KR20010106338A - Photocatalyst optical thin films activated in the visible light and their preparations - Google Patents

Photocatalyst optical thin films activated in the visible light and their preparations Download PDF

Info

Publication number
KR20010106338A
KR20010106338A KR1020010065575A KR20010065575A KR20010106338A KR 20010106338 A KR20010106338 A KR 20010106338A KR 1020010065575 A KR1020010065575 A KR 1020010065575A KR 20010065575 A KR20010065575 A KR 20010065575A KR 20010106338 A KR20010106338 A KR 20010106338A
Authority
KR
South Korea
Prior art keywords
titanium dioxide
resistant substrate
thin film
optical thin
heat resistant
Prior art date
Application number
KR1020010065575A
Other languages
Korean (ko)
Other versions
KR100440785B1 (en
Inventor
한성홍
김의정
안영욱
김동진
윤영진
오승훈
Original Assignee
한성홍
오승훈
김의정
안영욱
윤영진
김동진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한성홍, 오승훈, 김의정, 안영욱, 윤영진, 김동진 filed Critical 한성홍
Priority to KR10-2001-0065575A priority Critical patent/KR100440785B1/en
Publication of KR20010106338A publication Critical patent/KR20010106338A/en
Application granted granted Critical
Publication of KR100440785B1 publication Critical patent/KR100440785B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/345Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of ultraviolet wave energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

A tampon is provided with a permeable or soluble barrier layer interposed between an absorbent core and an overwrap, allowing substantially complete, uniform wetting to be obtained even under light flow conditions. The barrier prevents immediate flow of fluid into the core, allowing time for fluid to be carried by the overwrap around the outer surface of the tampon, prior to being drawn into the absorbent core.

Description

가시광에 감응하는 광촉매 광학박막과 그 제조방법{Photocatalyst optical thin films activated in the visible light and their preparations}Photocatalyst optical thin films activated in the visible light and their preparations}

본 발명은 금속이온이 도핑된 가시광에 감응하는 광학박막의 제조방법에 관한 것으로 더욱 상세하게는, 이산화티타늄의 밴드갭 에너지 사이에 산화·환원 전위를 갖는 금속이온을 빛을 쬐어 증착하는 광증착법으로 도핑시켜 이 금속이온들이 격자 내에서 전자 또는 정공의 포획장벽으로 작용하여 전하쌍 재결합 속도를 변화시키고, 밴드갭 에너지를 낮추어 자외광뿐만 아니라, 에너지가 낮은 가시광 영역에서도 광화학 반응에 의한 우수한 효율의 광촉매 반응이 가능하도록 한 가시광에 감응하는 광학박막과 그 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an optical thin film that is sensitive to visible light doped with metal ions. More particularly, the present invention relates to a light deposition method in which a metal ion having an oxidation / reduction potential is deposited by light irradiation between a band gap energy of titanium dioxide. Doping allows these metal ions to act as trapping barriers for electrons or holes in the lattice, altering the rate of charge pair recombination and lowering the bandgap energy, resulting in an efficient photocatalyst by photochemical reactions in the visible and low-energy regions The present invention relates to an optical thin film that is sensitive to visible light and to a method of manufacturing the same.

산업이 발달함에 따라 환경오염문제는 매우 중요시되고 있으며 특히, 인체에 악영향을 미치는 악취나 오염물질 및 유해물질 등의 제거는 필수적으로 해결해야 할 문제로 대두되고 있다.As the industry develops, the problem of environmental pollution becomes very important, and in particular, the removal of odors, pollutants and harmful substances that adversely affect the human body has emerged as a problem to be solved.

이러한 오염물질이나 유해물질 및 악취 등을 제거하기 위하여 이산화티타늄을 사용한 광촉매에 의한 오염물질이나 유해물질 등의 분해 및 제거방법은 현재 주목받고 있는 환경정화 방법이다.In order to remove such pollutants, harmful substances and odors, a method of decomposing and removing pollutants or harmful substances by a photocatalyst using titanium dioxide is an environmental purification method that is currently attracting attention.

일반적으로 광촉매란 많은 분야에서 광범위하게 사용되고 있으며 빛을 이용한 광분해 반응에 쓰이는 촉매를 지칭할 때 사용된다.In general, photocatalyst is widely used in many fields and is used to refer to a catalyst used for photolysis using light.

이것은 매우 넓은 의미의 정의로서 광촉매가 되기 위해서는 일반적인 촉매로서의 조건을 만족시켜야 함을 뜻하며 광촉매는 반응에 직접 참여하여 소모되지 않아야 한다.This is a very broad definition, meaning that in order to be a photocatalyst, the conditions as a general catalyst must be satisfied, and the photocatalyst should not be directly consumed by participating in the reaction.

상기와 같은 광촉매로는 화학적 안전성이 우수하고 광촉매로서의 활성이 뛰어나며 반영구적으로 효과가 지속될 뿐만 아니라, 인체에 무해하고 자원으로써 풍부하여 가격이 저렴한 장점을 안고 있는 이산화티타늄이 대표적으로 널리 알려지고 있다.As the photocatalyst, titanium dioxide having excellent chemical safety, excellent activity as a photocatalyst, and a semipermanent effect, as well as being harmless to humans and being abundant as a resource, have a low cost.

상기와 같은 이산화티타늄에 의한 광촉매 반응은 오염물질이나 유기화합물 등에 대한 유해가스의 분해작용 등에 사용되고, 그 응용연구가 활발하게 행해지고 있다.Such photocatalytic reactions with titanium dioxide are used for the decomposition of harmful gases to pollutants, organic compounds and the like, and their research is being actively conducted.

이산화티타늄 광촉매의 원리는 이산화티타늄에 자외광을 포함한 빛이 조사되면 전자와 정공이 여기(勵起)되고, 이 전자와 정공이 이산화티타늄 표면에 있는 산소나 물과 반응하여 활성산소와 수산기 라디칼을 발생시켜 오염물질을 분해시키게 된다.The principle of titanium dioxide photocatalyst is that when light containing ultraviolet light is irradiated on the titanium dioxide, electrons and holes are excited, and these electrons and holes react with oxygen or water on the surface of titanium dioxide to release active oxygen and hydroxyl radicals. To decompose pollutants.

그러나, N형 반도체의 일종인 이산화티타늄을 촉매로서 활성화시키기 위해서는 밴드갭 에너지가 3.2eV인 아나타제 결정상을 이루어야 하고 이것의 활성을 위해서는 386nm 이하의 자외광 조사가 필요하다.However, in order to activate titanium dioxide, which is a type of N-type semiconductor, as a catalyst, an anatase crystal phase having a bandgap energy of 3.2 eV must be formed, and ultraviolet light of 386 nm or less is required for its activation.

이와 같이 비교적 높은 에너지인 자외광이 요구되어 파장이 이것보다 긴 가시광의 영역에서는 이산화티타늄의 정상적인 광촉매 반응이 불가능하다.As such, ultraviolet light having a relatively high energy is required, and normal photocatalytic reaction of titanium dioxide is impossible in the region of visible light having a wavelength longer than this.

이 때문에 태양광만으로는 5%정도의 자외광 밖에 이용할 수 없고 실제 상업화 과정에서는 별도의 자외광을 조사하는 설비를 설치하여야 하는 문제점이 있었다.For this reason, only about 5% of ultraviolet light can be used by sunlight alone, and there is a problem in that a separate facility for irradiating ultraviolet light has to be installed in the actual commercialization process.

한편, 막 형태가 아닌 기존의 분말형 광촉매는 오염물질 수용액 처리 등의 액상오염물 분해에 있어서 오염물 처리 후의 광촉매의 분리가 곤란하여 실용화에 대한 문제가 제기되어져 왔다.On the other hand, conventional powder type photocatalysts, which are not in the form of membranes, have difficulty in separating photocatalysts after contaminant treatment in liquid contaminant decomposition such as aqueous solution of contaminants.

이러한 문제를 해결하기 위해 박막형태 광촉매를 이용한 방법이 제안되었으나, 여기에서는 광촉매 분리라는 문제는 해결되지만 박막형태 광촉매의 효율이 낮다는 결점이 나타나게 되었다.In order to solve this problem, a method using a thin film type photocatalyst has been proposed, but the problem of photocatalyst separation is solved, but a drawback is that the efficiency of the thin film type photocatalyst is low.

본 발명은 상기와 같은 문제점을 해결하기 위하여 제공된 것으로, 본 발명은 이산화티타늄의 밴드갭 에너지 사이에 산화·환원 전위를 갖는 금속이온을 빛을 쬐어 증착하는 광증착법으로 도핑시켜 이 금속이온들이 격자 내에서 전자 또는 정공의 포획장벽으로 작용하여 전하쌍 재결합 속도를 변화시키고 밴드갭 에너지를 낮추어 자외광뿐만 아니라, 에너지가 낮은 가시광 영역에서도 광화학 반응에 의한 우수한 효율의 광촉매 반응이 가능하도록 하는 것이다.The present invention has been provided to solve the above problems, the present invention is doped by a light evaporation method by depositing a metal ion having an oxidation-reduction potential between the band gap energy of titanium dioxide by light deposition in the lattice It acts as a trapping barrier for electrons or holes at to change the charge pair recombination rate and lower the bandgap energy to enable efficient photocatalytic reaction by photochemical reaction not only in ultraviolet light but also in low energy visible light region.

이를 위하여 본 발명은, 티타늄 테트라 이소프록팍사이드와 이소프로판올을 혼합하여 1차 교반시킨 후, 상기 혼합물에 염산 수용액을 첨가하여 2차 교반하여 이산화티타늄 졸을 생성하는 광촉매 졸 생성단계와, 상기 광촉매 졸 생성 단계에 의해 수득한 이산화티타늄 졸에 내열성 기재를 침지시켜 내열성 기재 표면에 이산화티타늄 졸을 코팅하고, 상기 내열성 기재에 코팅된 이산화티타늄 졸을 80~120℃ 온도에서 소정 시간 건조시키며, 상기 이산화티타늄 졸이 코팅되어 건조된 내열성 기재를 400~600℃ 온도로 소정 시간 가열하여 내열성 기재 표면에 이산화티타늄 광학박막을 형성하는 광학박막 형성단계와, 상기 광학박막 형성단계에 의해 제작된 이산화티타늄 광학박막이 형성된 내열성 기재를 염화물 수용액에 침지시키고, 상기 염화물 수용액에 내열성 기재를 침지시킨 후, 자외광을 일정 시간 조사하며, 상기 자외광을 조사한 내열성 기재를 110~150℃로 건조하여 이산화티타늄 광학박막을 형성하는 내열성 기재에 광증착하는 광증착단계로 이루어진 것을 특징으로 하는 것과, 티타늄 테트라 이소프록팍사이드와 이소프로판올을 혼합하여 1차 교반시킨 후, 상기 혼합물에 염산 수용액을 첨가하여 2차 교반하여 이산화티타늄 졸을 생성하고, 상기 광촉매 졸을 생성하여 수득한 이산화티타늄 졸에 내열성 기재를 침지시켜 내열성 기재 표면에 이산화티타늄 졸을 코팅하며, 상기 내열성 기재에 코팅된 이산화티타늄 졸을 80~120℃ 온도에서 소정 시간 건조시키고, 상기 이산화티타늄 졸이 코팅되어 건조된 내열성 기재를 400~600℃ 온도로 소정 시간 가열하여 내열성 기재 표면에 이산화티타늄 광학박막을 형성하며, 상기 이산화티타늄 광학박막이 형성된 내열성 기재를 염화물 수용액에 침지시키고, 상기 염화물 수용액에 내열성 기재를 침지시킨 후, 자외광을 일정 시간 조사하며, 상기 자외광을 조사한 내열성 기재를 110~150℃로 건조하여 이산화티타늄 광학박막을 형성하는 내열성 기재에 광증착하여 제작되는 것을 특징으로 한다.To this end, the present invention is a photocatalyst sol generation step of producing titanium dioxide sol by mixing titanium tetra isopropoxide and isopropanol and stirred first, and then adding an aqueous solution of hydrochloric acid to the mixture and stirred a second time, and the photocatalyst sol The heat-resistant substrate was immersed in the titanium dioxide sol obtained by the production step to coat the titanium dioxide sol on the surface of the heat-resistant substrate, the titanium dioxide sol coated on the heat-resistant substrate is dried at a temperature of 80 ~ 120 ℃ for a predetermined time, the titanium dioxide The optical thin film forming step of forming a titanium dioxide optical thin film on the surface of the heat resistant substrate by heating the heat-resistant substrate dried by a sol to 400 ~ 600 ℃ temperature for a predetermined time, and the titanium dioxide optical thin film produced by the optical thin film forming step The formed heat resistant substrate was immersed in an aqueous chloride solution, and heat-resistant in the aqueous chloride solution After immersing the substrate, ultraviolet light is irradiated for a predetermined time, and the photo-deposition step of drying the heat-resistant substrate irradiated with the ultraviolet light to 110 ~ 150 ℃ photodeposited on the heat-resistant substrate to form a titanium dioxide optical thin film Titanium tetra isopropoxide and isopropanol were mixed and stirred first, and then, aqueous solution of hydrochloric acid was added to the mixture, followed by second stirring to generate a titanium dioxide sol, and the photocatalyst sol obtained to produce titanium dioxide sol. Immerse the heat-resistant substrate in the sol to coat the titanium dioxide sol on the surface of the heat-resistant substrate, the titanium dioxide sol coated on the heat-resistant substrate is dried at a temperature of 80 ~ 120 ℃ for a predetermined time, the heat-resistant substrate dried by coating the titanium dioxide sol To a temperature of 400 ~ 600 ℃ for a predetermined time to form a titanium dioxide optical thin film on the surface of the heat-resistant substrate After immersing the heat resistant substrate on which the titanium dioxide optical thin film is formed in an aqueous chloride solution, immersing the heat resistant substrate in the chloride aqueous solution, irradiating ultraviolet light for a predetermined time, and irradiating the ultraviolet resistant light resistant substrate to 110 to 150 ° C. It is characterized in that it is produced by photo-depositing on a heat-resistant substrate which is dried to form a titanium dioxide optical thin film.

상기와 같은 본 발명을 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.When described in detail with reference to the accompanying drawings, the present invention as follows.

본 발명을 제작하는 단계는 크게 세단계로 구분되며, 각각의 단계는 광촉매 졸 생성단계와, 광학박막 형성단계 및 광증착단계이다.The manufacturing step of the present invention is largely divided into three steps, each step is a photocatalyst sol generation step, an optical thin film formation step and a photodeposition step.

상기에 열거된 각각의 단계를 차례로 살펴보면 다음과 같다.Looking at each of the steps listed above in turn as follows.

첫째, 광촉매 졸 생성단계First, photocatalyst sol generation step

우선, 티타늄 테트라 이소프록팍사이드와 이소프로판올을 혼합하여 30분 이상 충분히 1차 교반시킨다.First, titanium tetra isoprofaxoxide and isopropanol are mixed and thoroughly stirred first for 30 minutes or more.

상기와 같이 1차 교반을 시킨 혼합물에 다시 염산 수용액을 첨가하여 반응이 완전히 종결될 때까지 24시간 이상 충분히 2차 교반하여 이산화티타늄 졸을 생성한다.As described above, an aqueous hydrochloric acid solution is added to the mixture to which the first stirring is performed, followed by sufficient second stirring for at least 24 hours until the reaction is completely completed, thereby producing a titanium dioxide sol.

상기에서 금속 알콕사이드(alkoxides)는 휘발성을 띠며 유기 용매에 대부분 용해된다.The metal alkoxides are volatile and are mostly dissolved in an organic solvent.

따라서, 기초물질로 용매로는 이소프로판올을, 출발물질로는 티타늄 테트라 이소프록팍사이드(TTIP)를 사용하였으며, 티타늄은 전이금속으로 높은 전기음성도를 가지고 있지 않기 때문에 반응성을 높이기 위해 촉매로 염산 수용액을 사용한 것이다.Therefore, isopropanol was used as a solvent and titanium tetraisopropoxide (TTIP) was used as a starting material. Since titanium does not have high electronegativity as a transition metal, an aqueous hydrochloric acid solution is used as a catalyst to increase reactivity. Is used.

상기에서 염산 수용액은 3차 증류수인 초순수를 사용하여 티타늄 테트라 이소프록팍사이드의 가수분해를 일으킴이 바람직하다.In the hydrochloric acid aqueous solution, it is preferable to cause hydrolysis of titanium tetraisopropoxide using ultrapure water, which is tertiary distilled water.

또한, 티타늄 테트라 이소프록팍사이드는 수분에 급격하게 반응하므로 질소분위기 하에서 이소프로판올과 혼합하여야 한다.In addition, titanium tetraisopropacoxide reacts rapidly with moisture, so it should be mixed with isopropanol under nitrogen atmosphere.

그리고, 상기 광촉매 졸 생성단계에서 티타늄 테트라 이소프록팍사이드와 이소프로판올 및 염산 수용액의 몰 조성비는 2 : 53 : 3으로 함이 가장 바람직하다.In addition, the molar composition ratio of titanium tetraisopropoxide, isopropanol and hydrochloric acid aqueous solution in the photocatalyst sol generation step is most preferably set to 2: 53: 3.

둘째, 광학박막 형성단계Second, optical thin film forming step

상기 광촉매 졸 생성 단계에 의해 수득한 이산화티타늄 졸에 내열성 기재인 석영 유리를 침지시켜 내열성 기재인 석영 유리 표면에 이산화티타늄 졸을 코팅한다.The titanium dioxide sol obtained by the photocatalyst sol generation step is immersed in the quartz glass as the heat resistant substrate to coat the titanium dioxide sol on the surface of the quartz glass as the heat resistant substrate.

상기와 같이 석영 유리에 이산화티타늄 졸을 침지코팅법으로 코팅시킨 후, 80~120℃ 온도에서 소정 시간 건조시킨다.As described above, after titanium dioxide sol is coated on the quartz glass by an immersion coating method, it is dried at a temperature of 80 to 120 ° C. for a predetermined time.

상기와 같이 이산화티타늄 졸이 코팅되어 건조된 석영 유리를 400~600℃ 온도로 소정 시간 가열하여 내열성 기재인 석영 유리 표면에 이산화티타늄 광학박막을 형성한다.As described above, the titanium dioxide sol is coated and dried to heat the quartz glass at a temperature of 400 ° C. to 600 ° C. for a predetermined time to form a titanium dioxide optical thin film on the surface of the quartz glass which is a heat resistant substrate.

상기에서 침지코팅법은 내열성 기재의 인상속도에 따라 박막의 두께가 결정되며, 석영 유리의 인상속도는 100mm/min으로 하였고, 코팅 후 100℃에서 30분 동안 건조시켰다.In the immersion coating method, the thickness of the thin film is determined according to the pulling speed of the heat resistant substrate, and the pulling speed of the quartz glass is 100 mm / min, and the coating is dried at 100 ° C. for 30 minutes.

그리고, 여러 번 코팅하는 경우에는 코팅과 건조 과정을 반복하며, 본 발명에 사용된 이산화티타늄 광촉매 광학박막은 양면 코팅으로 3회 반복하여 제작하였으며, 제작된 이산화티타늄 광촉매 광학박막은 5℃/min의 속도로 아나타제 결정상이 성장하는 온도인 400~600℃로 가열하며, 가열 후 동일 온도에서 1시간 동안 유지하면서 열처리를 하였다.In addition, in the case of coating several times, the coating and drying process are repeated, and the titanium dioxide photocatalyst optical thin film used in the present invention was manufactured by repeating three times with double-sided coating, and the produced titanium dioxide photocatalyst optical thin film was 5 ° C./min. The anatase crystal phase at a rate of heating to 400 ~ 600 ℃ the temperature to grow, and the heat treatment was maintained for 1 hour at the same temperature after heating.

상기에서 광촉매 광학박막을 내열성 기재에 형성하기 위해서는 내열성 기재의 세척이 우선적으로 이루어 져야하며 건조 및 열처리 과정이 일정하여야 한다.In order to form the photocatalyst optical thin film on the heat resistant substrate, the heat resistant substrate should be washed first, and the drying and heat treatment processes should be constant.

셋째, 광증착단계Third, the light deposition step

상기 광학박막 형성단계에 의해 제작된 이산화티타늄 광학박막이 형성된 내열성 기재를 염화물 수용액에 침지시킨다.The heat resistant substrate on which the titanium dioxide optical thin film produced by the optical thin film forming step is formed is immersed in an aqueous chloride solution.

그리고, 상기와 같이 염화물 수용액에 내열성 기재를 침지시킨 후, 일정한 속도의 교반 상태에서 자외광을 일정 시간 조사하여 아나타제-이산화티타늄 광학박막을 광증착시킨다.After immersing the heat resistant substrate in the chloride aqueous solution as described above, ultraviolet light is irradiated for a certain time under a constant speed of stirring to photodeposit the anatase-titanium dioxide optical thin film.

또한, 상기와 같이 자외광을 조사한 내열성 기재에 형성된 박막에 남아 있는 잔류 염소물을 초순수를 이용하여 세척한 후, 염소물 및 유기물의 완전 제거를 위하여 진공오븐에서 110~150℃로 1시간 정도 건조하여 이산화티타늄 광학박막을 형성하는 내열성 기재에 광증착하여 광학박막의 제작이 완료된다.In addition, after washing the residual chlorine remaining in the thin film formed on the heat-resistant substrate irradiated with ultraviolet light as described above using ultrapure water, and dried for 1 hour at 110 ~ 150 ℃ in a vacuum oven for complete removal of chlorine and organic matter Then, photodeposited on the heat-resistant substrate forming the titanium dioxide optical thin film is completed the production of the optical thin film.

상기에서 염화물 수용액에는 Pt, Pd, Fe 및 Ag 등과 같은 가시광에 감응하는 금속 이온을 0.01~7% 가량 첨가하여 금속-염화물 수용액을 생성하고, 상기 금속-염화물 수용액에 내열성 기재를 침지시킨 후 건조시키면 박막에 금속이 도핑되도록 한다.In the chloride solution, 0.01 to 7% of metal ions sensitive to visible light, such as Pt, Pd, Fe, and Ag, are added to form a metal-chloride solution, and the heat-resistant substrate is immersed in the metal-chloride solution and dried. Allow the metal to be doped into the thin film.

또한, 본 발명에서는 금속 이온이 첨가된 염화물 수용액의 산화 방지를 위하여 질소 분위기를 유지하였으며, 가시광에 감응하는 금속이 도핑된 이산화티타늄 광학박막은 제작방법과 조건, 금속 종류와 함량 등에 따라 광분해 특성이 다르게 나타난다.In addition, in the present invention, a nitrogen atmosphere was maintained to prevent oxidation of the aqueous chloride solution added with metal ions, and the titanium dioxide optical thin film doped with visible light has a photodegradation property according to fabrication method and conditions, metal type and content, and the like. Appears different.

이산화티타늄 광학박막에 도핑된 금속의 양이 증가하면 처음에는 광분해능이 증가하지만, 일정량 이상 첨가하게 되면 오히려 광분해 반응이 감소되는 결과가 발생하며, 본 발명에서는 Pt 2%일 때 최대 광분해능을 보였으며 다른 귀금속도 가시광 영역에서 우수한 에탄올 광촉매 분해 반응을 보였다.When the amount of the metal doped in the titanium dioxide optical thin film is increased initially, the photodegradation increases, but if a certain amount or more is added, the photodegradation reaction is rather reduced. Other noble metals also showed good ethanol photocatalytic decomposition in the visible region.

이상은 본 발명에 따른 가시광에 반응하는 광촉매 광학박막의 제조 방법에 관한 것이고, 본 발명에 따른 가시광에 반응하는 광촉매 광학박막은 상술한 제조 방법에 따라 제조되므로 상세한 설명은 생략한다.The above relates to a method for producing a photocatalyst optical thin film responsive to visible light according to the present invention, and the detailed description is omitted since the photocatalyst optical thin film according to the present invention is manufactured according to the above-described manufacturing method.

이하 본 발명에 따라 제조된 각 금속 함량에 따른 광분해능의 실시예를 살펴보면 다음과 같다.Looking at the embodiment of the optical resolution according to each metal content prepared according to the present invention as follows.

가. 광원 차단 광학필터를 사용하지 않았을 경우의 광분해 실험.end. Photolysis experiment when no light blocking optical filter was used.

1) 실시 조건1) Conduct condition

광원 : BLB램프(20W) X 2Light source: BLB lamp (20W) X 2

반응기 : 밀폐형 석영 실린더(40ml)Reactor: Hermetic Quartz Cylinder (40ml)

내열성 기재 : 석영 유리(2 X 5cm)Heat resistant base material: quartz glass (2 X 5cm)

코팅횟수 : 3회(매회 100℃, 30분간 건조과정 반복)Number of coatings: 3 times (100 ℃ each time, repeat drying for 30 minutes)

열처리 조건 : 500℃, 1시간Heat treatment condition: 500 ℃, 1 hour

분해물질 : 벤젠(190ppm)Decomposition Material: Benzene (190ppm)

2) 실시 방법 : 광반응기에 분해물질이 평형상태가 되면 광원을 점등하여 일정 시간에 따른 분해물질(벤젠)의 농도변화를 측정하여 광분해 실험을 실시하였다.2) Method: When the decomposition products were in equilibrium in the photoreactor, the light source was turned on to measure the concentration change of the decomposition products (benzene) according to a predetermined time, and then the photolysis experiment was conducted.

3) 실시 결과3) Conduct result

금속 종류Metal type 광분해 반응 결과Photolysis reaction result PtPt Pt(2.0%) > Pt(4.0%) > Pt(1.0%) > Pt(0%) > Pt(0.05%)Pt(2.0%)의 경우 분해물질인 벤젠이 2시간 이내에 98%이상 분해In the case of Pt (2.0%)> Pt (4.0%)> Pt (1.0%)> Pt (0%)> Pt (0.05%) Pt (2.0%), the decomposition product benzene decomposes more than 98% within 2 hours PdPd Pd(1.0%) > Pd(2.0%) > Pd(0%) > Pd(10%)Pd(1.0%)인 경우 분해물질인 벤젠이 2시간 이내에 98%이상 분해In the case of Pd (1.0%)> Pd (2.0%)> Pd (0%)> Pd (10%) Pd (1.0%), the decomposition product benzene decomposes more than 98% within 2 hours FeFe 금속 도핑 함량에 따른 광분해 효과가 모두 흡사함All photodegradation effects are similar according to metal doping content AgAg 금속 도핑 후 금속을 담지하지 않은 경우보다 낮은 광분해 효과를 나타냄Lower photodegradation effect than metal unsupported after metal doping 금속별광분해 결과Photodegradation results by metal Pt > Pd > Fe > Ag (금속의 도핑 함량 2.0%로 일정)Pt> Pd> Fe> Ag (constant at 2.0% doping content of metal)

나. 광원 차단 광학필터를 사용하였을 경우의 광분해 실험I. Photolysis experiment when using light blocking optical filter

(빛이 400, 420, 450nm이하 영역의 파장은 투과시키지 않는 광원 차단 광학필터)(Light source blocking optical filter that does not transmit wavelength in the region below 400, 420, 450nm)

1) 실시 조건1) Conduct condition

광원 : BLB램프(20W) X 2Light source: BLB lamp (20W) X 2

반응기 : 밀폐형 석영 실린더(40ml)Reactor: Hermetic Quartz Cylinder (40ml)

내열성 기재 : 석영 유리(2 X 5cm)Heat resistant base material: quartz glass (2 X 5cm)

코팅횟수 : 3회 (매회 100℃, 30분간 건조과정 반복)Number of coatings: 3 times (Repeat drying process every 100 ℃ for 30 minutes)

열처리 조건 : 500℃, 1시간Heat treatment condition: 500 ℃, 1 hour

분해물질 : 에탄올(390ppm)Decomposition Material: Ethanol (390ppm)

광원 차단 광학필터 : 400nm, 420nm, 450nm 사용Light source blocking optical filter: 400nm, 420nm, 450nm

2) 실시 방법 : 광반응기에 분해물질이 평형상태가 되면 광원 앞에 파장별 광원 차단 광학필터를 설치하고 광원을 점등하여 일정 시간에 따른 분해물질(에탄올)의 농도변화를 측정하여 광분해 실험을 실시하였다.2) Method: When the decomposition material was in equilibrium in the photoreactor, the light-blocking optical filter for each wavelength was installed in front of the light source, and the light source was turned on to measure the concentration change of the decomposition product (ethanol) according to a predetermined time. .

3) 실시 결과3) Conduct result

광학 필터Optical filter 광분해 반응 결과Photolysis reaction result 400nm 사용400 nm used 분해물질인 에탄올이 24시간 이내에 98%이상 분해Decomposition ethanol decomposes more than 98% within 24 hours 420nm 사용420nm used 분해물질인 에탄올이 24시간 이내에 98%이상 분해Decomposition ethanol decomposes more than 98% within 24 hours 450nm 사용450 nm used 분해물질인 에탄올이 24시간 이내에 98%이상 분해Decomposition ethanol decomposes more than 98% within 24 hours 광원 차단 광학필터를 사용한 결과 광분해는 각 그래프에서 알 수 있듯이 Pt(2.0%)와 Pd(1.0%)인 경우 24시간 이내에 모두 분해물질이 98% 이상 완전 분해됨As a result of the use of the light blocking optical filter, photolysis is completely degraded more than 98% of decomposition products within 24 hours for Pt (2.0%) and Pd (1.0%), as shown in each graph.

① 400nm 광원 차단 광학필터를 사용한 광분해 반응 결과① Result of photolysis reaction using 400nm light blocking optical filter

② 420nm 광원 차단 광학필터를 사용한 광분해 반응 결과② Result of photolysis reaction using 420nm light blocking optical filter

③ 450nm 광원 차단 광학필터를 사용한 광분해 반응 결과③ Results of photolysis reaction using 450nm light blocking optical filter

다. 형광램프를 사용하였을 때의 광분해 실험All. Photolysis experiment when using fluorescent lamp

1) 실시 조건1) Conduct condition

광원 : 가정용 형광램프(30W)Light source: domestic fluorescent lamp (30W)

반응기 : 밀폐형 석영 실린더(40ml)Reactor: Hermetic Quartz Cylinder (40ml)

내열성 기재 : 석영 유리(2 X 5cm)Heat resistant base material: quartz glass (2 X 5cm)

코팅횟수 : 3회(매회 100℃, 30분간 건조과정 반복)Number of coatings: 3 times (100 ℃ each time, repeat drying for 30 minutes)

열처리 조건 : 500℃, 1시간Heat treatment condition: 500 ℃, 1 hour

분해물질 : 에탄올(390ppm)Decomposition Material: Ethanol (390ppm)

2) 실시 방법 : 광반응기에 분해물질이 평형상태가 되면 실내에서 형광램프를 점등하여 일정 시간에 따른 분해물질(에탄올)의 농도변화를 측정하여 광분해 실험을 실시하였다.2) Method: When the decomposition products were in equilibrium in the photoreactor, the fluorescent lamp was turned on in the room to measure the concentration change of the decomposition products (ethanol) over a period of time.

3) 실시 결과 : Pt 2.0%를 담지한 광촉매 광학박막은 형광램프 사용시 광분해 실험을 실시한 결과 3시간 이내에 분해물질이 98%이상 분해되었다.3) Result: Photocatalytic optical thin film carrying 2.0% of Pt was decomposed more than 98% of decomposable material within 3 hours after photodegradation experiment using fluorescent lamp.

① 형광램프를 사용한 광분해 반응 결과① Result of photolysis reaction using fluorescent lamp

라. 광촉매 광학박막의 금속종류별 투과율 측정la. Measurement of transmittance by metal type of photocatalyst optical thin film

: 광증착 방법으로 제작한 금속-이산화티타늄 광촉매 광학박막은 광투과율이 매우 우수하다.: Metal-titanium dioxide photocatalyst optical thin film produced by photodeposition method has excellent light transmittance.

① 광촉매 광학박막의 금속종류별 투과율 그래프① Graph of transmittance by metal type of photocatalyst optical thin film

이상 실시예에서 살펴본 바와 같이 N형 반도체의 일종인 이산화티타늄을 촉매로서 활성화시키기 위해서는 밴드갭 에너지가 3.2eV인 아나타제 결정상을 이루어야 하고 이것의 활성을 위해서는 386nm 이하의 자외광 조사가 필요하나, 본 발명에 따른 이산화티타늄 광촉매 광학박막은 이산화티타늄의 밴드갭 에너지 사이에 산화·환원 전위를 갖는 금속이온을 빛을 쬐어 증착하는 광증착법으로 도핑시켜 이 금속이온들이 격자 내에서 전자 또는 정공의 포획장벽으로 작용하여 전하쌍 재결합 속도를 변화시키고 밴드갭 에너지를 낮추어 자외광뿐만 아니라, 에너지가 낮은 386nm 이상의 가시광 영역에서도 광화학 반응에 의한 우수한 효율의 광촉매 반응이가능하다.As described in the above examples, in order to activate titanium dioxide, which is a type of N-type semiconductor, as a catalyst, an anatase crystal phase having a bandgap energy of 3.2 eV must be formed, and ultraviolet light irradiation of 386 nm or less is required for its activity. Titanium dioxide photocatalyst optical thin film is doped by light deposition to deposit metal ions having oxidation / reduction potential between the bandgap energy of titanium dioxide by light, and these metal ions act as trapping barriers of electrons or holes in the lattice By changing the charge pair recombination rate and lowering the bandgap energy, not only ultraviolet light but also photocatalytic reaction can be performed efficiently by photochemical reaction in the visible light region of 386 nm or more where energy is low.

상기와 같이 광촉매 박막을 형성한 이산화티타늄은 박막표면에서 정공이 가지는 산화력과 전자가 가지는 환원력에 의해 산화·환원 반응을 발생시키는 것이 가능하다.As described above, the titanium dioxide in which the photocatalyst thin film is formed can generate an oxidation / reduction reaction by the oxidizing power of holes and the reducing power of electrons on the surface of the thin film.

따라서, 상기와 같이 정공이 가지는 산화력은 공기의 탈취나 NOx, SOx 등의 오염 기체 제거, 항균, 유해물질의 발생 방지 등에 근거한 오염방지, 부착기름의 분해, 페놀이나 화합물 등의 합성, 유기물 제거 등에 다용도로 이용할 수 있는 것이다.Therefore, the oxidizing power of the hole as described above is based on deodorization of air, removal of polluting gases such as NOx and SOx, antibacterial, prevention of generation of harmful substances, decomposition of adhesion oil, synthesis of phenol or compound, removal of organic matters It is versatile.

또한, 다른 반응으로서 결정의 원자가(原子價) 전자가 광여기 되면 산화·환원 반응뿐만 아니라 박막표면이 친수화되고 항구적인 친수표면을 유지하는 것이 가능하다.In addition, when the valence electrons of the crystals are photoexcited as another reaction, not only the oxidation / reduction reaction, but also the surface of the thin film can be hydrophilized and maintain a constant hydrophilic surface.

그러므로, 상기와 같은 현상은 결정 표면에 산소 결함이 생긴 것과 같은 구조 변화를 수반하고 있어, 그 결함에 수산기가 배위하고 흡착수가 형성되어 고도로 친수화 된다.Therefore, the above phenomenon is accompanied by a structural change such as an oxygen defect on the crystal surface, the hydroxyl group coordinates to the defect, the adsorbed water is formed and highly hydrophilized.

이와 같이 표면이 친수화 되면 투명 부재의 시야 확보와 가시성을 향상시키는 것이 가능하다.Thus, when the surface becomes hydrophilic, it is possible to improve the visibility and visibility of the transparent member.

또한, 강우에 의하여 기재 표면이 자체 세척이 가능해지므로, 건물이나 차량, 화장실 등에 접목시켜 많은 용도로 그 성능을 발휘시킬 수 있다.In addition, since the surface of the substrate can be self-cleaned by the rainfall, it can be combined with a building, a vehicle, a toilet, and the like to exhibit its performance in many applications.

이상에서 살펴본 바와 같이 본 발명은, 이산화티타늄의 밴드갭 에너지 사이에 산화·환원 전위를 갖는 금속이온을 빛을 쬐어 증착하는 광증착법으로 도핑시켜 이 금속이온들이 격자 내에서 전자 또는 정공의 포획장벽으로 작용하여 전하쌍 재결합 속도를 변화시키고 밴드갭 에너지를 낮추어 자외광뿐만 아니라, 에너지가 낮은 가시광 영역에서도 광화학 반응에 의한 우수한 효율의 광촉매 반응이 가능하여 각종 분야에서 매우 광범위하게 응용할 수 있는 효과가 있다.As described above, the present invention, the metal ions having an oxidation-reduction potential between the bandgap energy of titanium dioxide by doping by the light deposition method by the light deposition to deposit these metal ions to the trapping barrier of electrons or holes in the lattice By changing the charge pair recombination rate and lowering the bandgap energy, the photocatalytic reaction can be efficiently performed by photochemical reactions not only in ultraviolet light but also in the low energy visible light region, and thus can be widely applied in various fields.

Claims (5)

티타늄 테트라 이소프록팍사이드와 이소프로판올을 혼합하여 1차 교반시킨 후,After titanium tetra isoprofaxide and isopropanol were mixed and first stirred, 상기 혼합물에 염산 수용액을 첨가하여 2차 교반하여 이산화티타늄 졸을 생성하는 광촉매 졸 생성단계와,A photocatalyst sol generating step of adding a hydrochloric acid aqueous solution to the mixture and stirring the mixture to produce a titanium dioxide sol; 상기 광촉매 졸 생성 단계에 의해 수득한 이산화티타늄 졸에 내열성 기재를 침지시켜 내열성 기재 표면에 이산화티타늄 졸을 코팅하고,Coating the titanium dioxide sol on the surface of the heat resistant substrate by immersing the heat resistant substrate in the titanium dioxide sol obtained by the photocatalyst sol generating step, 상기 내열성 기재에 코팅된 이산화티타늄 졸을 80~120℃ 온도에서 소정 시간 건조시키며,The titanium dioxide sol coated on the heat resistant substrate is dried at a temperature of 80 to 120 ° C. for a predetermined time, 상기 이산화티타늄 졸이 코팅되어 건조된 내열성 기재를 400~600℃ 온도로 소정 시간 가열하여 내열성 기재 표면에 이산화티타늄 광학박막을 형성하는 광학박막 형성단계와,An optical thin film forming step of forming a titanium dioxide optical thin film on the surface of the heat resistant substrate by heating the heat resistant substrate coated with the titanium dioxide sol to a temperature of 400 to 600 ° C. for a predetermined time; 상기 광학박막 형성단계에 의해 제작된 이산화티타늄 광학박막이 형성된 내열성 기재를 염화물 수용액에 침지시키고,The heat resistant substrate on which the titanium dioxide optical thin film produced by the optical thin film forming step is formed is immersed in an aqueous chloride solution, 상기 염화물 수용액에 내열성 기재를 침지시킨 후, 자외광을 일정 시간 조사하며,After immersing the heat resistant substrate in the chloride aqueous solution, ultraviolet light is irradiated for a predetermined time, 상기 자외광을 조사한 내열성 기재를 110~150℃로 건조하여 이산화티타늄 광학박막을 형성하는 내열성 기재에 광증착하는 광증착단계로 이루어진 것을 특징으로 하는 가시광에 감응하는 광촉매 광학박막 제조방법.Method for producing a photocatalyst optical thin film sensitive to visible light, characterized in that consisting of a photodeposition step of photo-depositing the heat-resistant substrate irradiated with ultraviolet light to 110 ~ 150 ℃ the heat-resistant substrate to form a titanium dioxide optical thin film. 제 1항에 있어서, 상기 광증착단계의 염화물 수용액에 금속이온을 0.01~5% 담지시켜 금속-염화물 수용액을 생성하고, 상기 금속-염화물 수용액에 내열성 기재를 침지시켜 자외광을 조사하여 금속을 도핑하는 것을 특징으로 하는 가시광에 감응하는 광촉매 광학박막 제조방법.The method of claim 1, wherein the chloride aqueous solution of the photodeposition step 0.01 to 5% of the metal ion to produce a metal chloride solution, the heat-resistant substrate is immersed in the metal chloride solution to irradiate ultraviolet light to dope the metal A photocatalyst optical thin film production method that is sensitive to visible light. 제 1항 또는 제 2항에 있어서, 상기 광촉매 졸 생성단계는 티타늄 테트라 이소프록팍사이드와 이소프로판올, 염산 수용액의 몰 조성비가 2 : 53 : 3으로 이루어진 것을 특징으로 하는 가시광에 감응하는 광촉매 광학박막 제조방법.The method of claim 1 or 2, wherein the photocatalyst sol generating step is a photocatalytic optical thin film production of a sensitive light, characterized in that the molar composition ratio of titanium tetraisopropoxide, isopropanol, hydrochloric acid solution is 2: 53: 3. Way. 제 1항 내지 제 3항 중 어느 한 항에 있어서, 상기 광증착단계 중 염화물 수용액에 내열성 기재를 침지시킨 후에 광학박막을 세척하여 자외광을 조사하는 것을 특징으로 하는 가시광에 감응하는 광촉매 광학박막 제조방법.The photocatalyst optical thin film production according to any one of claims 1 to 3, wherein the optical thin film is irradiated by irradiating ultraviolet light after immersing the heat resistant substrate in an aqueous chloride solution during the photodeposition step. Way. 티타늄 테트라 이소프록팍사이드와 이소프로판올을 혼합하여 1차 교반시킨 후, 상기 혼합물에 염산 수용액을 첨가하여 2차 교반하여 이산화티타늄 졸을 생성하고,Titanium tetra isopropoxide and isopropanol were mixed and stirred first, and then, an aqueous solution of hydrochloric acid was added to the mixture, followed by second stirring to form a titanium dioxide sol. 상기 광촉매 졸을 생성하여 수득한 이산화티타늄 졸에 내열성 기재를 침지시켜 내열성 기재 표면에 이산화티타늄 졸을 코팅하며,Coating a titanium dioxide sol on the surface of the heat resistant substrate by immersing the heat resistant substrate in the titanium dioxide sol obtained by producing the photocatalyst sol, 상기 내열성 기재에 코팅된 이산화티타늄 졸을 80~120℃ 온도에서 소정 시간건조시키고,The titanium dioxide sol coated on the heat resistant substrate is dried at a temperature of 80 to 120 ° C. for a predetermined time, 상기 이산화티타늄 졸이 코팅되어 건조된 내열성 기재를 400~600℃ 온도로 소정 시간 가열하여 내열성 기재 표면에 이산화티타늄 광학박막을 형성하며,The titanium dioxide sol is coated and dried to heat the heat resistant substrate at a temperature of 400 ~ 600 ℃ for a predetermined time to form a titanium dioxide optical thin film on the surface of the heat resistant substrate, 상기 이산화티타늄 광학박막이 형성된 내열성 기재를 염화물 수용액에 침지시키고,The heat resistant substrate on which the titanium dioxide optical thin film is formed is immersed in an aqueous chloride solution, 상기 염화물 수용액에 내열성 기재를 침지시킨 후, 자외광을 일정 시간 조사하며,After immersing the heat resistant substrate in the chloride aqueous solution, ultraviolet light is irradiated for a predetermined time, 상기 자외광을 조사한 내열성 기재를 110~150℃로 건조하여 이산화티타늄 광학박막을 형성하는 내열성 기재에 광증착하여 제작되는 것을 특징으로 하는 가시광에 감응하는 광촉매 광학박막.The photocatalyst optical thin film sensitive to visible light, characterized in that the ultraviolet-ray irradiated heat-resistant substrate to 110 ~ 150 ℃ to produce a titanium dioxide optical thin film by vapor-deposited on the heat-resistant substrate.
KR10-2001-0065575A 2001-10-24 2001-10-24 Photocatalyst optical thin films activated in the visible light and their preparations KR100440785B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0065575A KR100440785B1 (en) 2001-10-24 2001-10-24 Photocatalyst optical thin films activated in the visible light and their preparations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0065575A KR100440785B1 (en) 2001-10-24 2001-10-24 Photocatalyst optical thin films activated in the visible light and their preparations

Publications (2)

Publication Number Publication Date
KR20010106338A true KR20010106338A (en) 2001-11-29
KR100440785B1 KR100440785B1 (en) 2004-07-21

Family

ID=19715346

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0065575A KR100440785B1 (en) 2001-10-24 2001-10-24 Photocatalyst optical thin films activated in the visible light and their preparations

Country Status (1)

Country Link
KR (1) KR100440785B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101876938B1 (en) * 2017-09-12 2018-07-10 주식회사 소프스톤 Manufacturing of titanium dioxide and titanium dioxide manufactured therefrom

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192496A (en) * 1996-01-12 1997-07-29 Matsushita Electric Works Ltd Photocatalyst and self-cleaning articles having the same
JPH11255514A (en) * 1998-03-11 1999-09-21 Hoya Corp Production of visible light absorptive titanium oxide
JPH11290697A (en) * 1998-04-15 1999-10-26 Matsushita Seiko Co Ltd Photocatalyst titanium oxide, photocatalyst deodorizing element, photocatalytic deodorizing and environment cleaning device
KR100304349B1 (en) * 1998-09-09 2001-11-30 김충섭 Photocatalyst for generating cadmium sulfide hydrogen and its production method and hydrogen production method using the same
KR20000017724A (en) * 1999-09-13 2000-04-06 최수현 Synthesis procedure and chemical components of nano-size MoO3/TiO2 mixed photocatalysts for the utilization of the wavelength from Ultra Violet to Visible light and solar light
KR20020082633A (en) * 2001-04-25 2002-10-31 설용건 Preparation and application of ultra fine titania photocalysts doped by transition, lanthanides, and precious metals ion (Au, In, Sn, W, Zn, V, Ce, Eu, Ag) to utilize a solar spectrum (or spectrum of visible range)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101876938B1 (en) * 2017-09-12 2018-07-10 주식회사 소프스톤 Manufacturing of titanium dioxide and titanium dioxide manufactured therefrom

Also Published As

Publication number Publication date
KR100440785B1 (en) 2004-07-21

Similar Documents

Publication Publication Date Title
Asahi et al. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects
KR100518956B1 (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
US20030167878A1 (en) Titanium-containing materials
Priya et al. A review on recent advancements in photocatalytic remediation for harmful inorganic and organic gases
JP2517874B2 (en) Method for producing titanium oxide thin film photocatalyst
US20070193875A1 (en) Photocatalyst materials having semiconductor characteristics and methods for manufacturing and using the same
Leonard et al. Interactions between Zn2+ or ZnO with TiO2 to produce an efficient photocatalytic, superhydrophilic and aesthetic glass
Eswar et al. Efficient interfacial charge transfer through plasmon sensitized Ag@ Bi 2 O 3 hierarchical photoanodes for photoelectrocatalytic degradation of chlorinated phenols
EP1205243A1 (en) Preparation of firmly-anchored photocatalitically-active titanium dioxide coating films with non-gelled organic-doped precursors
JP5946096B2 (en) A novel visible light responsive photocatalyst with environmental resistance
KR100925247B1 (en) Photocatalyst, synthetic method and its application for wastewater treatment
Duong et al. High efficiency degradation of tetracycline antibiotic with TiO2-SiO2 photocatalyst under low power of simulated solar light irradiation
KR100440785B1 (en) Photocatalyst optical thin films activated in the visible light and their preparations
KR20020045856A (en) Photocatalyst coating sol capable of hardening at low temperature and preparation method thereof
JP3885248B2 (en) Photocatalyst composition
JPH105598A (en) Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
JP2003135972A (en) Porous thin film containing photocatalyst and coating agent
KR102060521B1 (en) Water proofing material comprising visible light active photocatalyst for air cleaning
Gota et al. Preparation and Its Application of TiO 2/ZrO 2 and TiO 2/Fe Photocatalysts: A Perspective Study.
Wang et al. Preparation of Er 3+: YAlO 3/ZnO coating compound by sol-gel method and photocatalytic degradation of organic dyes under sun light irradiation
Aziz et al. Recent progress on development of TiO2 thin film photocatalysts for pollutant removal
KR100332366B1 (en) Photocatalyst-coating on polymer substrates for UV protection and self cleanning, and the method of preraration of photocatalyst sol
Abdul Ghani et al. Water-based immobilized Ag-doped TiO₂ photocatalyst for photocatalytic degradation of RR4 dye
KR101231894B1 (en) Photocatalytic auto-cleaning process of stains
Chen et al. Research progress on degradation of VOCs by metal ions doped titanium dioxide nanoparticles

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee