KR101876938B1 - Manufacturing of titanium dioxide and titanium dioxide manufactured therefrom - Google Patents

Manufacturing of titanium dioxide and titanium dioxide manufactured therefrom Download PDF

Info

Publication number
KR101876938B1
KR101876938B1 KR1020170116390A KR20170116390A KR101876938B1 KR 101876938 B1 KR101876938 B1 KR 101876938B1 KR 1020170116390 A KR1020170116390 A KR 1020170116390A KR 20170116390 A KR20170116390 A KR 20170116390A KR 101876938 B1 KR101876938 B1 KR 101876938B1
Authority
KR
South Korea
Prior art keywords
titanium dioxide
reduced
doping
visible light
reduced titanium
Prior art date
Application number
KR1020170116390A
Other languages
Korean (ko)
Inventor
문원하
Original Assignee
주식회사 소프스톤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 소프스톤 filed Critical 주식회사 소프스톤
Priority to KR1020170116390A priority Critical patent/KR101876938B1/en
Application granted granted Critical
Publication of KR101876938B1 publication Critical patent/KR101876938B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • B01J35/004
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

Disclosed is a method for producing visible light-sensitive titanium dioxide. According to the present invention, the method for producing visible light-sensitive titanium dioxide comprises: obtaining reduced titanium dioxide; and doping or depositing the reduced titanium dioxide with a sensitivity enhancing material. According to the present invention, it is possible to maximize sensitivity to visible light.

Description

고효율 이산화티타늄의 제조방법 및 이로부터 제조된 이산화티타늄{MANUFACTURING OF TITANIUM DIOXIDE AND TITANIUM DIOXIDE MANUFACTURED THEREFROM}TECHNICAL FIELD [0001] The present invention relates to a method for producing high-efficiency titanium dioxide and a titanium dioxide produced from the method. ≪ Desc / Clms Page number 1 >

본 발명은 가시광에 감응하는 이산화티타늄의 제조방법 및 이로부터 제조된 이산화티타늄에 관한 것이다.The present invention relates to a process for producing titanium dioxide which is sensitive to visible light and titanium dioxide produced therefrom.

광촉매 물질은 빛을 받으면 유해물질의 분해를 촉진하는 반응을 나타낸다. 광에 의해 가전자대(Valence Band)에서 전도대(Conduction Band)로 여기된 전자와 가전자대에 형성된 정공은 강한 산화 또는 환원 작용을 나타낸다. 이와 같은 산화 또는 환원 작용을 나타내는 물질로는 TiO2, ZnO, Nb2O5, SnO2, ZrO2, CdS, ZnS, CdSe, GaP, CdTe 등이 있다.The photocatalyst material reacts to the decomposition of harmful substances when it receives light. The electrons excited from the valence band to the conduction band by the light and the holes formed in the valence band exhibit a strong oxidation or reduction action. Examples of the material exhibiting such an oxidation or reduction action include TiO2, ZnO, Nb2O5, SnO2, ZrO2, CdS, ZnS, CdSe, GaP, and CdTe.

이 중 이산화티타늄(TiO2)은 자체가 빛을 받아도 특성이 변하지 않아 반영구적으로 사용이 가능한데 반해, ZnO나 CdS는 자체가 빛에 의해 분해되어 유해한 Zn와 Cd이온을 발생하는 단점이 있다. Among these, TiO 2 itself can be used semi-permanently because its characteristics do not change even if it receives light itself. However, ZnO or CdS itself is decomposed by light and generates harmful Zn and Cd ions.

또한 이산화티타늄은 모든 유기물을 산화시켜 CO2와 H2O로 분해하지만 WO3는 감응 향상 물질에 대해서만 광촉매 효율이 좋고, 그 외의 물질은 효율이 이산화티타늄보다 훨씬 낮아 사용에 제한이 있다. 또한 이산화티타늄은 내구성과 내마모성이 우수하고, 자체 물성 변화가 없고, 친환경적이며 폐기하여도 2차 공해에 대한 염려가 없다.In addition, titanium dioxide decomposes all organic materials into CO 2 and H 2 O, whereas WO 3 has a good photocatalytic efficiency only for the sensitizing material, and other materials are much lower in efficiency than titanium dioxide. In addition, titanium dioxide is excellent in durability and abrasion resistance, has no change in its own properties, is environmentally friendly, and has no concern about secondary pollution even if it is disposed of.

한편 아나타제형 이산화티타늄의 밴드갭(band gap or forbidden band) 에너지(Eg)는 3.23eV이고, 루틸형 이산화티탄은 3.02eV이다. 이를 파장으로 환산하면 각각 388nm, 413nm이므로, 가시광선 영역인 400nm ~ 800nm 에서는 거의 반응하지 않고, 자외선 영역인 270nm ~ 400nm에서 반응한다. 태양빛의 경우 지표면에 도달하는 약 5%가 자외선이고, 약 40%가 가시광선으로 알려져 있다. 이와 같이 상용화된 이산화티타늄은 자외선에 의해 반응하므로 촉매 효율이 낮다. 태양광의 40%를 차지하는 가시광선에 의해 반응할 수 있게 되면 촉매 효율은 상대적으로 높아질 수 있다.On the other hand, the band gap or forbidden band energy (Eg) of the anatase type titanium dioxide is 3.23 eV, and the rutile type titanium dioxide is 3.02 eV. Since the wavelengths are 388 nm and 413 nm, respectively, the wavelengths are substantially unreactive at 400 nm to 800 nm in the visible light region and react at 270 nm to 400 nm in the ultraviolet region. In the case of sunlight, about 5% reaching the surface is ultraviolet, and about 40% is known as visible light. The titanium dioxide thus commercialized reacts with ultraviolet rays, so the catalytic efficiency is low. The catalyst efficiency can be relatively high if it can be reacted by visible light which occupies 40% of the sunlight.

기존 가시광 감응 광촉매 활성을 위하여 이산화티타늄에 전이금속, 질소, 탄소, 황, 인, 불소 등과 같은 금속 또는 비금속 물질을 도핑하는 방법을 주로 이용하였다. 그러나 상기 방법으로는 태양 조사에 반응하지만 여전히 가시광에서의 흡수가 부족하다.In order to activate the photocatalytic activity of conventional visible light, a method of doping titanium dioxide with a metal or a nonmetal such as transition metal, nitrogen, carbon, sulfur, phosphorus, or fluorine has been mainly used. However, the above method is sensitive to solar irradiation but still lacks absorption in visible light.

한편 X. B Chen 등은 고온과 고압환경에서 수소 기체로 이산화티타늄을 최초로 환원시켜, 이산화티타늄의 표면 상에 무질서 층을 형성했다 [Xiaobo Chen, Lei Liu, Peter Y. Yu and Samuel S. Mao, "Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals" Science, vol.331, no.6018 (2011) pp.746-750]. 그 결과 기존의 백색 이산화티타늄보다 우수한 가시광 감응 및 광촉매 효율이 증가하였고, 이 방법에 따라 수소 처리된 이산화티타늄에 대한 다양한 조건들이 공지되었다. 그러나 초 고온 및 고압 환경에서의 수소 기체의 사용은 공업 생산에 있어서 매우 위험하고, 또한 장시간의 반응시간이 요구되는 단점이 있다.On the other hand, X. B Chen et al. First reduced titanium dioxide to hydrogen gas in high temperature and high pressure environments to form a disorder layer on the surface of titanium dioxide [Xiaobo Chen, Lei Liu, Peter Y. Yu and Samuel S. Mao, &Quot; Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals " Science, vol.331, no. 6018 (2011) pp.746-750]. As a result, the visible light response and the photocatalytic efficiency were improved as compared with the conventional white titanium dioxide, and various conditions for the hydrotreated titanium dioxide according to this method were known. However, the use of hydrogen gas in an ultra-high temperature and high-pressure environment is very dangerous in industrial production and requires a long reaction time.

또한 수소 기체를 통해 이산화티타늄을 환원시키는 방법은 공정조건에 따라 가시광 감응에 대한 효율이 각각 다르게 나타나며, 무엇보다도 시간이 지남에 따라 환원으로 인한 효과가 감소하여 원래 물질로 회귀하는 특성이 보고된 바 있다.In addition, in the method of reducing titanium dioxide through hydrogen gas, efficiency for visible light response is different according to processing conditions, and most of all, the effect due to reduction decreases over time, and the characteristic of returning to original material has been reported have.

따라서 종래의 기술을 대체하고 장기적으로 안정한 가시광선 영역에서 높은 광촉매 활성을 나타내는 광촉매의 개발을 위해 신규한 제조 방법의 개발이 요구된다.Therefore, it is required to develop a new manufacturing method for the development of a photocatalyst which exhibits high photocatalytic activity in the visible light region which is stable in the long term in place of the conventional technique.

공개특허공보 제1-2013-0042390호의 가시광 감응 특성을 갖는 이산화티타늄계 광촉매 및 그 제조방법Titanium dioxide-based photocatalyst having visible light-sensitive characteristics of Patent Document 1-2013-0042390 and method for producing the same 등록특허공보 제10-1265781호의 결정질 이산화티타늄 코어-비정질 이산화티타늄 쉘 형태의 이산화티타늄 광촉매, 그 제조방법 및 상기 이산화티타늄 광촉매를 포함한 친수성 코팅제A crystalline titanium dioxide core-crystalline titanium dioxide photocatalyst in the form of amorphous titanium dioxide shell of Patent Registration No. 10-1265781, a process for preparing the same, and a hydrophilic coating agent containing the titanium dioxide photocatalyst 공개특허공보 제10-2017-0002285호의 자외선 및 가시광 흡광을 위한 코어-쉘 에너지 띠 구조를 갖는 금속산화물 광촉매를 이용한 태양에너지 변환 효율 증진 방법 및 광촉매Patent Document 10-2017-0002285 discloses a method for enhancing solar energy conversion efficiency using a metal oxide photocatalyst having a core-shell energy band structure for ultraviolet and visible light absorption, and a photocatalyst 등록특허공보 제10-0769481호의 저온 열처리에 의해 결정구조가 변환되는 이산화티타늄광촉매의 합성방법A method of synthesizing titanium dioxide photocatalyst in which crystal structure is transformed by low-temperature heat treatment of Patent Registration No. 10-0769481

본 발명은 가시광 감응 고효율 이산화타타늄을 제조하는 방법 및 이산화티타늄 광촉매를 제공하려는 데 그 목적이 있다.It is an object of the present invention to provide a method for producing visible-light-sensitive high-efficiency titanium dioxide and a titanium dioxide photocatalyst.

본 발명의 해결하고자 하는 과제는 언급한 과제로 제한되지 않는다. 언급하지 않은 다른 기술적 과제들은 이하의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present invention are not limited to the above-mentioned problems. Other technical subjects not mentioned will be apparent to those skilled in the art from the following description.

본 발명의 제1 실시예에 따른 가시광 감응 이산화티타늄의 제조방법은 환원된 이산화티타늄을 얻는 단계(S100)와, 환원된 이산화티타늄을 감응 향상 물질로 도핑하는 단계(S300)를 포함한다. 추가적으로 상기 환원된 이산화티타늄을 얻는 단계에는, 환원된 이산화티타늄을 세정 및 건조하는 단계(S200)를 포함할 수 있다.The method of producing visible light-sensitive titanium dioxide according to the first embodiment of the present invention includes a step (S100) of obtaining reduced titanium dioxide and a step (S300) of doping the reduced titanium dioxide with a sensitizing material. In addition, the step of obtaining the reduced titanium dioxide may include washing and drying the reduced titanium dioxide (S200).

본 발명의 제2 실시예에 따른 가시광 감응 이산화티타늄의 제조방법은 환원된 이산화티타늄을 얻는 단계(S100)와, 환원된 이산화티타늄을 감응 향상 물질로 증착하는 단계(S300)를 포함한다. 추가적으로 상기 환원된 이산화티타늄을 얻는 단계에는, 환원된 이산화티타늄을 세정 및 건조하는 단계(S200)를 포함할 수 있다.The method of producing visible light-sensitive titanium dioxide according to the second embodiment of the present invention includes the steps of obtaining reduced titanium dioxide (S100) and depositing the reduced titanium dioxide with a sensitizing material (S300). In addition, the step of obtaining the reduced titanium dioxide may include washing and drying the reduced titanium dioxide (S200).

상기 제1 및 제2 실시예에서 환원된 이산화티타늄을 얻는 단계는 이산화티타늄을 환원제와 혼합하여 분말상태에서 열처리 방법, 수열(hydrothermal) 합성법 및 용매열(solvothermal) 합성법을 이용할 수 있으며, 상기 환원제는 붕소계 수소화물 또는 알루미늄계 수소화물일 수 있다.The step of obtaining the reduced titanium dioxide in the first and second embodiments may be performed by a heat treatment method, a hydrothermal synthesis method and a solvothermal synthesis method in a powder state by mixing titanium dioxide with a reducing agent, Boron-based hydride or aluminum-based hydride.

상기 붕소계 수소화물은 M[BH4]n 의 구조를 가지며, n=1 일 때, M은 Li, Na, K, Ru, Cu, Ag, Cs, NH4 이고, n=2 일 때, M은 Be, Mg, Ca, Sr, Mn, Fe 이며, n=3 일 때, M은 Ti, Ga, In, Ce, LiMn 이고, n=4 일 때, M은 Ti, Zr, Sn, NaMn 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질과 NH3BH3 포함한다.When the boron-based hydride M [BH 4] has a structure of n, n = 1 il, M is Li, Na, K, Ru, Cu, Ag, Cs, NH 4 and, n = time 2 days, M M is Ti, Ga, In, Ce, and LiMn; when n = 4, M is Ti, Zr, Sn, and NaMn; material selected from the group consisting of the combination and include NH 3 BH 3.

또한 상기 알루미늄계 수소화물은 M[AlH4]n 의 구조를 가지며, n=1 일 때, M은 Li, Na, K, Ru, Cu, Ag, Cs, NH4이고, n=2 일 때, M은 Be, Mg, Ca, Sr, Mn, Fe 이며, n=3 일 때, M은 Ti, Ga, In, Ce, LiMn 이고, n=4 일 때, M은 Ti, Zr, Sn, NaMn 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함한다.In addition, the aluminum-based hydride M [AlH 4] has a structure of n, n = 1, the M is Li, Na, K, Ru, Cu, Ag, Cs, NH 4, n = time 2, M is at least one element selected from the group consisting of Ti, Zr, Sn, NaMn, and Mn, where n is 3, M is at least one element selected from the group consisting of Be, Mg, Ca, Sr, ≪ / RTI > and combinations thereof.

