KR101855747B1 - Manufacturing of visible-light active photocatalyst titanium dioxide and titanium dioxide manufactured therefrom - Google Patents

Manufacturing of visible-light active photocatalyst titanium dioxide and titanium dioxide manufactured therefrom Download PDF

Info

Publication number
KR101855747B1
KR101855747B1 KR1020170048289A KR20170048289A KR101855747B1 KR 101855747 B1 KR101855747 B1 KR 101855747B1 KR 1020170048289 A KR1020170048289 A KR 1020170048289A KR 20170048289 A KR20170048289 A KR 20170048289A KR 101855747 B1 KR101855747 B1 KR 101855747B1
Authority
KR
South Korea
Prior art keywords
titanium dioxide
heat treatment
visible light
present
based hydride
Prior art date
Application number
KR1020170048289A
Other languages
Korean (ko)
Inventor
문원하
Original Assignee
주식회사 소프스톤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 소프스톤 filed Critical 주식회사 소프스톤
Priority to KR1020170048289A priority Critical patent/KR101855747B1/en
Application granted granted Critical
Publication of KR101855747B1 publication Critical patent/KR101855747B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/004
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

A method for manufacturing visible light-sensitive titanium dioxide is disclosed. The method for manufacturing the visible light-sensitive titanium dioxide according to the present invention comprises: a step (S100) for mixing boron-based hydride or aluminum-based hydride with titanium dioxide; and a step (S200) for reducing the titanium dioxide through heat treatment. The present invention aims to provide the method for manufacturing the visible light-sensitive titanium dioxide in which an oxidation-reduction reaction is performed by the visible light, and to a titanium dioxide photocatalyst.

Description

가시광 감응 이산화티타늄의 제조방법 및 이로부터 제조된 이산화티타늄{MANUFACTURING OF VISIBLE-LIGHT ACTIVE PHOTOCATALYST TITANIUM DIOXIDE AND TITANIUM DIOXIDE MANUFACTURED THEREFROM}Technical Field [0001] The present invention relates to a method for producing visible light-sensitive titanium dioxide, and a titanium dioxide prepared from the method. [0001] The present invention relates to a method for producing visible light-

본 발명은 가시광에 감응하는 이산화티타늄의 제조방법 및 이로부터 제조된 이산화티타늄에 관한 것이다.The present invention relates to a process for producing titanium dioxide which is sensitive to visible light and titanium dioxide produced therefrom.

광촉매 물질은 빛을 받으면 유해물질의 분해를 촉진하는 반응을 나타낸다. 광에 의해 가전자대(Valence Band)에서 전도대(Conduction Band)로 여기된 전자와 가전자대에 형성된 정공은 강한 산화 또는 환원 작용을 나타낸다. 이와 같은 산화 또는 환원 작용을 나타내는 물질로는 TiO2, ZnO, Nb2O5, SnO2, ZrO2, CdS, ZnS, CdSe, GaP, CdTe 등이 있다.The photocatalyst material reacts to the decomposition of harmful substances when it receives light. The electrons excited from the valence band to the conduction band by the light and the holes formed in the valence band exhibit a strong oxidation or reduction action. Examples of the material exhibiting such an oxidation or reduction action include TiO2, ZnO, Nb2O5, SnO2, ZrO2, CdS, ZnS, CdSe, GaP, and CdTe.

이 중 이산화티타늄(TiO2)은 자체가 빛을 받아도 특성이 변하지 않아 반영구적으로 사용이 가능한데 반해, ZnO나 CdS는 자체가 빛에 의해 분해되어 유해한 Zn와 Cd이온을 발생하는 단점이 있다. Among these, TiO 2 itself can be used semi-permanently because its characteristics do not change even if it receives light itself. However, ZnO or CdS itself is decomposed by light and generates harmful Zn and Cd ions.

또한 이산화티타늄은 모든 유기물을 산화시켜 CO2와 H2O로 분해하지만 WO3는 특정물질에 대해서만 광촉매 효율이 좋고, 그 외의 물질은 효율이 이산화티타늄보다 훨씬 낮아 사용에 제한이 있다. 또한 이산화티타늄은 내구성과 내마모성이 우수하고, 자체 물성 변화가 없고, 친환경적이며 폐기하여도 2차 공해에 대한 염려가 없다.In addition, titanium dioxide decomposes all organic materials into CO 2 and H 2 O, but WO 3 has only good photocatalytic efficiency for certain materials, and other materials are much lower in efficiency than titanium dioxide, which limits its use. In addition, titanium dioxide is excellent in durability and abrasion resistance, has no change in its own properties, is environmentally friendly, and has no concern about secondary pollution even if it is disposed of.

한편 아나타제형 이산화티타늄의 밴드갭(band gap or forbidden band) 에너지(Eg)는 3.23eV이고, 루틸형 이산화티탄은 3.02eV이다. 이를 파장으로 환산하면 각각 388nm, 413nm이므로, 가시광선 영역인 400nm ~ 800nm 에서는 거의 반응하지 않고, 자외선 영역인 270nm ~ 400nm에서 반응한다. 태양빛의 경우 지표면에 도달하는 약 5%가 자외선이고, 약 40%가 가시광선으로 알려져 있다. 이와 같이 상용화된 이산화티타늄은 자외선에 의해 반응하므로 촉매 효율이 낮다. 태양광의 40%를 차지하는 가시광선에 의해 반응할 수 있게 되면 촉매 효율은 상대적으로 높아질 수 있다.On the other hand, the band gap or forbidden band energy (Eg) of the anatase type titanium dioxide is 3.23 eV, and the rutile type titanium dioxide is 3.02 eV. Since the wavelengths are 388 nm and 413 nm, respectively, the wavelengths are substantially unreactive at 400 nm to 800 nm in the visible light region and react at 270 nm to 400 nm in the ultraviolet region. In the case of sunlight, about 5% reaching the surface is ultraviolet, and about 40% is known as visible light. The titanium dioxide thus commercialized reacts with ultraviolet rays, so the catalytic efficiency is low. The catalyst efficiency can be relatively high if it can be reacted by visible light which occupies 40% of the sunlight.

기존 가시광 감응 광촉매 활성을 위하여 이산화티타늄에 전이금속, 질소, 탄소, 황, 인, 불소 등과 같은 금속 또는 비금속 물질을 도핑하는 방법을 주로 이용하였다. 그러나 상기 방법으로는 태양 조사에 반응하지만 여전히 가시광에서의 흡수가 부족하다.In order to activate the photocatalytic activity of conventional visible light, a method of doping titanium dioxide with a metal or a nonmetal such as transition metal, nitrogen, carbon, sulfur, phosphorus, or fluorine has been mainly used. However, the above method is sensitive to solar irradiation but still lacks absorption in visible light.

또한 이를 위하여는 기본적으로 고가 공정인 이온 주입(ion implantation), 스퍼터링(sputtering) 및 고온 가스 열처리 열처리 방법 등을 사용하였고, 이러한 방법들은 가시광 감응 이산화티타늄계 광촉매를 제조하는 단가가 매우 상승된다는 문제점을 안고 있다.For this purpose, ion implantation, sputtering, and heat treatment of high temperature gas heat treatment, which are basically costly processes, are used. These methods have the problem that the unit cost of manufacturing the visible light-sensitive titanium dioxide photocatalyst is greatly increased It is holding.

한편, X. B Chen 등은 고온과 고압환경에서 수소 기체로 이산화티타늄을 최초로 환원시켜, 이산화티타늄의 표면 상에 무질서 층을 형성했다 [Xiaobo Chen, Lei Liu, Peter Y. Yu and Samuel S. Mao, "Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals" Science, vol.331, no.6018 (2011) pp.746-750]. 그 결과 기존의 백색 이산화티타늄보다 우수한 가시광 감응 및 광촉매 효율이 증가하였고, 본 방법에 따라 수소 처리된 이산화티타늄에 대한 다양한 조건들이 공지되었다. 그러나, 초 고온 및 고압 환경에서의 수소 기체의 사용은 공업 생산에 있어서 매우 위험하고, 또한 장시간의 반응시간의 요구되는 단점이 있다.On the other hand, X. B Chen et al. First reduced titanium dioxide to hydrogen gas in high temperature and high pressure environments to form disordered layers on the surface of titanium dioxide [Xiaobo Chen, Lei Liu, Peter Y. Yu and Samuel S. Mao , "Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals" Science, vol.331, no.6018 (2011) pp.746-750]. As a result, the visible light response and photocatalytic efficiency are increased as compared with the conventional white titanium dioxide, and various conditions for the hydrotreated titanium dioxide according to the present method are known. However, the use of hydrogen gas in an ultra-high temperature and high-pressure environment is very dangerous in industrial production and requires a long reaction time.

따라서 종래의 기술을 대체할 신규한 제조 방법을 통해 가시광선 영역에서 높은 광촉매 활성을 나타내는 광촉매의 개발이 요구된다. Therefore, it is required to develop a photocatalyst exhibiting a high photocatalytic activity in the visible light region through a novel manufacturing method which will replace the conventional technique.

공개특허공보 제1-2013-0042390호의 가시광 감응 특성을 갖는 이산화티타늄계 광촉매 및 그 제조방법Titanium dioxide-based photocatalyst having visible light-sensitive characteristics of Patent Document 1-2013-0042390 and method for producing the same 등록특허공보 제10-1265781호의 결정질 이산화티타늄 코어-비정질 이산화티타늄 쉘 형태의 이산화티타늄 광촉매, 그 제조방법 및 상기 이산화티타늄 광촉매를 포함한 친수성 코팅제A crystalline titanium dioxide core-crystalline titanium dioxide photocatalyst in the form of amorphous titanium dioxide shell of Patent Registration No. 10-1265781, a process for preparing the same, and a hydrophilic coating agent containing the titanium dioxide photocatalyst 공개특허공보 제10-2017-0002285호의 자외선 및 가시광 흡광을 위한 코어-쉘 에너지 띠 구조를 갖는 금속산화물 광촉매를 이용한 태양에너지 변환 효율 증진 방법 및 광촉매Patent Document 10-2017-0002285 discloses a method for enhancing solar energy conversion efficiency using a metal oxide photocatalyst having a core-shell energy band structure for ultraviolet and visible light absorption, and a photocatalyst 등록특허공보 제10-0769481호의 저온 열처리에 의해 결정구조가 변환되는 이산화티타늄광촉매의 합성방법A method of synthesizing titanium dioxide photocatalyst in which crystal structure is transformed by low-temperature heat treatment of Patent Registration No. 10-0769481

본 발명은 가시광에 의해 산화 환원 반응이 이루어지는 가시광 감응 이산화타타늄을 제조하는 방법 및 이산화티타늄 광촉매를 제공하려는 데 그 목적이 있다.The present invention provides a method for producing visible-light-sensitive titanium dioxide in which an oxidation-reduction reaction is performed by visible light, and a titanium dioxide photocatalyst.

또한 본 발명은 기존의 500℃ 이상의 가열공정을 거치지 않고, 이 보다 저온에서 가시광 감응 이산화티타늄의 제조하는 방법 및 이산화티타늄 광촉매를 제공하려는 데 그 목적이 있다.Another object of the present invention is to provide a titanium dioxide photocatalyst and a process for producing visible titanium dioxide at a temperature lower than the conventional temperature of 500 ° C or higher.

본 발명의 해결하고자 하는 과제는 언급한 과제로 제한되지 않는다. 언급하지 않은 다른 기술적 과제들은 이하의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present invention are not limited to the above-mentioned problems. Other technical subjects not mentioned will be apparent to those skilled in the art from the following description.

본 발명에 따른 가시광 감응 이산화티타늄의 제조방법은 붕소계 수소화물 또는 알루미늄계 수소화물과 이산화티타늄을 혼합하는 단계(S100)와, 열처리를 통해 이산화티타늄을 환원시키는 단계(S200)와, 환원된 이산화티타늄을 세정 및 건조하는 단계(S300)를 포함한다.The method for producing visible light-sensitive titanium dioxide according to the present invention comprises the steps of mixing a boron-based hydride or an aluminum-based hydride with titanium dioxide (S100), reducing the titanium dioxide through heat treatment (S200) And washing and drying titanium (S300).

상기 붕소계 수소화물은 M[BH4]n 의 구조를 가지며, n=1 일 때 M은 Li, Na, K, Ru, Cu, Ag, Cs, NH4 이고, n=2 일 때 M은 Be, Mg, Ca, Sr, Mn, Fe 이며, n=3 일 때 M은 Ti, Ga, In, Ce, LiMn 이고, n=4 일 때 M은 Ti, Zr, Sn, NaMn 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질과 NH3BH3 포함한다,The boron-based hydride M [BH 4] has a structure of n, n = If = 1 and M is Li, Na, K, Ru, Cu, Ag, Cs, NH 4 and, n = time 2 days M is Be M is Ti, Ga, In, Ce, LiMn when n = 3, and M is Ti, Zr, Sn, NaMn and combinations thereof when n = The material selected from the group consisting of NH 3 BH 3 ,

상기 알루미늄계 수소화물은 M[AlH4]n 의 구조를 가지며, n=1 일 때 M은 Li, Na, K, Ru, Cu, Ag, Cs, NH4 이고, n=2 일 때 M은 Be, Mg, Ca, Sr, Mn, Fe 이며, n=3 일 때 M은 Ti, Ga, In, Ce, LiMn 이고, n=4 일 때 M은 Ti, Zr, Sn, NaMn 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함한다.The aluminum-based hydride M [AlH 4] has a structure of n, n = If = 1 and M is Li, Na, K, Ru, Cu, Ag, Cs, NH 4 and, n = time 2 days M is Be M is Ti, Ga, In, Ce, LiMn when n = 3, and M is Ti, Zr, Sn, NaMn and combinations thereof when n = ≪ / RTI >

본 발명에 따른 이산화티타늄은 아나타제 및 루틸상이 혼재되어 있는 P-25 타입의 이산화티타늄, 아나타제 단독 및 루틸 단독의 이산화티타늄, 이들 이산화티타늄과 금속, 탄소, 산화물과 혼합한 물질을 사용한다.Titanium dioxide according to the present invention uses P-25 type titanium dioxide, anatase alone and rutile titanium dioxide, which are mixed with anatase and rutile phases, and materials mixed with titanium dioxide and metals, carbon, and oxides.

한편 상기 혼합단계와 가열반응단계는 반응속도를 높이기 위해 물 또는 용제가 포함된 용액 상태를 만든 후 열처리를 통하여 합성하여 수행하고, 상기 열처리는 불활성 기체 분위기에서 이루어지며, 상기 불활성 기체는 아르곤, 네온, 헬륨, 질소, 산소, 수소 및 이들의 조합들로 이루어진 군으로부터 선택될 수 있다.Meanwhile, in the mixing step and the heating reaction step, a solution containing water or a solvent is prepared in order to increase the reaction rate, and the solution is synthesized through heat treatment. The heat treatment is performed in an inert gas atmosphere, and the inert gas is argon, neon , Helium, nitrogen, oxygen, hydrogen, and combinations thereof.

또한 본 발명에 따른 세정공정은 환원된 이산화티타늄 상의 불순물을 제거하기 위한 공정으로서, 물, 에탄올, 산(acid) 용액, 유기 용매, 및 이들의 조합들로 이루어진 군으로부터 선택될 수 있다.Further, the cleaning process according to the present invention is a process for removing impurities on the reduced titanium dioxide, and may be selected from the group consisting of water, ethanol, an acid solution, an organic solvent, and combinations thereof.

본 발명에 따르면, 종래의 500도 이상의 고온, 고압, 및 수소 기체를 이용하여 반응할 필요가 없으며, 또한 24시간 이상의 장시간 반응 없이 이보다 짧은 시간에 쉽고 간단하게 가시광 감응 이산화티타늄을 얻을 수 있다.According to the present invention, there is no need to react using a conventional high temperature, high pressure, and hydrogen gas of 500 degrees or more, and the visible titanium oxide can be easily and simply obtained in a shorter time without a long reaction time of 24 hours or more.

이에 따라 짧은 제조공정 및 상대적으로 낮은 온도 분위기에서 가시광 감응 이산화티타늄 광촉매를 얻을 수 있으므로 경제성 및 양산성을 확보할 수 있는 이점이 있다.Accordingly, a visible light-sensitive titanium dioxide photocatalyst can be obtained in a short manufacturing process and a relatively low temperature atmosphere, which is advantageous in that economical efficiency and mass productivity can be secured.

도 1은 본 발명에 따른 가시광 감응 이산화티타늄의 제조 공정을 나타낸 것이다.
도 2는 환원된 이산화티타늄의 광활성 메커니즘을 보여는 그림이다.
도 3은 P-25 이산화티타늄과 본 발명의 실시예1~4에 따라 수득한 이산화티타늄의 촬상 이미지이다.
도 4는 UV-Vis spectrophotomer(JASCO, V650)를 사용하여 P-25 타입의 이산화티타늄과 본 발명의 실시예 1의 제조공정에 따라 수득한 이산화티타늄의 흡광도 비교 그래프이다.
도 5는 P-25 타입의 이산화티타늄과 같은 시간(60분)동안 300도, 400도 및 500도에서 열처리한 본 발명의 제조공정에 따라 수득한 이산화티타늄의 X-선 회절분석(X-ray diffraction; Ultima IV, Rigaku) 그래프이다.
1 shows a process for producing visible light-sensitive titanium dioxide according to the present invention.
Figure 2 is a diagram showing the photoactive mechanism of reduced titanium dioxide.
3 is an image of an image of P-25 titanium dioxide and titanium dioxide obtained according to Examples 1 to 4 of the present invention.
FIG. 4 is a graph comparing the absorbance of titanium dioxide of P-25 type with the titanium dioxide obtained according to the manufacturing process of Example 1 of the present invention using a UV-Vis spectrophotomer (JASCO, V650).
5 is an X-ray diffraction (X-ray) chart of the titanium dioxide obtained according to the manufacturing process of the present invention which was heat-treated at 300 deg., 400 deg. And 500 deg. For the same time (60 min) as the titanium dioxide of the P- diffraction; Ultima IV, Rigaku).

이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세히 설명한다. 본 발명에서 언급하는 실시형태는 다양한 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described in the present invention can be modified into various forms, and the scope of the present invention is not limited to the embodiments described below.

도 1은 본 발명에 따른 가시광 감응 이산화티타늄의 제조 공정을 나타낸 것이다. 1 shows a process for producing visible light-sensitive titanium dioxide according to the present invention.

본 발명에 따른 가시광 감응 이산화티타늄의 제조 공정은 붕소계 수소화물 또는 알루미늄계 수소화물과 이산화티타늄을 혼합하는 단계(S100)와, 불활성 기체 분위기에서 가열반응시키켜 환원된 이산화티타늄을 수득하는 단계(S200)와, 환원된 이산화티타늄을 세정 및 건조하는 단계(S300)를 포함한다.The process for producing visible light-sensitive titanium dioxide according to the present invention comprises the steps of mixing a boron-based hydride or an aluminum-based hydride with titanium dioxide (S100), heating the mixture in an inert gas atmosphere to obtain reduced titanium dioxide S200), and washing and drying the reduced titanium dioxide (S300).

본 발명에서는 이산화티타늄 광촉매의 출발물질을 제한하지는 않는다. 아나타제 및 루틸상이 혼재되어 있는 P-25 타입의 이산화티타늄, 아나타제 단독 및 루틸 단독의 이산화티타늄을 사용할 수 있고, 또한 이들과 금속, 탄소, 산화물 등 다른 물질과 혼합하여 출발물질로서 사용할 수 있다. The present invention does not limit the starting material of the titanium dioxide photocatalyst. P-25 type titanium dioxide, anatase alone, and rutile alone titanium dioxide in which anatase and rutile phases are mixed can be used, and they can be mixed with other materials such as metals, carbon, oxides and the like and used as a starting material.

이산화티타늄(TiO2)의 환원시키기 위하여 붕소계 수소화물 또는 알루미늄계 수소화물이 사용된다. 상기 붕소계 수소화물 또는 알루미늄계 수소화물은 이산화티타늄을 환원시키는 환원제의 역할을 수행하며 열처리를 통하여 이산화티타늄을 환원시키며 환원되는 정도에 따라 색깔이 기존의 백색(white)에서 청색(blue) 또는 흑색(black) 계열로 바뀌게 된다.A boron-based hydride or an aluminum-based hydride is used to reduce titanium dioxide (TiO 2 ). The boron-based hydride or the aluminum-based hydride serves as a reducing agent for reducing titanium dioxide. The titanium dioxide is reduced through heat treatment, and the color of the titanium dioxide is reduced from conventional white to blue or black (black) series.

붕소계 수소화물과 알루미늄계 수소화물은 열처리를 통하여 각각 다음과 같이 반응한다.The boron-based hydride and the aluminum-based hydride react through the heat treatment as follows.

TiO2 + M[BH4]n → TiO2-x + 2nH2 + MBOx TiO 2 + M [BH 4] n → TiO 2-x + 2nH 2 + MBO x

TiO2 + M[AlH4]n → TiO2-x + 2nH2 + MAlOx TiO 2 + M [AlH 4] n → TiO 2-x + 2nH 2 + MAlO x

본 발명을 통해 환원된 이산화티타늄의 경우 표면이 무정형(amorphous) 형태로 바뀌어 이때 가시광 반응 및 광촉매 효율을 향상에 기여하는 산소 결함(oxygen vacancy)을 동반하는 Ti3+ 이온을 생성시킨다. 이러한 결함들은 에너지띠 금지대역(forbidden band) 내에 중간레벨(mid-gap level)을 형성함으로써 가시광 감응 효율을 향상시킨다.In the case of titanium dioxide reduced through the present invention, the surface is converted into an amorphous form, which generates Ti 3+ ions accompanied by oxygen vacancy, which contributes to improvement of visible light response and photocatalytic efficiency. These defects improve the visible light sensing efficiency by forming a mid-gap level in the energy band-stop band (forbidden band).

또한 무정형(amorphous) 표면의 존재로 가전자대(valence band)를 시프트(shift)해 밴드갭을 줄여주여 가시광 감응 활성을 증가시킨다. In addition, the amorphous surface shifts the valence band to reduce the bandgap and increase the visible light-sensitive activity.

상기 합성된 환원된 이산화티타늄이 가지는 산소 결함의 경우, 반응온도와 반응시간이 증가함에 따라 증가하는데 과도한 산소 결함(Excess oxygen vacancy)의 경우 가시광에 대한 흡광도는 우수할지라도 광활성화된 캐리어(carrier)들의 재결합 센터(recombination center)로 작용하여 광촉매 효율을 감소시킬 수 있으므로 적정한 제어가 중요하다.The oxygen vacancies of the synthesized reduced titanium dioxide increase with increasing reaction temperature and reaction time. In the case of excess oxygen vacancy, even though the absorbance to visible light is excellent, The photocatalytic efficiency can be reduced by acting as a recombination center of the photocatalyst.

본 발명에 따르면, 이산화티타늄과 상기 환원제로서 붕소계 수소화물 또는 알루미늄계 수소화물을 충분히 혼합하여 혼합분말을 얻는다.According to the present invention, titanium dioxide and the boron-based hydride or the aluminum-based hydride as the reducing agent are sufficiently mixed to obtain a mixed powder.

충분한 혼합을 위하여 밀링, 믹서 등의 장비를 사용하여 혼합할 수 있으나 이에 한정하는 것은 아니다.Mixing may be performed using equipment such as milling, mixer, etc., but is not limited thereto.

이후 혼합된 이산화티타늄과 환원제를 열처리를 통하여 이산화티타늄을 환원 반응시킨다. 상기 열처리는 불활성 기체 분위기에서 이루어질 수 있다. 상기 불활성 기체는 아르곤, 헬륨, 네온, 질소, 수소 및 이들의 조합들로 이루어진 군에서 선택될 수 있다. 이 때 가열온도는 상온에서 250~400℃에 이를 때가지 점차적으로 승온시킨다. 상기 승온은 10~15 ℃/min의 속도로 이루어질 수 있다.Then, the mixed titanium dioxide and the reducing agent are subjected to heat treatment to reduce the titanium dioxide. The heat treatment may be performed in an inert gas atmosphere. The inert gas may be selected from the group consisting of argon, helium, neon, nitrogen, hydrogen, and combinations thereof. At this time, the heating temperature is gradually increased from room temperature to 250 to 400 ° C. The temperature can be raised at a rate of 10 to 15 DEG C / min.

이어서 환원된 이산화티타늄(reduced TiO2) 분말에 포함된 불순물을 제거하기 위하여 세정공정을 진행한다. 상기 세정공정은 물, 에탄올, 산(acid) 용액, 유기 용매, 및 이들의 조합들로 이루어진 군으로부터 선택될 수 있다.Then, a cleaning process is performed to remove impurities contained in the reduced TiO 2 powder. The cleaning process may be selected from the group consisting of water, ethanol, acid solution, organic solvent, and combinations thereof.

일 예로 수소화붕소나트륨(NaBH4)을 환원제로 사용할 경우 열처리 후 잔존하는 부산물(by-product)이 물에 녹기 때문에 부산물을 제거하기 위해 수세 처리만으로도 가능하다. 그러나 소량의 붕소계 부산물이 환원된 이산화티타늄의 표면과 반응할 경우, 물에 녹지않고 남아있어 이산화티타늄의 비표면적(BET: specific surface area)을 감소시켜 광촉매를 효율을 감소시킨다. 이 경우 산세 처리를 통해 부산물을 제거하여 비표면적을 향상시킬 수 있다. For example, when sodium borohydride (NaBH 4 ) is used as a reducing agent, by-product remaining after heat treatment is dissolved in water, it can be washed by water treatment to remove by-products. However, when a small amount of boron-based byproducts reacts with the surface of the reduced titanium dioxide, it remains insoluble in water, thereby reducing the specific surface area (BET) of titanium dioxide, thereby reducing the efficiency of the photocatalyst. In this case, by-products can be removed by pickling treatment to improve the specific surface area.

마지막으로 세정공정 후 건조공정이 이어지고 환원된 이산화티타늄을 수득한다. 상기 건조공정의 건조공정은 약 30℃ 내지 약 100℃에서 수행될 수 있으며, 바람직하게는 약 60℃ 내지 약 80℃에서 수행될 수 있다.Finally, after the cleaning process, the drying process is continued to obtain the reduced titanium dioxide. The drying process of the drying process may be performed at about 30 ° C to about 100 ° C, preferably at about 60 ° C to about 80 ° C.

본 발명에 따른 가시광 감응 이산화티타늄의 제조공정은 환원제와 이산화티타늄을 분말상태로 혼합하고 열처리를 통해 합성하는 것을 실시예로 하고 있으나, 반응속도를 높이기 위해 환원제와 이산화티타튬을 물 또는 용제가 포함된 용액 상태로 만든 후 열처리를 통하여 합성할 수도 있다.In the process for producing visible light-sensitive titanium dioxide according to the present invention, a reducing agent and titanium dioxide are mixed in a powder state and synthesized through heat treatment. However, in order to increase the reaction rate, a reducing agent and titanium dioxide are mixed with water or a solvent And then heat-treated.

이와 같이 환원된 이산화티타늄은 좁은 밴드갭(narrow band gap)을 갖는다. 이에 따라 태양광에 대부분을 차지하는 가시광선에 반응하는 광촉매로 사용할 수 있다.The titanium dioxide thus reduced has a narrow band gap. As a result, it can be used as a photocatalyst which reacts with visible light which occupies most of sunlight.

이하, 실시예를 참조하여 가시광 감응 이산화티타늄의 제조 공정을 설명한다.Hereinafter, a manufacturing process of visible light-sensitive titanium dioxide will be described with reference to examples.

<실시예 1>&Lt; Example 1 >

P-25 타입의 이산화티타늄(TiO2) 5g과 수소화붕소나트륨(NaBH4) 1.8g을 혼합하여 불활성 기체인 Ar 분위기에서 승온속도 10℃/min 의 조건으로 300℃에서 60분간 반응시켰다. 5 g of titanium dioxide (TiO 2 ) of the P-25 type and 1.8 g of sodium borohydride (NaBH 4 ) were mixed and reacted at 300 ° C. for 60 minutes under an inert gas atmosphere of Ar at a heating rate of 10 ° C./min.

반응 후 혼합된 분말을 물에 넣고 1시간 정도 교반하여 세정한 후 에탄올에 다시 한번 세정하였다. 정제 및 필터 처리를 하여 분말을 수득하였으며, After the reaction, the mixed powder was added to water, washed with stirring for about 1 hour, and then washed again with ethanol. Purification and filter treatment were performed to obtain a powder,

수득한 분말 가루를 70℃ 온도의 오븐에서 1시간 건조하여 최종적으로 이산화티타늄을 수득하였다. 수득한 분말은 4.8g으로 투입된 분말의 양과 차이가 거의 없었다.The obtained powdery powder was dried in an oven at 70 DEG C for 1 hour to finally obtain titanium dioxide. The obtained powder had little difference from the amount of the powder added at 4.8 g.

<실시예 2>&Lt; Example 2 >

실시예 1과 같은 조건으로 진행하였으나, 반응온도는 400도에서 30분간 반응시켰다.The reaction was carried out under the same conditions as in Example 1, but the reaction was carried out at 400 ° C for 30 minutes.

<실시예 3>&Lt; Example 3 >

실시예 1과 같은 조건으로 진행하였으나, 반응온도는 400도에서 60분간 반응시켰다.The reaction was carried out under the same conditions as in Example 1, but the reaction was carried out at 400 ° C for 60 minutes.

<실시예 4><Example 4>

실시예 1과 같은 조건으로 진행하였으나, 반응온도는 500도에서 60분간 반응시켰다.The reaction was carried out under the same conditions as in Example 1, but the reaction was carried out at a temperature of 500 ° C. for 60 minutes.

도 3은 출발물질인 P-25 타입의 이산화티타늄(흰색)과 본 발명의 실시예 1~4에 따라 수득한 이산화티타늄(검은색)을 촬상한 것이다. Fig. 3 is an image of titanium dioxide (white) of P-25 type as a starting material and titanium dioxide (black) obtained according to Examples 1 to 4 of the present invention.

도 4는 UV-Vis spectrophotomer(JASCO, V650)를 사용하여 P-25 타입의 이산화티타늄과 본 발명의 실시예 1의 제조공정에 따라 수득한 이산화티타늄의 흡광도 비교 그래프이다. FIG. 4 is a graph comparing the absorbance of titanium dioxide of P-25 type with the titanium dioxide obtained according to the manufacturing process of Example 1 of the present invention using a UV-Vis spectrophotomer (JASCO, V650).

수득한 이산화티타늄이 가시광 영역에서의 빛의 흡수가 상당히 증가하였으며 또한 UV 영역에서도 반응 전 이산화티타늄보다 흡광도가 증가한 것을 알 수 있다.It can be seen that the obtained titanium dioxide significantly increased the absorption of light in the visible region and also increased the absorbance in the UV region than the titanium dioxide before the reaction.

도 5는 P-25타입의 이산화티타늄과 같은 시간(60분)동안 300도, 400도 및 500도에서 열처리한 본 발명의 제조공정에 따라 수득한 이산화티타늄의 X-선 회절분석(X-ray diffraction; Ultima IV, Rigaku) 그래프이다. 5 is an X-ray diffraction (X-ray) chart of the titanium dioxide obtained according to the manufacturing process of the present invention which was heat-treated at 300 deg., 400 deg. And 500 deg. For the same time (60 min) as the titanium dioxide of the P- diffraction; Ultima IV, Rigaku).

반응 전 P-25 타입의 이산화티타늄의 결정상과 비교해 볼 때 수득한 이산화티타늄의 결정상이 크게 변화는 없으나 비정형 표면으로 인하여 피크의 형태가 브로드해 지는것을 알 수 있다. 또한 온도가 증가함에 따라 27°부근의 루틸상의 피크가 점점 감소하는 것을 알 수 있다. 도 5에서 실시예 2가 빠진 것은 실시예 2의 시간조건이 30분이기 때문이다.Compared with the crystalline phase of titanium dioxide of the P-25 type before the reaction, the crystal phase of the titanium dioxide obtained is not largely changed, but the shape of the peak is broadened due to the irregular surface. It can also be seen that as the temperature increases, the rutile phase peak around 27 DEG gradually decreases. 5 is that the time condition of the second embodiment is 30 minutes.

산세(HCl washing) 전 비표면적(BET, m2/g)The specific surface area (BET, m 2 / g) before the HCl washing 산세 후 비표면적(BET, m2/g)The specific surface area after the pickling (BET, m 2 / g) 실시예 1Example 1 4848 5050 실시예 2Example 2 4949 4949 실시예 3Example 3 4545 5151 실시예 4Example 4 4343 5252

<표 1>은 별도로 1M 100mL 염산(HCl) 수용액으로 산세를 진행한 후, 3번의 수세 후 건조과정을 진행한 것을 나타낸 것이다. 건조 후 수득한 이산화티타늄 분말의 비표면적(BET: Micromeritics asap2020)의 변화를 분석하였다. 실시예 1과 실시예 2의 경우 산세 전/후 비표면적의 변화는 크게 없으나, 실시예 3과 실시예 4의 경우, 표면에 존재하는 부산물의 제거로 감소했던 비표면적이 증가함을 알 수 있다. 비표면적의 증가를 통해 이산화티타늄의 광촉매 효과를 향상시킬 수 있다. 참고로 P-25의 비표면적(BET)은 49 m2/g 이다.<Table 1> shows the results of pickling with 1M 100 mL hydrochloric acid (HCl) aqueous solution separately, followed by washing with water three times. The change in the specific surface area (BET: Micromeritics asap2020) of the titanium dioxide powder obtained after drying was analyzed. In Examples 1 and 2, there was no significant change in the specific surface area before and after pickling, but in Examples 3 and 4, the specific surface area decreased due to removal of by-products present on the surface was found to increase . By increasing the specific surface area, the photocatalytic effect of titanium dioxide can be improved. For reference, the specific surface area (BET) of P-25 is 49 m 2 / g.

이상, 본 발명을 구체적인 실시예를 통하여 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상의 범위내에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the present invention is not limited to the disclosed exemplary embodiments, but various changes and modifications may be made by those skilled in the art without departing from the scope of the present invention.

Claims (8)

붕소계 수소화물과 이산화티타늄을 혼합하는 단계와,
열처리를 통해 이산화티타늄을 환원시키는 단계를 포함하고,
상기 붕소계 수소화물은 M[BH4]n 의 구조를 가지며, n=1 일 때, M은 Li, Na, K, Ru, Cu, Ag, Cs, NH4 이고, n=2 일 때, M은 Be, Mg, Ca, Sr, Mn, Fe 이며, n=3일 때, M은 Ti, Ga, In, Ce, LiMn 이고, n=4 일 때, M은 Ti, Zr, Sn, NaMn 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질과 NH3BH3 포함하고,
상기 열처리는 상온에서 250~400℃에 이를 때까지 승온속도 10~15℃/min의 속도를 갖는 것을 특징으로 하는 가시광 감응 이산화티타늄의 제조방법.
Mixing the boron-based hydride with titanium dioxide,
And reducing the titanium dioxide through heat treatment,
When the boron-based hydride M [BH 4] has a structure of n, n = 1 il, M is Li, Na, K, Ru, Cu, Ag, Cs, NH 4 and, n = time 2 days, M M is Ti, Ga, In, Ce, and LiMn; when n = 4, M is Ti, Zr, Sn, and NaMn; material selected from the group consisting of the combination and contains NH 3 BH 3,
Wherein the heat treatment has a rate of temperature raising of 10 to 15 占 폚 / min until the temperature reaches 250 to 400 占 폚 at room temperature.
삭제delete 알루미늄계 수소화물과 이산화티타늄을 혼합하는 단계와,
열처리를 통해 이산화티타늄을 환원시키는 단계를 포함하고,
상기 알루미늄계 수소화물은 M[AlH4]n 의 구조를 가지며, n=1 일 때, M은 Na, K, Ru,Cu,Ag, Cs, NH4이고, n=2 일 때, M은 Be, Mg, Ca, Sr, Mn, Fe 이며, n=3 일때, M은 Ti, Ga, In, Ce, LiMn 이고, n=4 일 때, M은 Ti, Zr, Sn, NaMn 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하고,
상기 열처리는 상온에서 250~400℃에 이를 때까지 승온속도 10~15℃/min의 속도를 갖는 것을 특징으로 하는 가시광 감응 이산화티타늄의 제조방법.
Mixing the aluminum-based hydride with titanium dioxide,
And reducing the titanium dioxide through heat treatment,
M is Na, K, Ru, Cu, Ag, Cs, NH4 when n = 1 and M is at least one element selected from the group consisting of Be, Mg , M is Ti, Ga, In, Ce, LiMn when n = 3, M is Ti, Zr, Sn, NaMn and combinations thereof when n = Lt; RTI ID = 0.0 &gt; a &lt; / RTI &gt;
Wherein the heat treatment has a rate of temperature raising of 10 to 15 占 폚 / min until the temperature reaches 250 to 400 占 폚 at room temperature.
청구항 1에 있어서,
상기 이산화티타늄은 아나타제 및 루틸상이 혼재되어 있는 P-25 타입의 이산화티타늄, 아나타제 단독 및 루틸 단독의 이산화티타늄, 이들 이산화티타늄과 금속, 탄소, 산화물과 혼합한 물질인 것을 특징으로 하는 가시광 감응 이산화티타늄의 제조방법.
The method according to claim 1,
Wherein the titanium dioxide is a mixture of P-25 type titanium dioxide, anatase alone and rutile titanium dioxide, in which anatase and rutile phases are mixed, and titanium dioxide and a metal, carbon and oxide mixed with visible light. &Lt; / RTI &gt;
청구항 1에 있어서,
상기 열처리는 불활성 기체 분위기에서 이루어지며, 상기 불활성 기체는 아르곤, 네온, 헬륨, 질소, 산소, 수소 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 특징으로 하는 가시광 감응 이산화티타늄의 제조방법.
The method according to claim 1,
Wherein the heat treatment is performed in an inert gas atmosphere and the inert gas is selected from the group consisting of argon, neon, helium, nitrogen, oxygen, hydrogen, and combinations thereof.
청구항 1에 있어서,
상기 열처리를 통해 이산화티타늄을 환원시키는 단계 이후에 환원된 이산화티타늄을 세정 및 건조하는 단계(S300)를 더 포함하고,
상기 세정은 환원된 이산화티타늄 상의 불순물을 제거하기 위한 공정으로서, 물, 에탄올, 산(acid) 용액, 유기 용매, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 특징으로 하는 가시광 감응 이산화티타늄의 제조방법.

The method according to claim 1,
(S300) washing and drying the reduced titanium dioxide after the step of reducing the titanium dioxide through the heat treatment,
Wherein the cleaning is a process for removing impurities on the reduced titanium dioxide and is selected from the group consisting of water, ethanol, acid solution, organic solvent, and combinations thereof. Way.

삭제delete 청구항 1, 청구항 3. 청구항 4. 청구항 5, 청구항 6 중 어느 한 항에 따른 방법으로 제조되는 환원된 이산화티타늄.
A reduced titanium dioxide produced by the process according to any one of claims 1, 3, 4, 5, 6.
KR1020170048289A 2017-04-14 2017-04-14 Manufacturing of visible-light active photocatalyst titanium dioxide and titanium dioxide manufactured therefrom KR101855747B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170048289A KR101855747B1 (en) 2017-04-14 2017-04-14 Manufacturing of visible-light active photocatalyst titanium dioxide and titanium dioxide manufactured therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170048289A KR101855747B1 (en) 2017-04-14 2017-04-14 Manufacturing of visible-light active photocatalyst titanium dioxide and titanium dioxide manufactured therefrom

Publications (1)

Publication Number Publication Date
KR101855747B1 true KR101855747B1 (en) 2018-05-10

Family

ID=62184804

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170048289A KR101855747B1 (en) 2017-04-14 2017-04-14 Manufacturing of visible-light active photocatalyst titanium dioxide and titanium dioxide manufactured therefrom

Country Status (1)

Country Link
KR (1) KR101855747B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190138144A (en) * 2018-06-04 2019-12-12 재단법인대구경북과학기술원 platinum nanoparticle-photodeposited blue titania nanoparticle, manufacturing method thereof and method for conversion of CO2 to CH4 using the same
KR20210014234A (en) * 2019-07-29 2021-02-09 한국과학기술연구원 A metal oxide catalyst for amine-based carbon dioxide absorbent, amine-based carbon dioxide absorbent, and apparatus for absorption and desorption using thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050186165A1 (en) 2003-11-18 2005-08-25 Estelle Mathonneau Cosmetic composition based on a cosmetically active compound and a gel comprising at least one crosslinked network of crosslinked polymer particles
JP2012214348A (en) * 2011-04-01 2012-11-08 National Institute For Materials Science Method for synthesizing reduction type titanium oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050186165A1 (en) 2003-11-18 2005-08-25 Estelle Mathonneau Cosmetic composition based on a cosmetically active compound and a gel comprising at least one crosslinked network of crosslinked polymer particles
JP2012214348A (en) * 2011-04-01 2012-11-08 National Institute For Materials Science Method for synthesizing reduction type titanium oxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190138144A (en) * 2018-06-04 2019-12-12 재단법인대구경북과학기술원 platinum nanoparticle-photodeposited blue titania nanoparticle, manufacturing method thereof and method for conversion of CO2 to CH4 using the same
KR102082872B1 (en) * 2018-06-04 2020-02-28 재단법인대구경북과학기술원 platinum nanoparticle-photodeposited blue titania nanoparticle, manufacturing method thereof and method for conversion of CO2 to CH4 using the same
KR20210014234A (en) * 2019-07-29 2021-02-09 한국과학기술연구원 A metal oxide catalyst for amine-based carbon dioxide absorbent, amine-based carbon dioxide absorbent, and apparatus for absorption and desorption using thereof
KR102248613B1 (en) * 2019-07-29 2021-05-07 한국과학기술연구원 A metal oxide catalyst for amine-based carbon dioxide absorbent, amine-based carbon dioxide absorbent, and apparatus for absorption and desorption using thereof

Similar Documents

Publication Publication Date Title
Zaleska Doped-TiO2: a review
Fagan et al. Improved high temperature stability of anatase TiO2 photocatalysts by N, F, P co-doping
US20080105535A1 (en) Composite Metal Oxide Photocatalyst Exhibiting Responsibility to Visible Light
JP4353978B2 (en) Method for producing titanium oxide photocatalyst
KR101359443B1 (en) Photocatalytic materials and process for producing the same
EP2519348B1 (en) Method of production of photocatalytic powder comprising titanium dioxide and manganese dioxide active under ultraviolet and visible light
CN101549299B (en) Non-metallic element multiple doping nano titanium dioxide photocatalyst and preparation method
KR101798129B1 (en) Reduction method of metal oxides and manufacturing method of reduced titania using the same
KR20110128634A (en) Photocatalyst having titanium dioxide and a metal tungsten oxide junction structure and preparation method thereof
KR101855747B1 (en) Manufacturing of visible-light active photocatalyst titanium dioxide and titanium dioxide manufactured therefrom
Morikawa et al. Visible-light photocatalyst-nitrogen-doped titanium dioxide
KR20120098231A (en) Manufacturing method of visible light-responsive photo catalyst, and photo catalyst thereof method
KR101876938B1 (en) Manufacturing of titanium dioxide and titanium dioxide manufactured therefrom
Pouretedal et al. Preparation, characterization and catalytic activity of tin dioxide and zero-valent tin nanoparticles
Nishizawa et al. New preparation method of visible light responsive titanium dioxide photocatalytic films
KR100691585B1 (en) Method of manufacturing tio2 photocatalyst doped pt ion sensitive to visible ray
JP2004143032A (en) Sulfur-containing metal oxide
JP2008179528A (en) Manufacture method of titanium oxide
KR100924515B1 (en) Manufacturing Method of Visible Rays Active Anatase Type Titanium Dioxide Photocatalyst
KR101242576B1 (en) Photocatalyst having a tin oxide with metal ion and titanium dioxide composite structure and preparation method thereof
CN114588916A (en) Preparation method of pure water cracking semiconductor catalyst for realizing visible light response by bimetallic ion co-doped strontium titanate
KR101206489B1 (en) Manufacturing Method of Visible Rays Active Anatase-Brookite Type Titanium Dioxide Photocatalyst
JP4386788B2 (en) Method for producing titanium oxide photocatalyst
Borse et al. Ratio dependence of the visible light photocatalytic efficiency for Zn2Ti0. 9CryFe [0.1-y] O4: Cr/Fe (0.02< y< 0.08) photocatalyst synthesized by using a solid state reaction method
RU2520100C1 (en) Method of preparing titanium oxide photocatalyst active in visible spectrum

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant