrode Mg alloy was improved and the polarization was suppressed.

【0025】(実施例3)実施例2と同様の方法でMg
(100メッシュ以下)16gとIn(100メッシュ以下)
4gとを1Lのステンレス製のボールミルポットに挿入
し、10日間ボールミルを行った。回収したMgIn合
金微粒子は平均粒径が35μmであった。このMg合金
粉末100重量部に対して結着剤としてPTFE粉末を
3重量部添加し、少量のDMAAを加えてペースト状に
し、Mo製のパンチングメタル芯材に塗着、プレスした
後、真空中で180℃30分加熱してPTFEを融解
し、負極を作製した。電解液には、トリメチルスルフォ
キシド(TMSO)に1molの過塩素酸マグネシウムを
溶解させた有機電解質を、正極には負極容量より十分大
容量のFeS2を用い、負極規制の液リッチ電池を作製
した。
(Embodiment 3) In the same manner as in Embodiment 2, Mg
(100 mesh or less) 16g and In (100 mesh or less)
4 g was inserted into a 1 L stainless steel ball mill pot and ball milled for 10 days. The recovered MgIn alloy fine particles had an average particle size of 35 μm. To 100 parts by weight of this Mg alloy powder, 3 parts by weight of PTFE powder as a binder was added, a small amount of DMAA was added to form a paste, applied to a punched metal core made of Mo, pressed, and then pressed in vacuum. At 180 ° C. for 30 minutes to melt the PTFE, thereby producing a negative electrode. An organic electrolyte in which 1 mol of magnesium perchlorate is dissolved in trimethyl sulfoxide (TMSO) is used as the electrolyte, and FeS 2, which is sufficiently larger than the capacity of the negative electrode, is used for the positive electrode. did.

【0026】次に充放電試験を充電電流5mA/gで120
%充電、放電は5mA/g、1.2Vカットの条件で行っ
た。比較例3として同一重量のMgIn合金板を負極に
用い、同様の方法で負極規制非水電解質電池を作製し
た。表1に平均放電電圧、負極利用率及び容量維持率
(50サイクル容量/初期容量)を示す。表1から本実
施例の電池はMgIn合金板負極よりも平均放電電圧、
負極利用率が高く、容量維持率も大きいことがわかっ
た。
Next, a charge / discharge test was performed at a charge current of 5 mA / g for 120 minutes.
% Charge and discharge were performed under the conditions of 5 mA / g and 1.2 V cut. As Comparative Example 3, a negative electrode-regulated nonaqueous electrolyte battery was produced in the same manner, using the same weight of MgIn alloy plate as the negative electrode. Table 1 shows the average discharge voltage, the negative electrode utilization rate, and the capacity retention rate (50 cycle capacity / initial capacity). Table 1 shows that the battery of the present example has a higher average discharge voltage than the MgIn alloy plate negative electrode,
It was found that the negative electrode utilization rate was high and the capacity retention rate was also high.

【0027】(実施例4)Mg(100メッシュ以下)1
4gとIn(100メッシュ以下)6gを用いて実施例2
と同様の製造条件で合金化し、その後実施例3と同様
に、負極規制液リッチ電池を作製した。又、比較のため
にMg14gに対してIn7gを添加(33重量%)し
て合金化したものを負極とした電池(比較例4)も作製
した。
Example 4 Mg (100 mesh or less) 1
Example 2 using 4 g and 6 g of In (100 mesh or less)
Alloying was performed under the same manufacturing conditions as in Example 1. Thereafter, a negative electrode regulated liquid-rich battery was manufactured in the same manner as in Example 3. Also, for comparison, a battery (Comparative Example 4) having a negative electrode obtained by alloying 14 g of Mg with 7 g of In added (33% by weight) was also prepared.

【0028】表1からわかるように本実施例の電池での
負極利用率は実施例3より若干低下したが、容量維持率
は向上した。また、比較例4では負極利用率が大きく低
下してしまった。これは合金中のMg量の低下が容量低
下につながったものでMg量としては70重量%以上必
要と思われる。
As can be seen from Table 1, the negative electrode utilization of the battery of this example was slightly lower than that of Example 3, but the capacity retention was improved. In Comparative Example 4, the negative electrode utilization rate was significantly reduced. This is because the decrease in the amount of Mg in the alloy led to a decrease in the capacity, and it is considered that the amount of Mg is required to be 70% by weight or more.

【0029】(実施例5〜9)実施例3においてInの
代わりにGa,Sn,Cd,Mn,Znを各々Mg量に
対して15重量%添加した。その後、同様の条件でボー
ルミルを行い、各種Mg合金を作製した。この様にして
作製したMg合金微粒子を負極として実施例3と同様の
構成で、負極規制液リッチの電池を作製した。表1に各
種電池特性を示すが、いずれの場合も比較例5〜9の合
金板材負極よりも高電圧、高負極利用率、高容量維持率
となった。
(Examples 5 to 9) In Example 3, Ga, Sn, Cd, Mn, and Zn were added in place of In in an amount of 15% by weight based on the amount of Mg. Thereafter, ball milling was performed under the same conditions to produce various Mg alloys. A battery rich in a negative electrode regulating liquid was prepared in the same manner as in Example 3 using the Mg alloy fine particles prepared in this manner as a negative electrode. Table 1 shows various battery characteristics. In each case, higher voltage, higher negative electrode utilization ratio, and higher capacity retention ratio were obtained than the alloy plate negative electrodes of Comparative Examples 5 to 9.

【0030】(実施例10)Mg(100メッシュ以下)
8gとPb(100メッシュ以下)2gとを500ccのス
テンレス製の遊星ボールミル用ポットに入れ、その中に
直径20mmのステンレスボールを20個、直径10m
mのステンレスボールを40個挿入した。ポット内をア
ルゴン置換した後、回転数2000rpmで2日間遊星
ボールミルを行った。回収したMgPb合金微粒子は平
均粒径が35μmであった。このMgPb合金粉末10
0重量部に対して結着剤としてPTFE粉末を3重量部
添加し、少量のジメチルスルフォキシド(DMSO)を
加えてペースト状にし、Mo製のパンチングメタル芯材
に塗着、プレスした後、真空中で180℃30分加熱し
てPTFEを融解し、負極を作製した。電解液には、D
MSOに0.6molの過塩素酸マグネシウムを溶解させた有
機電解質を、正極には負極容量より十分大容量のMo6
8を用い、負極規制の液リッチ電池を作製した。
Example 10 Mg (100 mesh or less)
8 g and 2 g of Pb (100 mesh or less) are placed in a 500 cc stainless steel planetary ball mill pot, and 20 stainless steel balls having a diameter of 20 mm and a diameter of 10 m are placed therein.
40 stainless steel balls were inserted. After the inside of the pot was replaced with argon, a planetary ball mill was performed at a rotation speed of 2000 rpm for 2 days. The recovered MgPb alloy fine particles had an average particle size of 35 μm. This MgPb alloy powder 10
After adding 3 parts by weight of PTFE powder as a binder to 0 parts by weight, adding a small amount of dimethyl sulfoxide (DMSO) to form a paste, applying it to a punched metal core made of Mo, pressing it, The PTFE was melted by heating at 180 ° C. for 30 minutes in a vacuum to produce a negative electrode. The electrolyte is D
The organic electrolyte containing dissolved magnesium perchlorate of 0.6mol to MSO, sufficiently larger capacity than the negative electrode capacity to the positive electrode Mo 6
With S 8, to produce a liquid-rich negative cell regulation.

【0031】次に実施例3と同様に充電電流5mA/gで1
20%充電、放電は5mA/g、1.2Vカットの条件で充
放電試験を行った。比較例10としてMgPb合金の板
材を負極に用いた場合の電池特性を表1に示した。表1
から本実施例の負極を用いた電池は板材のものよりもす
べての点で優れることがわかった。
Next, in the same manner as in Example 3, the charging current was 5 mA / g, and
A charge / discharge test was performed under the conditions of 20 mA charge / discharge and 5 mA / g, 1.2 V cut. As Comparative Example 10, the battery characteristics when an MgPb alloy plate material was used for the negative electrode are shown in Table 1. Table 1
From this, it was found that the battery using the negative electrode of this example was superior in all respects to the plate material.

【0032】(実施例11)実施例3と同様の方法でM
g16gとIn4gよりボールミルによって平均粒径が
35μmのMgIn合金粉末を作製した。
(Embodiment 11) In the same manner as in Embodiment 3, M
MgIn alloy powder having an average particle diameter of 35 μm was prepared from g16g and In4g by a ball mill.

【0033】次に、この合金粒子15gに、粒径30n
mのNi微粒子1.3gをアルゴン中でメカノフュージ
ョン処理(ホソカワミクロン製AM−15F使用、ギャ
ップ1mm、1200rpm、15分間)し、MgIn
合金粒子表面にNiの微粉末を均一に付着させた。
Next, 15 g of the alloy particles were added with a particle size of 30 n.
1.3 g of Ni fine particles of m m were subjected to mechanofusion treatment in argon (using AM-15F manufactured by Hosokawa Micron, gap 1 mm, 1200 rpm, 15 minutes), and MgIn
Ni fine powder was uniformly adhered to the surface of the alloy particles.

【0034】この後、この複合粒子100重量部に対し
て結着剤としてPTFE粉末を3重量部添加し、少量の
ジメチルホルムアミド(DMF)を加えてペースト状に
し、Mo製のパンチングメタル芯材に塗着、プレスした
後、真空中で180℃30分加熱してPTFEを融解
し、負極を作製した。電解液には、DMFとDMSOの
体積比1:1の混合溶媒に1.5molの過塩素酸マグネシ
ウムを溶解させた有機電解質を、正極には負極容量より
十分大容量のV25を用い、負極規制の液リッチ電池を
作製した。
Thereafter, 3 parts by weight of PTFE powder as a binder were added to 100 parts by weight of the composite particles, and a small amount of dimethylformamide (DMF) was added to form a paste. After coating and pressing, PTFE was melted by heating at 180 ° C. for 30 minutes in a vacuum to prepare a negative electrode. An organic electrolyte obtained by dissolving 1.5 mol of magnesium perchlorate in a mixed solvent of DMF and DMSO at a volume ratio of 1: 1 was used for the electrolyte, and V 2 O 5 having a capacity sufficiently larger than the capacity of the negative electrode was used for the positive electrode. A negative electrode regulated liquid-rich battery was produced.

【0035】次に実施例3と同様に充放電試験を充電電
流5mA/gで120%充電、放電は5mA/g、1.2Vカッ
トの条件で行った。表1から本実施例の負極を用いた電
池は、Ni未処理の実施例3に比べ、サイクル特性の点
で優れることがわかった。
Next, in the same manner as in Example 3, a charge / discharge test was performed at a charge current of 5 mA / g at 120% charge, and discharge was performed at 5 mA / g and 1.2 V cut. From Table 1, it was found that the battery using the negative electrode of this example was superior to Example 3 in which Ni was not treated in terms of cycle characteristics.

【0036】(実施例12)実施例3と同様の方法でM
g16gとIn2g、Ni2g(100メッシュ)より
ボールミルによって平均粒径が20μmのMgInNi
合金粉末を作製した。
(Embodiment 12) In the same manner as in Embodiment 3, M
MgInNi having an average particle size of 20 μm from g16g, In2g, and Ni2g (100 mesh) by a ball mill.
An alloy powder was produced.

【0037】この合金粒子のEPMA(電子線マイクロ
分析)による組成分析の結果、仕込み比でほぼ均一に組
成分布していることが分かった。
As a result of composition analysis of the alloy particles by EPMA (electron beam microanalysis), it was found that the composition distribution was almost uniform in the charging ratio.

【0038】この後、この複合粒子100重量部に対し
て結着剤としてPE(ホ゜リエチレン)粉末を5重量部添加し、
少量のDMFを加えてペースト状にし、Ti製のパンチ
ングメタル芯材に塗着、プレスした後、真空中で130
℃30分加熱してPEを融解し、負極を作製した。電解
液には、DMAAとDMSOの体積比2:1の混合溶媒
に1molの過塩素酸マグネシウムを溶解させた有機電解
質を、正極には負極容量より十分大容量のV813を用
い、負極規制の液リッチ電池を作製した。
Thereafter, 5 parts by weight of PE (polyethylene) powder was added as a binder to 100 parts by weight of the composite particles.
A small amount of DMF was added to form a paste, which was applied to a punched metal core made of Ti, pressed, and then pressed in a vacuum.
The PE was melted by heating at 30 ° C. for 30 minutes to produce a negative electrode. The electrolyte used was an organic electrolyte in which 1 mol of magnesium perchlorate was dissolved in a mixed solvent of DMAA and DMSO at a volume ratio of 2: 1. The cathode used was V 8 O 13 having a capacity sufficiently larger than the anode capacity. A regulated liquid-rich battery was fabricated.

【0039】次に実施例3と同様に充放電試験を充電電
流5mA/gで120%充電、放電は5mA/g、1.2Vカッ
トの条件で行った。表1から本実施例の電池はNi未処
理の実施例3に比べ、サイクル特性の点で優れることが
わかった。但し、Ni量が10重量%を越した場合は、
サイクル劣化は抑制されたが、エネルギー密度の低下が
急に大きくなる欠点を生じた。
Next, in the same manner as in Example 3, a charge / discharge test was performed at a charge current of 5 mA / g at 120% charge, and discharge was performed at 5 mA / g and 1.2 V cut conditions. From Table 1, it was found that the battery of the present example was superior to Example 3 in which Ni was not treated in terms of cycle characteristics. However, if the Ni content exceeds 10% by weight,
Although the cycle deterioration was suppressed, there was a disadvantage that the energy density was suddenly increased.

【0040】(実施例13)実施例1と同様、Mgを高
周波真空溶解炉で溶解した後、Arガスアトマイズ法で
溶湯を急冷凝固させ、平均粒径30μmの微粒子を作製
した。
Example 13 In the same manner as in Example 1, Mg was melted in a high-frequency vacuum melting furnace, and the molten metal was rapidly solidified by Ar gas atomization to produce fine particles having an average particle diameter of 30 μm.

【0041】次に、硝酸ニッケルの飽和水溶液中200
ccに、このMg微粒子10gを添加し、室温で2分間
良く攪拌混合後、ろ紙で回収、水洗真空乾燥して負極活
物質とした。EPMAより合金表面にNiの存在が確認
された。これはMgとNiとの置換メッキによるものと
考えられる。メッキ量としては5重量%程度と考えられ
る。
Next, 200 ml of a saturated aqueous solution of nickel nitrate was used.
10 g of the Mg fine particles was added to the cc, and the mixture was thoroughly stirred and mixed at room temperature for 2 minutes, then collected with a filter paper, washed with water and vacuum-dried to obtain a negative electrode active material. EPMA confirmed the presence of Ni on the alloy surface. This is considered to be due to displacement plating of Mg and Ni. It is considered that the plating amount is about 5% by weight.

【0042】このMg複合粒子100重量部に対して結
着剤としてPE粉末を5重量部添加し、少量のDMAA
を加えてペースト状にし、Cu製のパンチングメタル芯
材に塗着し、プレス後真空中で130℃30分加熱して
PEを融解し、負極を作製した。電解液には、DMAA
に0.8molの臭化マグネシウムを溶解させた有機電解質
を、正極には負極容量より十分容量の大きなV813
用い、負極規制の液リッチ電池を作製した。
To 100 parts by weight of the Mg composite particles, 5 parts by weight of PE powder were added as a binder, and a small amount of DMAA was added.
Was added to form a paste, and applied to a punched metal core made of Cu. After pressing, the mixture was heated in a vacuum at 130 ° C. for 30 minutes to melt PE, thereby producing a negative electrode. The electrolyte is DMAA
Then, an organic electrolyte in which 0.8 mol of magnesium bromide was dissolved was used, and V 8 O 13 having a capacity sufficiently larger than the capacity of the negative electrode was used for the positive electrode to prepare a liquid-rich battery regulated by the negative electrode.

【0043】次に実施例3と同様に充放電試験を充電電
流5mA/gで120%充電、放電は5mA/g、1.2Vカッ
トの条件で行った。本実施例の負極を用いた電池はNi
未処理のものに比べサイクル特性の点で優れることがわ
かった。
Next, in the same manner as in Example 3, a charge / discharge test was performed at a charge current of 5 mA / g at 120% charge, and discharge was performed at 5 mA / g and 1.2 V cut conditions. The battery using the negative electrode of this example is Ni
It was found that the cycle characteristics were superior to the untreated one.

【0044】実施例11〜13において添加するNi量
としては10重量%以下がエネルギ−密度の点で好まし
い。
In Examples 11 to 13, the amount of Ni added is preferably 10% by weight or less from the viewpoint of energy density.

【0045】[0045]

【発明の効果】上記実施例から明らかなように、本発明
の電池用負極及びその製造方法は、MgあるいはMg合
金微粒子(平均粒径70μm以下)を用いることで比表
面積が大幅に増加し分極が低下しレート特性、負極利用
率が向上する。
As is clear from the above examples, the negative electrode for a battery and the method for producing the same according to the present invention can significantly increase the specific surface area by using Mg or Mg alloy fine particles (with an average particle diameter of 70 μm or less) and increase the polarization. And the rate characteristics and the utilization rate of the negative electrode are improved.

【0046】さらにIn,Ga,Sn,Pb,Cd,M
n,Co,Znとの合金化によって表面に半導体膜が形
成され、集電性の改善に伴い、サイクル特性の向上が図
られる。
Further, In, Ga, Sn, Pb, Cd, M
A semiconductor film is formed on the surface by alloying with n, Co, and Zn, and the cycle characteristics are improved as the current collecting property is improved.

【0047】また合金微粒子の表面にNi層を設けるこ
とで、電気化学特性がより向上し、さらに高エネルギー
密度、長寿命となる。但し、Mg量としては容量の点か
ら70重量%以上は必要である。
By providing the Ni layer on the surface of the alloy fine particles, the electrochemical characteristics are further improved, and the energy density and the life are further increased. However, the amount of Mg must be 70% by weight or more from the viewpoint of capacity.

【0048】微粒子の製造方法としてはガスアトマイズ
法か、ボールミル法や遊星ボールミル法などのメカニカ
ルアロイング法が粉砕工程を必要としないので有効であ
る。特に、メカニカルアロイング法は融点の大きく異な
る異種金属の合金化や沸点の低い金属の合金化に対して
非常に有効な手段である。
As a method for producing fine particles, a gas atomizing method or a mechanical alloying method such as a ball mill method or a planetary ball mill method is effective because a pulverizing step is not required. In particular, the mechanical alloying method is a very effective means for alloying dissimilar metals having greatly different melting points or alloying metals having low boiling points.

【0049】さらに、マグネシウムあるいはマグネシウ
ム合金表面にNi処理の手段としては、合金組成にNi
を少量添加する方法、メカノフュージョン法等の機械的
表面処理あるいはメッキ法等がある。
Further, as a means for Ni treatment on the surface of magnesium or a magnesium alloy, the alloy composition may be made of Ni.
, A mechanical surface treatment such as a mechanofusion method, or a plating method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における空気電池の断面
FIG. 1 is a cross-sectional view of an air battery according to Embodiment 1 of the present invention.

【符号の説明】[Explanation of symbols]

1 酸素極(空気極) 2 PTFE撥水膜 3 空気取り入れ孔 4 拡散紙 5 セパレータ 6 ガスケット 7 負極ペースト 8 負極容器 9 正極容器 Reference Signs List 1 oxygen electrode (air electrode) 2 PTFE water-repellent film 3 air intake hole 4 diffusion paper 5 separator 6 gasket 7 negative electrode paste 8 negative electrode container 9 positive electrode container

フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/40 H01M 10/40 Z 12/06 12/06 D Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01M 10/40 H01M 10/40 Z 12/06 12/06 D

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が70μm以下である、マグネ
シウムの微粒子もしくはマグネシウム合金の微粒子を有
することを特徴とする電池用負極。
1. A negative electrode for a battery comprising fine particles of magnesium or fine particles of a magnesium alloy having an average particle size of 70 μm or less.
【請求項2】 In,Ga,Sn,Pb,Cd,Mn,
Co,Znの少なくとも1種類を含有したことを特徴と
する請求項1記載の電池用負極。
2. In, Ga, Sn, Pb, Cd, Mn,
The negative electrode for a battery according to claim 1, wherein the negative electrode contains at least one of Co and Zn.
【請求項3】 マグネシウムの微粒子もしくはマグネシ
ウム合金の微粒子の表面にNiを添加したことを特徴と
する請求項1または2記載の電池用負極。
3. The negative electrode for a battery according to claim 1, wherein Ni is added to the surfaces of the fine particles of magnesium or the fine particles of a magnesium alloy.
【請求項4】 マグネシウム合金中のマグネシウム量が
70重量%以上であることを特徴とする請求項1、2ま
たは3記載の電池用負極。
4. The negative electrode for a battery according to claim 1, wherein the amount of magnesium in the magnesium alloy is 70% by weight or more.
【請求項5】 ガスアトマイズ法、ボールミル法、また
は遊星ボールミル法でマグネシウムの微粒子もしくはマ
グネシウム合金の微粒子を作製することを特徴とする請
求項1、2、3または4記載の電池用負極の製造方法。
5. The method for producing a negative electrode for a battery according to claim 1, wherein magnesium fine particles or magnesium alloy fine particles are produced by a gas atomization method, a ball mill method, or a planetary ball mill method.
【請求項6】 10重量%以下の量のNiの混合、メカ
ノフュージョン法、またはメッキ法により、Niを添加
することを特徴とする請求項3または4記載の電池用負
極の製造方法。
6. The method for producing a negative electrode for a battery according to claim 3, wherein Ni is added by mixing Ni in an amount of 10% by weight or less, mechanofusion method, or plating method.
JP10152464A 1998-06-02 1998-06-02 Negative electrode for battery and manufacture thereof Pending JPH11345610A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10152464A JPH11345610A (en) 1998-06-02 1998-06-02 Negative electrode for battery and manufacture thereof
US09/323,892 US6265109B1 (en) 1998-06-02 1999-06-02 Magnesium alloy battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10152464A JPH11345610A (en) 1998-06-02 1998-06-02 Negative electrode for battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11345610A true JPH11345610A (en) 1999-12-14

Family

ID=15541091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10152464A Pending JPH11345610A (en) 1998-06-02 1998-06-02 Negative electrode for battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11345610A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228589A (en) * 2004-02-13 2005-08-25 Sony Corp Electrochemical device and electrode
CN100459279C (en) * 2006-05-26 2009-02-04 南开大学 Magnesium negative material and preparation method and application
US8361651B2 (en) 2011-04-29 2013-01-29 Toyota Motor Engineering & Manufacturing North America, Inc. Active material for rechargeable battery
JP2013533577A (en) * 2010-05-25 2013-08-22 ペリオン テクノロジーズ インク. Electrode material for magnesium battery
US8685564B2 (en) 2011-06-22 2014-04-01 Toyota Motor Engineering & Manufacturing North America, Inc. Active material for rechargeable battery
JP2014107991A (en) * 2012-11-28 2014-06-09 Furukawa Battery Co Ltd:The Electrical power system
JP2015015153A (en) * 2013-07-04 2015-01-22 積水化学工業株式会社 Electrode material, magnesium fuel battery, and method for manufacturing electrode material
JP2017143053A (en) * 2016-02-05 2017-08-17 日立マクセル株式会社 Battery and method for manufacturing the same
WO2020013327A1 (en) * 2018-07-13 2020-01-16 中央工産株式会社 Electrode material for electrochemical device, and method for producing same
US10615452B2 (en) 2011-06-22 2020-04-07 Toyota Motor Engineering & Manufacturing North America, Inc. High voltage rechargeable magnesium cell
JP2021166198A (en) * 2017-09-27 2021-10-14 トヨタ自動車株式会社 Metal negative electrode secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078849A1 (en) * 2004-02-13 2005-08-25 Sony Corporation Electrochemical device
JP2005228589A (en) * 2004-02-13 2005-08-25 Sony Corp Electrochemical device and electrode
CN100459279C (en) * 2006-05-26 2009-02-04 南开大学 Magnesium negative material and preparation method and application
JP2013533577A (en) * 2010-05-25 2013-08-22 ペリオン テクノロジーズ インク. Electrode material for magnesium battery
US8361651B2 (en) 2011-04-29 2013-01-29 Toyota Motor Engineering & Manufacturing North America, Inc. Active material for rechargeable battery
US10615452B2 (en) 2011-06-22 2020-04-07 Toyota Motor Engineering & Manufacturing North America, Inc. High voltage rechargeable magnesium cell
US8685564B2 (en) 2011-06-22 2014-04-01 Toyota Motor Engineering & Manufacturing North America, Inc. Active material for rechargeable battery
JP2014107991A (en) * 2012-11-28 2014-06-09 Furukawa Battery Co Ltd:The Electrical power system
JP2015015153A (en) * 2013-07-04 2015-01-22 積水化学工業株式会社 Electrode material, magnesium fuel battery, and method for manufacturing electrode material
JP2017143053A (en) * 2016-02-05 2017-08-17 日立マクセル株式会社 Battery and method for manufacturing the same
JP2021166198A (en) * 2017-09-27 2021-10-14 トヨタ自動車株式会社 Metal negative electrode secondary battery
WO2020013327A1 (en) * 2018-07-13 2020-01-16 中央工産株式会社 Electrode material for electrochemical device, and method for producing same
JPWO2020013327A1 (en) * 2018-07-13 2021-09-09 日本金属株式会社 Electrode materials for electrochemical devices and their manufacturing methods

Similar Documents

Publication Publication Date Title
CN101233632B (en) Alloy for negative electrode of lithium secondary battery
JP3805053B2 (en) Lithium secondary battery
US7183018B2 (en) Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
EP1033767B1 (en) Electrode material for negative pole of lithium secondary cell, electrode structure using said electrode material, lithium secondary cell using said electrode structure, and method for manufacturing said electrode structure and said lithium secondary cell
US9502715B2 (en) Disordered anodes for Ni-metal rechargeable battery
TWI446613B (en) Si based negative electrode material
US20150099118A1 (en) Metal-air batteries and electrodes therefore utilizing metal nanoparticle synthesized via a novel mechanicochemical route
Lee et al. Electrochemical characterization of Ti–Si and Ti–Si–Al alloy anodes for Li-ion batteries produced by mechanical ball milling
JP2001273892A (en) Secondary cell
KR20160132826A (en) Negative-electrode material for electricity-storage device
JP4422417B2 (en) Anode for non-aqueous electrolyte secondary battery
TW201505241A (en) Si-based alloy negative electrode material for storage device, and electrode obtained using same
JP2002373648A (en) Negative electrode, nonaqueous electrolyte secondary battery, and method for producing the negative electrode
JPH11345610A (en) Negative electrode for battery and manufacture thereof
JP2012014866A (en) Negative electrode active substance for lithium secondary battery, and method of manufacturing the same
JPH1092424A (en) Lithium secondary battery negative electrode and lithium secondary battery using it
JP4379971B2 (en) Electrical energy storage element
CN113707890B (en) Au/Cu 2 O composite material, super-assembly preparation method and application
JP2001243951A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and battery using the same
KR100753921B1 (en) Fabrication method of nano-sized active materials containing copper phase with improved cycle-ability for anode of lithium secondary battery
JP2000012016A (en) Negative electrode for battery and its manufacture
JPH11345611A (en) Negative electrode for battery and its manufacture
CN110048129A (en) Metal-air battery metal electrode material and its preparation method and application
JPH0969362A (en) Secondary battery and power source using it
CN114927675A (en) Composite metal-coated silicon carbide-based negative electrode material and preparation method and application thereof