본 발명의 제1 실시예에 따른 도핑에 사용되는 감응 향상 물질은 Pt, Au, Pd, Rh, Ni, Cu, Sn, Ag, Fe, V, Mo, Ru, Os, Re, Mn, Nb, Co, Cr, La, Ce, Er, Pr, Gd, Nd, Sm, Zn, Si, Al, W, Zr, Li, Na, K 및 이들의 조합들로 이루어진 군으로부터 선택되거나, H, C, N, S, P, F, I 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함한다.The sensitization-enhancing material used in the doping according to the first embodiment of the present invention may be at least one selected from the group consisting of Pt, Au, Pd, Rh, Ni, Cu, Sn, Ag, Fe, V, Mo, Ru, Os, Re, Mn, C, N, K, and combinations thereof, selected from the group consisting of Cr, La, Ce, Er, Pr, Gd, Nd, Sm, Zn, Si, Al, W, Zr, S, P, F, I, and combinations thereof.

본 발명의 제2 실시예에 따른 증착에 사용되는 감응 향상 물질은 Pt, Au, Pd, Rh, Ni, Cu, Sn, Ag, Fe, V, Mo, Ru, Os, Re, Mn, Nb, Co, Cr, La, Ce, Er, Pr, Gd, Nd, Sm, Zn, Si, Al, W, Zr, Li, Na, K 및 이들의 조합들로 이루어진 군으로부터 선택될 수 있다.The sensitization-enhancing material used in the deposition according to the second embodiment of the present invention may be at least one selected from the group consisting of Pt, Au, Pd, Rh, Ni, Cu, Sn, Ag, Fe, V, Mo, Ru, Os, Re, Mn, , Cr, La, Ce, Er, Pr, Gd, Nd, Sm, Zn, Si, Al, W, Zr, Li, Na, K and combinations thereof.

본 발명에 따르면, 종래의 고온, 고압, 및 수소 기체를 사용하지 않은 공정조건에서 이산화티타늄을 환원시키고, 환원된 이산화티타늄에 도핑 또는 증착을 통해 가시광 감응 특성을 극대화할 수 있다.According to the present invention, it is possible to reduce titanium dioxide in a process condition that does not use conventional high temperature, high pressure, and hydrogen gas, and to maximize visible light sensitivity characteristics through doping or deposition on the reduced titanium dioxide.

또한 짧은 제조공정 및 상대적으로 낮은 온도 분위기에서 쉽고 간단하게 환원된 이산화티타늄을 얻을 수 있으므로 경제성 및 양산성을 확보할 수 있는 이점이 있다. In addition, since titanium dioxide can be easily and easily reduced in a short manufacturing process and a relatively low temperature atmosphere, economical efficiency and mass productivity can be secured.

도 1은 본 발명에 따른 가시광 감응 이산화티타늄의 제조 공정을 나타낸 것이다.
도 2는 환원과 N도핑이 이루어진 이산화티타늄의 광활성 메커니즘을 보여주는 그림이다.
도 3은 본 발명을 통해 얻는 이산화티타늄의 처리방법 및 구조를 보여주는 그림이다.
도 4는 출발물질인 P-25 타입의 이산화티타늄(흰색)과 비교예 1~3 및 본 발명의 실시예 1~2에 따라 수득한 이산화티타늄을 촬상한 것이다.
도 5는 UV-Vis spectrophotomer(JASCO, V650)를 사용하여 P-25 타입의 이산화티타늄과 비교예 1~2 및 본 발명의 실시예 1에 따라 수득한 이산화티타늄의 흡광도 비교 그래프이다.
도 6은 이산화티타늄의 X-선 회절분석(X-ray diffraction; Ultima IV, Rigaku) 그래프이다.
1 shows a process for producing visible light-sensitive titanium dioxide according to the present invention.
Figure 2 is a diagram showing the photoactive mechanism of titanium dioxide undergoing reduction and N doping.
FIG. 3 is a view showing a processing method and structure of titanium dioxide obtained through the present invention. FIG.
4 is a photograph of titanium dioxide (white) of P-25 type as a starting material and titanium dioxide obtained according to Comparative Examples 1 to 3 and Examples 1 and 2 of the present invention.
5 is a graph comparing the absorbance of titanium dioxide of P-25 type with those of Comparative Examples 1 and 2 and titanium dioxide obtained according to Example 1 of the present invention using a UV-Vis spectrophotomer (JASCO, V650).
6 is a graph of X-ray diffraction (Ultima IV, Rigaku) of titanium dioxide.

이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세히 설명한다. 본 발명에서 언급하는 실시형태는 다양한 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described in the present invention can be modified into various forms, and the scope of the present invention is not limited to the embodiments described below.

도 1은 본 발명에 따른 가시광 감응 이산화티타늄의 제조 공정을 나타낸 것이다. 1 shows a process for producing visible light-sensitive titanium dioxide according to the present invention.

본 발명에 따른 가시광 감응 및 광촉매 효율 향상을 위한 이산화티타늄의 제조 공정은 환원된 이산화티타늄을 얻는 단계(S100)와, 환원된 이산화티타늄을 감응 향상 물질로 도핑하는 단계(S300)를 포함한다. 그리고 상기 환원된 이산화티타늄을 얻는 단계에는, 환원된 이산화티타늄을 세정 및 건조하는 단계(S200)를 포함할 수 있다.The process for producing titanium dioxide for improving visible light response and photocatalytic efficiency according to the present invention includes a step (S100) of obtaining reduced titanium dioxide and a step (S300) of doping the reduced titanium dioxide with a sensitization improving material. And the step of obtaining the reduced titanium dioxide may include washing and drying the reduced titanium dioxide (S200).

본 발명에서 환원된 이산화티타늄을 얻기위한 이산화티타늄 광촉매의 출발물질은 제한하지는 않는다. 아나타제 및 루틸상이 혼재되어 있는 P-25 타입의 이산화티타늄, 아나타제 단독 및 루틸 단독의 이산화티타늄, 이산화티타늄을 생성할 수 있는 전구체를 사용할 수 있고, 또한 이들과 금속, 탄소, 산화물 등 다른 물질과 혼합하여 출발물질로서 사용할 수 있다. 또한 이러한 물질들은 직경은 평균 2㎚ 내지 100㎛ 일 수 있다.The starting material of the titanium dioxide photocatalyst for obtaining the reduced titanium dioxide in the present invention is not limited. An anatase alone, and a rutile titanium dioxide, titanium dioxide, and P-25 type titanium dioxide in which anatase and rutile phases are mixed, and a precursor capable of forming titanium dioxide, and mixing them with other materials such as metals, Can be used as a starting material. These materials may also have an average diameter of 2 nm to 100 탆.

환원된 이산화티타늄(TiO2)을 얻는 방법으로는 환원제와 혼합하여 분말상태에서 열처리를 통하여 환원하는 방법, 수열(hydrothermal) 합성법, 용매열(solvothermal) 합성법 등이 있다. 이 때 이산화티타늄을 환원시키면 환원되는 정도에 따라 색깔이 기존의 백색(white)에서 청색(blue) 또는 흑색(black) 계열로 바뀌게 된다.Examples of the method of obtaining reduced titanium dioxide (TiO 2 ) include a method of mixing with a reducing agent and reducing through a heat treatment in a powder state, a hydrothermal synthesis method, and a solvothermal synthesis method. At this time, when titanium dioxide is reduced, the color changes from a white color to a blue color or a black color depending on the degree of reduction.

이산화티타늄(TiO2)을 환원시키기 위하여 환원제와 혼합하여 분말상태에서 열처리를 통하여 환원하는 방법으로는 붕소계 수소화물 또는 알루미늄계 수소화물이 환원제로 사용될 수 있다. A boron-based hydride or an aluminum-based hydride can be used as a reducing agent for reducing titanium dioxide (TiO 2 ) by mixing with a reducing agent and performing a heat treatment in a powder state.

상기 붕소계 수소화물은 M[BH4]n 의 구조를 가지며, n=1 일 때 M은 Li, Na, K, Ru, Cu, Ag, Cs, NH4 이고, n=2 일 때 M은 Be, Mg, Ca, Sr, Mn, Fe 이며, n=3 일 때 M은 Ti, Ga, In, Ce, LiMn 이고, n=4 일 때 M은 Ti, Zr, Sn, NaMn 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질과 NH3BH3 포함한다,The boron-based hydride M [BH 4] has a structure of n, n = If = 1 and M is Li, Na, K, Ru, Cu, Ag, Cs, NH 4 and, n = time 2 days M is Be M is Ti, Ga, In, Ce, LiMn when n = 3, and M is Ti, Zr, Sn, NaMn and combinations thereof when n = The material selected from the group consisting of NH 3 BH 3 ,

상기 알루미늄계 수소화물은 M[AlH4]n 의 구조를 가지며, n=1 일 때 M은 Li, Na, K, Ru, Cu, Ag, Cs, NH4 이고, n=2 일 때 M은 Be, Mg, Ca, Sr, Mn, Fe 이며, n=3 일 때 M은 Ti, Ga, In, Ce, LiMn 이고, n=4 일 때 M은 Ti, Zr, Sn, NaMn 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함한다.The aluminum-based hydride M [AlH 4] has a structure of n, n = If = 1 and M is Li, Na, K, Ru, Cu, Ag, Cs, NH 4 and, n = time 2 days M is Be M is Ti, Ga, In, Ce, LiMn when n = 3, and M is Ti, Zr, Sn, NaMn and combinations thereof when n = ≪ / RTI >

상기 붕소계 수소화물과 알루미늄계 수소화물은 열처리를 통하여 각각 다음과 같이 반응한다.The boron-based hydride and the aluminum-based hydride react through the heat treatment as follows.

TiO2 + M[BH4]n → TiO2-x + 2nH2 + MBOx TiO 2 + M [BH 4] n → TiO 2-x + 2nH 2 + MBO x

TiO2 + M[AlH4]n → TiO2-x + 2nH2 + MAlOx TiO 2 + M [AlH 4] n → TiO 2-x + 2nH 2 + MAlO x

환원된 이산화티타늄의 경우, 표면이 무정형(amorphous) 형태로 바뀌어 이때 가시광 반응 및 광촉매 효율을 향상에 기여하는 산소 결함(oxygen vacancy)을 동반하는 Ti3+ 이온을 생성시킨다. 이러한 결함들은 에너지띠 금지대역(forbidden band) 내에 중간레벨(mid-gap level)을 형성함으로써 가시광 감응 효율을 향상시킨다.In the case of reduced titanium dioxide, the surface is converted to an amorphous form, which produces Ti 3+ ions with oxygen vacancies that contribute to the improvement of visible light response and photocatalytic efficiency. These defects improve the visible light sensing efficiency by forming a mid-gap level in the energy band-stop band (forbidden band).

또한 무정형(amorphous) 표면의 존재로 가전자대(valence band)를 시프트(shift)해 밴드갭을 줄여주여 가시광 감응 활성을 증가시킨다. In addition, the amorphous surface shifts the valence band to reduce the bandgap and increase the visible light-sensitive activity.

상기 합성된 환원된 이산화티타늄이 가지는 산소 결함의 경우, 반응온도와 반응시간이 증가함에 따라 증가하는데 과도한 산소 결함(Excess oxygen vacancy)의 경우 가시광에 대한 흡광도는 우수할지라도 광활성화된 캐리어(carrier)들의 재결합 센터(recombination center)로 작용하여 광촉매 효율을 감소시킬 수 있으므로 적정한 제어가 중요하다.The oxygen vacancies of the synthesized reduced titanium dioxide increase with increasing reaction temperature and reaction time. In the case of excess oxygen vacancy, even though the absorbance to visible light is excellent, The photocatalytic efficiency can be reduced by acting as a recombination center of the photocatalyst.

환원 처리를 통한 이산화티타늄(reduced TiO2) 분말은 불순물을 제거하기 위하여 세정 및 건조공정을 진행 할 수 있다. 상기 세정공정은 물, 에탄올, 산(acid) 용액, 유기 용매, 및 이들의 조합들로 이루어진 군으로부터 선택될 수 있다.The reduced TiO 2 powder through the reduction treatment may be subjected to a washing and drying process to remove impurities. The cleaning process may be selected from the group consisting of water, ethanol, acid solution, organic solvent, and combinations thereof.

일 예로 환원된 이산화티타늄을 얻기위해 수소화붕소나트륨(NaBH4)을 환원제로 사용했을 경우, 열처리 후 잔존하는 부산물(by-product)이 물에 녹기 때문에 부산물을 제거하기 위해 수세 처리만으로도 가능하다. 그러나 소량의 붕소계 부산물이 환원된 이산화티타늄의 표면과 반응할 경우, 물에 녹지않고 남아있어 이산화티타늄의 비표면적(BET: specific surface area)을 감소시켜 광촉매를 효율을 감소시킬 수 있다. 이 경우 산세 처리를 통해 부산물을 제거하여 비표면적을 향상시킬 수 있다.For example, when sodium borohydride (NaBH 4 ) is used as a reducing agent to obtain reduced titanium dioxide, since by-products remaining after heat treatment are dissolved in water, it is possible to rinse with water to remove byproducts. However, when a small amount of boron-based byproducts reacts with the surface of the reduced titanium dioxide, it may remain insoluble in water, thereby reducing the specific surface area (BET) of the titanium dioxide, thereby reducing the efficiency of the photocatalyst. In this case, by-products can be removed by pickling treatment to improve the specific surface area.

상기 건조공정은 약 30℃ 내지 약 100℃에서 수행될 수 있으며, 바람직하게는 약 60℃ 내지 약 80℃에서 수행될 수 있다.The drying process may be performed at about 30 캜 to about 100 캜, and preferably at about 60 캜 to about 80 캜.

본 발명에 따른 가시광 감응 이산화티타늄의 환원 공정은 환원제와 이산화티타늄을 분말상태로 혼합하고 열처리를 통해 합성하는 것을 실시예로 하고 있으나, 반응속도를 높이기 위해 환원제와 이산화티타늄을 물 또는 용제가 포함된 용액 상태로 만든 후 열처리를 통하여 합성할 수도 있다.In the reduction process of visible light-sensitive titanium dioxide according to the present invention, the reducing agent and titanium dioxide are mixed in powder form and synthesized through heat treatment. However, in order to increase the reaction rate, the reducing agent and titanium dioxide are mixed with water or solvent It may be synthesized by heat treatment after making it into a solution state.

추가적으로, 환원된 이산화티타늄을 감응 향상 물질로 도핑 또는 증착하는 단계를 통하여 환원된 이산화티타늄의 광촉매 효율을 더욱 향상시킬 수 있다. Additionally, the photocatalytic efficiency of the reduced titanium dioxide can be further improved through the step of doping or depositing the reduced titanium dioxide with a sensitizing enhancement material.

상기 감응 향상 물질이란 이산화티타늄에 도핑 또는 증착을 통하여 가시광 영역에서의 감응 및 광촉매 효율을 향상시킬 수 있는 물질을 말하며, 도핑 또는 증착을 위한 금속 물질로는 Pt, Au, Pd, Rh, Ni, Cu, Sn, Ag, Fe, V, Mo, Ru, Os, Re, Mn, Nb, Co, Cr, La, Ce, Er, Pr, Gd, Nd, Sm, Zn, Si, Al, W, Zr, Li, Na, K 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하며, 감응 향상 물질은 환원된 이산화티타늄 100중량부에 대하여 1 내지 20중량부일 수 있다. The sensitization enhancing material is a material capable of improving the sensitivity and photocatalytic efficiency in the visible light region through doping or vapor deposition with titanium dioxide. Examples of the metal material for doping or vapor deposition include Pt, Au, Pd, Rh, Ni, Cu , Sn, Ag, Fe, V, Mo, Ru, Os, Re, Mn, Nb, Co, Cr, La, Ce, Er, Pr, Gd, Nd, Sm, Zn, Si, , Na, K, and combinations thereof, and the sensitization enhancing material may be 1 to 20 parts by weight based on 100 parts by weight of the reduced titanium dioxide.

감응 향상 물질을 도핑하는 방법은 기존의 도핑방법을 사용하는 것이 가능하며, 건식이나 습식방법 등일 수 있다.As a method of doping the sensitization-enhancing material, a conventional doping method can be used, and a dry method or a wet method can be used.

또한 상기 금속 물질은 도핑이 아닌 환원된 이산화티타늄의 표면에 증착(deposition)을 통하여 광촉매 효율을 향상시킬 수도 있다. 또한 사용하는 방법 및 고정조건에 따라 환원된 이산화티타늄에는 도핑 후 증착을 동시에 수행할 수 있다.In addition, the metal material may improve the photocatalytic efficiency through deposition on the surface of the reduced titanium dioxide rather than doping. In addition, the doped titanium dioxide can be simultaneously subjected to the post-doping deposition in accordance with the method of use and the fixed conditions.

실시예로서 도핑을 위한 비금속 물질로는 H, C, N, S, P, F, I 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함할 수 있다.As an example, the non-metallic material for doping may include a material selected from the group consisting of H, C, N, S, P, F, I and combinations thereof.

상기 환원된 이산화티타늄에 감응 향상 물질로 도핑하는 단계에서는 pH 조절과 반응촉매를 위한 물질이 추가될 수 있다.In the step of doping the reduced titanium dioxide with the sensitizing enhancement material, a substance for the pH control and the reaction catalyst may be added.

한편 환원된 이산화티타늄에 상기 감응 향상 물질이 도핑 또는 증착이 되는 경우, 금지대역내에 산소결함이나 Ti3+ 이온이 형성하는 에너지 레벨 외에 감응 향상 물질로 인한 에너지 레벨을 형성함으로써 가시광 감응 및 광촉매 효율을 증가시킬 수 있다. 또한 환원으로 인해 발생한 산소결함의 일정 부분에 감응 향상 물질이 도핑됨으로써 과도한 산소결함으로 인한 캐리어(carrier)들의 재결합을 억제하고 조절할 수 있다.When the sensitizing enhancement material is doped or deposited on the reduced titanium dioxide, an energy level due to the sensitization enhancing material is formed in addition to an energy level at which oxygen defects or Ti 3+ ions are formed in the forbidden band, thereby improving visible light sensitivity and photocatalytic efficiency . Also, a certain portion of the oxygen defects generated by the reduction can be doped with the sensitization-enhancing material, so that recombination of carriers due to excessive oxygen defects can be suppressed and controlled.

도핑 또는 증착처리가 끝난 이산화티타늄(reduced TiO2) 분말은 세정 및 건조공정을 진행 할 수 있다.The doped or deposited titanium dioxide reduced TiO 2 powder may be subjected to a cleaning and drying process.

이와 같이 환원된 이산화티타늄을 얻는 단계와, 환원된 이산화티타늄을 감응 향상 물질로 도핑하는 단계를 거쳐 최종적으로 수득한 이산화티타늄은 태양광에 대부분을 차지하는 가시광선에 반응하는 광촉매로 사용할 수 있으며 광촉매 효율도 향상시킬 수 있다.The titanium dioxide thus obtained through the step of obtaining the reduced titanium dioxide and the step of doping the reduced titanium dioxide with the sensitizing improving material can be used as a photocatalyst which reacts with visible light which occupies most of the sunlight. Can also be improved.

이하, 실시예 및 비교예를 참조하여 가시광 감응 이산화티타늄의 제조 공정을 설명한다.Hereinafter, a manufacturing process of visible light-sensitive titanium dioxide will be described with reference to Examples and Comparative Examples.

<실시예 1: Pt가 증착된 환원된 이산화티타늄 (TiOExample 1: Reduced Titanium Dioxide deposited with Pt (TiO 2-x2-x @Pt)>@Pt)>

P-25 타입의 이산화티타늄(TiO2) 5g과 수소화붕소나트륨(NaBH4) 1.8g을 혼합하여 불활성 기체인 아르곤(Ar) 분위기에서 승온속도 10℃/min 의 조건으로 300℃에서 50분간 반응시켰다. 5 g of P-25 type titanium dioxide (TiO 2 ) and 1.8 g of sodium borohydride (NaBH 4 ) were mixed and reacted in an argon (Ar) atmosphere of inert gas at a temperature raising rate of 10 ° C / min at 300 ° C for 50 minutes .

반응 후 혼합된 분말을 물에 넣고 1시간 정도 교반하여 세정한 후 에탄올에 다시 한번 세정하였다. 정제 및 필터 처리를 하여 분말을 수득하였으며, 수득한 분말 가루를 70℃ 온도의 오븐에서 1시간 건조하여 최종적으로 환원된 이산화티타늄을 수득하였다. After the reaction, the mixed powder was added to water, washed with stirring for about 1 hour, and then washed again with ethanol. Purification and filter treatment were performed to obtain a powder, and the obtained powder was dried in an oven at 70 캜 for 1 hour to finally obtain the reduced titanium dioxide.

수득한 환원된 이산화티타늄(TiO2) 0.1g을 염화백금산(H2PtCl6) 50mg과 함께 에틸렌글리콜 (ethylene glycol (HO(CH2)2OH)) 80mL에 혼합하여 용액 A를 제조한다. 이때 용액 A에 수산화나트륨(NaOH)를 단계적으로 첨가하여 pH가 10이 되도록 조정한다. 용액 A에 0.1M 수소화붕소나트륨(NaBH4) 20mL를 첨가하고 상온에서 2시간 교반한다. 원심분리기(10,000 rpm, 10분)를 사용하여 에틸렌글리콜을 분리하고, D.I water에 세정하여 백금(Pt)이 코팅된 이산화티타늄을 얻는다. 에틸렌 글리콜을 완전히 제거하기 위하여, 상기 세정과정을 3번 실시한다. 이를 통하여 얻어진 백금(Pt)이 코팅된 이산화티타늄을 80℃ 온도의 오븐에서 24시간 건조한 후, 아르곤 기체 분위기에서 350도 3시간 열처리를 통하여 최종 분말을 얻는다.0.1 g of the obtained reduced titanium dioxide (TiO 2 ) is mixed with 80 mg of ethylene glycol (ethylene glycol (HO (CH 2) 2 OH)) together with 50 mg of chloroplatinic acid (H 2 PtCl 6) to prepare Solution A. At this time, sodium hydroxide (NaOH) is added stepwise to the solution A to adjust the pH to 10. To the solution A, 20 mL of 0.1 M sodium borohydride (NaBH 4 ) was added, and the mixture was stirred at room temperature for 2 hours. Ethylene glycol was separated using a centrifuge (10,000 rpm, 10 minutes) and washed with DI water to obtain titanium dioxide coated with platinum (Pt). To completely remove the ethylene glycol, the above washing step is carried out three times. The platinum (Pt) -coated titanium dioxide thus obtained was dried in an oven at 80 ° C. for 24 hours, and then heat-treated at 350 ° C. for 3 hours in an argon gas atmosphere to obtain a final powder.

<실시예 2: N이 도핑된 환원된 이산화티타늄 (TiOExample 2: N-doped reduced titanium dioxide (TiO 2-x2-x :N)>: N)>

P-25 타입의 이산화티타늄(TiO2) 5g과 수소화붕소나트륨(NaBH4) 1.8g을 혼합하여 불활성 기체인 아르곤(Ar) 분위기에서 승온속도 10℃/min 의 조건으로 300℃에서 50분간 반응시켰다. 5 g of P-25 type titanium dioxide (TiO 2 ) and 1.8 g of sodium borohydride (NaBH 4 ) were mixed and reacted in an argon (Ar) atmosphere of inert gas at a temperature raising rate of 10 ° C / min at 300 ° C for 50 minutes .

반응 후 혼합된 분말을 물에 넣고 1시간 정도 교반하여 세정한 후 에탄올에 다시 한번 세정하였다. 정제 및 필터 처리를 하여 분말을 수득하였으며, After the reaction, the mixed powder was added to water, washed with stirring for about 1 hour, and then washed again with ethanol. Purification and filter treatment were performed to obtain a powder,

수득한 분말 가루를 70℃ 온도의 오븐에서 1시간 건조하여 최종적으로 환원된 이산화티타늄을 수득하였다.The obtained powdery powder was dried in an oven at 70 DEG C for 1 hour to finally obtain the reduced titanium dioxide.

수득한 환원된 이산화티타늄을 암모니아(NH3) 및 아르곤(Ar) 3:1 비율의 혼합가스 분위기에서 400℃에서 6시간동안 반응시켰다.The obtained reduced titanium dioxide was allowed to react at 400 캜 for 6 hours in a mixed gas atmosphere of ammonia (NH 3 ) and argon (Ar) at a ratio of 3: 1.

<비교예 1: 환원된 이산화티타늄 (TiO&Lt; Comparative Example 1: Reduced Titanium Dioxide (TiO 2-x2-x )>)>

P-25 타입의 이산화티타늄(TiO2) 5g과 수소화붕소나트륨(NaBH4) 1.8g을 혼합하여 불활성 기체인 아르곤(Ar) 분위기에서 승온속도 10℃/min 의 조건으로 300℃에서 50분간 반응시켰다. 5 g of P-25 type titanium dioxide (TiO 2 ) and 1.8 g of sodium borohydride (NaBH 4 ) were mixed and reacted in an argon (Ar) atmosphere of inert gas at a temperature raising rate of 10 ° C / min at 300 ° C for 50 minutes .

반응 후 혼합된 분말을 물에 넣고 1시간 정도 교반하여 세정한 후 에탄올에 다시 한번 세정하였다. 정제 및 필터 처리를 하여 분말을 수득하였으며, After the reaction, the mixed powder was added to water, washed with stirring for about 1 hour, and then washed again with ethanol. Purification and filter treatment were performed to obtain a powder,

수득한 분말 가루를 70℃ 온도의 오븐에서 1시간 건조하여 최종적으로 환원된 이산화티타늄을 수득하였다. 수득한 분말은 4.8g으로 투입된 분말의 양과 차이가 거의 없었다.The obtained powdery powder was dried in an oven at 70 DEG C for 1 hour to finally obtain the reduced titanium dioxide. The obtained powder had little difference from the amount of the powder added at 4.8 g.

<비교예 2: Pt가 증착된 이산화티타늄&Lt; Comparative Example 2: Pt-deposited titanium dioxide (TiO(TiO 22 @Pt)>@Pt)>

P-25 타입의 이산화티타늄(TiO2)을 0.1g을 염화백금산(H2PtCl6) 50mg과 함께 에틸렌글리콜 (ethylene glycol (HO(CH2)2OH)) 80mL에 혼합하여 용액 A를 제조한다. 이때 용액 A에 수산화나트륨(NaOH)를 단계적으로 첨가하여 Ph가 10이 되도록 조정한다. 용액 A에 0.1M 수소화붕소나트륨(NaBH4) 20mL를 첨가하고 상온에서 2시간 교반한다. 원심분리기(10,000 rpm, 10분)를 사용하여 에틸렌글리콜을 분리하고, D.I water에 세정하여 백금(Pt)이 코팅된 이산화티타늄을 얻는다. 에틸렌글리콜을 완전히 제거하기 위하여, 상기 세정과정을 3번 실시한다. 이를 통하여 얻어진 백금(Pt)이 코팅된 이산화티타늄을 80℃ 온도의 오븐에서 24시간 건조한 후, 아르곤 기체 분위기에서 350도 3시간 열처리를 통하여 최종 분말을 얻는다.0.1 g of P-25 type titanium dioxide (TiO 2 ) is mixed with 80 mg of ethylene glycol (ethylene glycol (HO (CH 2) 2 OH) together with 50 mg of chloroplatinic acid (H 2 PtCl 6) At this time, sodium hydroxide (NaOH) is added stepwise to solution A to adjust pH to 10. To the solution A, 20 mL of 0.1 M sodium borohydride (NaBH 4 ) was added, and the mixture was stirred at room temperature for 2 hours. Ethylene glycol was separated using a centrifuge (10,000 rpm, 10 minutes) and washed with DI water to obtain titanium dioxide coated with platinum (Pt). To completely remove the ethylene glycol, the above washing step is carried out three times. The platinum (Pt) -coated titanium dioxide thus obtained was dried in an oven at 80 ° C. for 24 hours, and then heat-treated at 350 ° C. for 3 hours in an argon gas atmosphere to obtain a final powder.

<비교예 3: N이 도핑된 이산화티타늄 (TiO&Lt; Comparative Example 3: N-doped titanium dioxide (TiO 22 :N)>: N)>

P-25 타입의 이산화티타늄(TiO2) 3g 을 암모니아(NH3) 및 아르곤(Ar) 3:1 비율의 혼합가스 분위기에서 550℃에서 5시간동안 반응시켰다. 3 g of titanium dioxide (TiO 2 ) of the P-25 type was reacted at 550 ° C for 5 hours in a mixed gas atmosphere of ammonia (NH 3 ) and argon (Ar) at a ratio of 3: 1.

도 2는 환원과 N도핑이 이루어진 이산화티타늄의 광활성 메커니즘을 보여주는 그림이고, 도 3은 본 발명을 통해 얻는 이산화티타늄의 처리방법 및 구조를 보여주는 그림이며, 도 4는 출발물질인 P-25 타입의 이산화티타늄(흰색)과 비교예 1~3 및 본 발명의 실시예 1~2에 따라 수득한 이산화티타늄을 촬상한 것이고, 도 5는 UV-Vis spectrophotomer(JASCO, V650)를 사용하여 P-25 타입의 이산화티타늄과 비교예 1~2 및 본 발명의 실시예 1에 따라 수득한 이산화티타늄의 흡광도 비교 그래프이다. FIG. 2 is a view showing a photoactive mechanism of titanium dioxide subjected to reduction and N-doping, FIG. 3 is a view showing a processing method and structure of titanium dioxide obtained through the present invention, and FIG. FIG. 5 is a photograph of titanium dioxide obtained in accordance with Comparative Examples 1 to 3 and Examples 1 and 2 of the present invention, and FIG. 5 is a photograph of titanium dioxide obtained by using P-25 type (JASCO, V650) using a UV-Vis spectrophotomer Of titanium dioxide and Comparative Examples 1 to 2 and the titanium dioxide obtained according to Example 1 of the present invention.

비교예 1에서 수득한 환원된 이산화티타늄이 가시광 영역에서의 빛의 흡수가 질소 또는 X 도핑한 이산화티타늄(비교예 2, 3)보다 우수하나, 환원과 질소 또는 X 도핑이 이루어진 본 발명의 실시예 1~2가 가장 뛰어남을 알 수 있다.The reduced titanium dioxide obtained in Comparative Example 1 is superior to the titanium or titanium dioxide (Comparative Examples 2 and 3) in absorption of light in the visible light region, but in the embodiment of the present invention in which reduction and nitrogen or X- 1 ~ 2 is the best.

도 6은 이산화티타늄의 X-선 회절분석(X-ray diffraction; Ultima IV, Rigaku) 그래프이다. 6 is a graph of X-ray diffraction (Ultima IV, Rigaku) of titanium dioxide.

반응 전 P-25 타입의 이산화티타늄의 결정상과 비교해 볼 때 수득한 이산화티타늄의 결정상이 크게 변화는 없으나 비정형 표면으로 인하여 피크의 형태가 완만해 지는것을 알 수 있다. Compared with the crystalline phase of titanium dioxide of the P-25 type before the reaction, the crystal phase of the titanium dioxide obtained is not largely changed, but the shape of the peak is gentle due to the irregular surface.

이상, 본 발명을 구체적인 실시예를 통하여 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상의 범위내에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the present invention is not limited to the disclosed exemplary embodiments, but various changes and modifications may be made by those skilled in the art without departing from the scope of the present invention.

Claims (4)

이산화티타늄과 환원제를 분말상태로 혼합하고 열처리를 통해 환원시켜 환원된 이산화티타늄을 얻는 단계와, 환원된 이산화티타늄을 감응 향상 물질로 도핑 또는 증착 또는 도핑후 증착하는 단계를 포함하고,
상기 환원제는 붕소계 수소화물 또는 알루미늄계 수소화물이고,
상기 붕소계 수소화물은 M[BH4]n 의 구조를 가지며, n=1 일 때, M은 Li, Na, K, Ru, Cu, Ag, Cs, NH4 이고, n=2 일 때, M은 Be, Mg, Ca, Sr, Mn, Fe 이며, n=3일 때, M은 Ti, Ga, In, Ce, LiMn 이고, n=4 일 때, M은 Ti, Zr, Sn, NaMn 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질과 NH3BH3 포함하고,
상기 알루미늄계 수소화물은 M[AlH4]n 의 구조를 가지며, n=1 일 때, M은 Na, K, Ru,Cu,Ag, Cs, NH4이고, n=2 일 때, M은 Be, Mg, Ca, Sr, Mn, Fe 이며, n=3 일때, M은 Ti, Ga, In, Ce, LiMn 이고, n=4 일 때, M은 Ti, Zr, Sn, NaMn 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하고,
상기 환원된 이산화티타늄을 감응 향상 물질로 도핑 또는 증착 또는 도핑후 증착하는 단계에서의 감응 향상 물질은 환원된 이산화티타늄 100중량부에 대하여 1 내지 20중량부인 것을 특징으로 하는 가시광 감응 이산화티타늄의 제조방법.
Mixing the titanium dioxide and the reducing agent in a powder state, reducing the titanium dioxide by heat treatment to obtain the reduced titanium dioxide, and depositing the reduced titanium dioxide by doping or depositing or doping the reduced titanium dioxide with a sensitizing material,
The reducing agent is a boron-based hydride or an aluminum-based hydride,
When the boron-based hydride M [BH 4] has a structure of n, n = 1 il, M is Li, Na, K, Ru, Cu, Ag, Cs, NH 4 and, n = time 2 days, M M is Ti, Ga, In, Ce, and LiMn; when n = 4, M is Ti, Zr, Sn, and NaMn; material selected from the group consisting of the combination and contains NH 3 BH 3,
The aluminum-based hydride M [AlH 4] has a structure of n, n = 1, the M is Na, K, Ru, Cu, Ag, Cs, NH4, n = time 2 days, M represents Be, M is Ti, Ga, In, Ce, LiMn, and when n = 4, M is Ti, Zr, Sn, NaMn, and combinations thereof. &Lt; RTI ID = 0.0 &gt; a &lt; / RTI &gt;
Wherein the sensitization-enhancing material in the step of doping, depositing or doping the reduced titanium dioxide with a sensitization-enhancing material is 1 to 20 parts by weight based on 100 parts by weight of the reduced titanium dioxide. .
청구항 1에 있어서,
도핑을 위한 감응 향상 물질은 Pt, Au, Pd, Rh, Ni, Cu, Sn, Ag, Fe, V, Mo, Ru, Os, Re, Mn, Nb, Co, Cr, La, Ce, Er, Pr, Gd, Nd, Sm, Zn, Si, Al, W, Zr, Li, Na, K 및 이들의 조합들로 이루어진 군으로부터 선택되거나 H, C, N, S, P, F, I 및 이들의 조합들로 이루어진 군으로부터 선택되고,
증착을 위한 감응 향상 물질은 Pt, Au, Pd, Rh, Ni, Cu, Sn, Ag, Fe, V, Mo, Ru, Os, Re, Mn, Nb, Co, Cr, La, Ce, Er, Pr, Gd, Nd, Sm, Zn, Si, Al, W, Zr, Li, Na, K 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 특징으로 하는 가시광 감응 이산화티타늄의 제조방법.
The method according to claim 1,
The sensitization-enhancing material for doping may be Pt, Au, Pd, Rh, Ni, Cu, Sn, Ag, Fe, V, Mo, Ru, Os, Re, Mn, Nb, Co, Cr, La, C, N, S, P, F, I, and combinations thereof selected from the group consisting of Gd, Nd, Sm, Zn, Si, Al, W, Zr, Li, Na, K, , &Lt; / RTI &gt;
The sensitization-enhancing material for the deposition may be selected from Pt, Au, Pd, Rh, Ni, Cu, Sn, Ag, Fe, V, Mo, Ru, Os, Re, Mn, Nb, Co, Cr, La, , Gd, Nd, Sm, Zn, Si, Al, W, Zr, Li, Na, K and combinations thereof.
청구항 1 또는 청구항 2에 따른 방법으로 제조되는 환원된 이산화티타늄.



Reduced titanium dioxide produced by the process according to claim 1 or 2.



삭제delete
KR1020170116390A 2017-09-12 2017-09-12 Manufacturing of titanium dioxide and titanium dioxide manufactured therefrom KR101876938B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170116390A KR101876938B1 (en) 2017-09-12 2017-09-12 Manufacturing of titanium dioxide and titanium dioxide manufactured therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170116390A KR101876938B1 (en) 2017-09-12 2017-09-12 Manufacturing of titanium dioxide and titanium dioxide manufactured therefrom

Publications (1)

Publication Number Publication Date
KR101876938B1 true KR101876938B1 (en) 2018-07-10

Family

ID=62915598

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170116390A KR101876938B1 (en) 2017-09-12 2017-09-12 Manufacturing of titanium dioxide and titanium dioxide manufactured therefrom

Country Status (1)

Country Link
KR (1) KR101876938B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102042995B1 (en) * 2018-07-18 2019-11-11 성균관대학교산학협력단 Doped titanium oxide, preparing method of the same, and catalist including the same
CN112473733A (en) * 2020-12-01 2021-03-12 贵州省化工研究院 Mo-Eu co-doped titanium dioxide/aluminum phosphate molecular sieve composite photocatalyst and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010106338A (en) * 2001-10-24 2001-11-29 한성홍 Photocatalyst optical thin films activated in the visible light and their preparations
US20160070033A1 (en) * 2013-04-11 2016-03-10 Heraeus Deutschland GmbH & Co. KG Light-absorbing layer and layer system containing the layer, method for producing the layer system and a sputter target suited therefor
KR20160098775A (en) * 2015-02-11 2016-08-19 성균관대학교산학협력단 Preparing method of reduced titanium dioxide
KR20160120851A (en) * 2015-04-08 2016-10-19 서울대학교산학협력단 Fabrication of Au/Ag core/shell metal nanoparticles decorated TiO2 hollow nanopartices using chemical reduction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010106338A (en) * 2001-10-24 2001-11-29 한성홍 Photocatalyst optical thin films activated in the visible light and their preparations
US20160070033A1 (en) * 2013-04-11 2016-03-10 Heraeus Deutschland GmbH & Co. KG Light-absorbing layer and layer system containing the layer, method for producing the layer system and a sputter target suited therefor
KR20160098775A (en) * 2015-02-11 2016-08-19 성균관대학교산학협력단 Preparing method of reduced titanium dioxide
KR20160120851A (en) * 2015-04-08 2016-10-19 서울대학교산학협력단 Fabrication of Au/Ag core/shell metal nanoparticles decorated TiO2 hollow nanopartices using chemical reduction

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Ferromagnetism in Chromium-doped reduced rutiole titanium dioxide thin films(2004.01.06.) 사본 1부. *
RSC Advances, 2017, 7, 4306-4311 (2017.01.16.) 사본 1부. *
Workshop on Nanoscience for Solar Energy Conversion(2008.10.29.) 사본 1부. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102042995B1 (en) * 2018-07-18 2019-11-11 성균관대학교산학협력단 Doped titanium oxide, preparing method of the same, and catalist including the same
WO2020017831A1 (en) * 2018-07-18 2020-01-23 성균관대학교산학협력단 Doped titanium dioxide, method for preparing same, and catalyst comprising same
CN112473733A (en) * 2020-12-01 2021-03-12 贵州省化工研究院 Mo-Eu co-doped titanium dioxide/aluminum phosphate molecular sieve composite photocatalyst and application thereof
CN112473733B (en) * 2020-12-01 2022-07-22 贵州省化工研究院 Mo-Eu co-doped titanium dioxide/aluminum phosphate molecular sieve composite photocatalyst and application thereof

Similar Documents

Publication Publication Date Title
Zeng et al. A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials
Zaleska Doped-TiO2: a review
US10987659B1 (en) Synthesis of TiO2/Co3O4 core-shell photocatalysts
Fagan et al. Improved high temperature stability of anatase TiO2 photocatalysts by N, F, P co-doping
Yuan et al. Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride
EP2519348B1 (en) Method of production of photocatalytic powder comprising titanium dioxide and manganese dioxide active under ultraviolet and visible light
KR101318743B1 (en) Tungsten oxide photocatalyst and method for producing the same
CN112023938B (en) Bimetallic ion doped nano composite photocatalyst and preparation method thereof
KR101876938B1 (en) Manufacturing of titanium dioxide and titanium dioxide manufactured therefrom
Chen et al. Color TiO2 materials as emerging catalysts for visible-NIR light photocatalysis, a review
CN111790431A (en) With Al2O3Modified g-C3N4Preparation method of photocatalytic material
KR101548296B1 (en) Manufacturing method of bimetallic transition metal doped titanium dioxide
CN107961785B (en) Preparation method and application of high-activity bismuth chromate nano photocatalyst
Pouretedal et al. Preparation, characterization and catalytic activity of tin dioxide and zero-valent tin nanoparticles
KR101855747B1 (en) Manufacturing of visible-light active photocatalyst titanium dioxide and titanium dioxide manufactured therefrom
JP2023160953A (en) Photocatalyst and method of producing the same
Maeda et al. (Oxy) nitrides and oxysulfides as visible-light-driven photocatalysts for overall water splitting
Ohno et al. Fabrication of morphology-controlled TiO 2 photocatalyst nanoparticles and improvement of photocatalytic activities by modification of Fe compounds
EP2840066B1 (en) Metal complex of fluorinated tin oxide and titanium oxide and preparation method thereof
CN112007663B (en) MoS2@CrOx/La,Al-SrTiO3/CoOOH photocatalyst and preparation method thereof
CN114588916A (en) Preparation method of pure water cracking semiconductor catalyst for realizing visible light response by bimetallic ion co-doped strontium titanate
CN114308034A (en) Strontium titanate semiconductor catalyst co-doped with (III) and (V) valence double transition metal ions and preparation method thereof
CN111790418B (en) Calcium-titanium composite material and preparation method and application thereof
CN109078636B (en) Plasma photocatalyst, preparation method thereof and application thereof in hydrogen production
CN114570385A (en) Preparation method of semiconductor catalyst for hydrogen production and oxygen production through sunlight catalysis and water decomposition

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant