JPH11255514A - Production of visible light absorptive titanium oxide - Google Patents

Production of visible light absorptive titanium oxide

Info

Publication number
JPH11255514A
JPH11255514A JP10059742A JP5974298A JPH11255514A JP H11255514 A JPH11255514 A JP H11255514A JP 10059742 A JP10059742 A JP 10059742A JP 5974298 A JP5974298 A JP 5974298A JP H11255514 A JPH11255514 A JP H11255514A
Authority
JP
Japan
Prior art keywords
titanium oxide
aqueous solution
substrate
visible light
metal ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10059742A
Other languages
Japanese (ja)
Inventor
Koji Sato
幸治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP10059742A priority Critical patent/JPH11255514A/en
Priority to EP98123962A priority patent/EP0924164A3/en
Priority to US09/215,123 priority patent/US6355308B1/en
Publication of JPH11255514A publication Critical patent/JPH11255514A/en
Priority to US10/042,217 priority patent/US6589906B2/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing titanium oxide having photocatalytic activities even within a region of visual light by the simpler method compared to an ion implantation, and a photocatalyst produced by the method and having the photocatalytic activities within the region of the visual light. SOLUTION: This method for producing visual light absorptive titanium oxide comprises adding a fluorine scavenger to an aqueous solution containing a fluoro complex titanium compound and a metal compound to precipitate the titanium oxide having a doped metal ion derived from the metal compound. The visible light absorptive photocatalyst comprises the titanium oxide produced by the production method and having the doped metal ion. The titanium oxide having the doped metal ion can be a powder or a thin membrane on a substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、可視光吸収性を有
する光触媒として有用な、金属イオンがドープされた酸
化チタンの製造方法及び可視光吸収性を有する光触媒に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal oxide-doped titanium oxide useful as a visible light absorbing photocatalyst and a visible light absorbing photocatalyst.

【0002】[0002]

【従来の技術】酸化チタンは光触媒機能を有することが
知られており、表面に酸化チタン層を形成することで、
抗菌性、防汚性、防曇性等を付与できることから、幅広
い分野での応用が進められている。
2. Description of the Related Art Titanium oxide is known to have a photocatalytic function, and by forming a titanium oxide layer on the surface,
Since it can impart antibacterial properties, antifouling properties, antifogging properties, and the like, applications in a wide range of fields are being promoted.

【0003】[0003]

【発明が解決しようとする課題】ところが、酸化チタン
の利用できる光の波長帯は紫外線領域に限られている。
太陽光に含まれる光を有効に利用するためには、紫外線
領域のみならず可視光線の領域の光も有効に利用できる
ことが望ましい。このような観点から、安保らはイオン
注入法により、クロムイオンを酸化チタンに注入し、可
視光線の領域である450nmの光でNOxの分解に成
功している(1996, Proc. In DOE Workshop on Solar H
ydrogen Production (1996))。一般に、半導体に特定
の金属をドープすることで半導体中に不純物準位が生
じ、半導体の吸収バンドに新たな吸収帯が生じる。しか
し、ハンドギャップの光励起で生成する電子と正孔がク
ロムイオン上で再結合して失活してしまうため、光触媒
反応は進行しなくなるといわれていた。しかし、安保ら
は、高エネルギーに加速された金属イオンビームを照射
することにより酸化チタンにクロムイオンを注入し、酸
化チタンの固体物性を制御することを可能にした。
However, the wavelength band of light in which titanium oxide can be used is limited to the ultraviolet region.
In order to effectively use light contained in sunlight, it is desirable that not only light in the ultraviolet region but also light in the visible light region can be used effectively. From this point of view, Yasuno et al. Successfully implanted chromium ions into titanium oxide by ion implantation and succeeded in decomposing NOx with 450 nm light in the visible light region (1996, Proc. In DOE Workshop on). Solar H
ydrogen Production (1996)). Generally, when a semiconductor is doped with a specific metal, an impurity level is generated in the semiconductor, and a new absorption band is generated in the absorption band of the semiconductor. However, it has been said that the photocatalytic reaction does not proceed because electrons and holes generated by photoexcitation of the hand gap are recombined and deactivated on chromium ions. However, Yasuno and colleagues have made it possible to control the solid state properties of titanium oxide by injecting chromium ions into titanium oxide by irradiating a metal ion beam accelerated to high energy.

【0004】上記安保らの方法により作成されたクロム
イオンを注入した酸化チタンは可視光線の領域でも光触
媒活性を有するものである。また、イオン注入法は半導
体産業において一般化さた方法ではあるが、装置が大が
かりで運転コストも高く、汎用性の光触媒の製造にその
まま適用することは難しい。
[0004] Titanium oxide implanted with chromium ions and prepared by the above-mentioned method has a photocatalytic activity even in the visible light region. Although the ion implantation method is a method generalized in the semiconductor industry, it is difficult to apply the ion implantation method as it is to the production of a general-purpose photocatalyst, because the apparatus is large and the operation cost is high.

【0005】そこで、本発明の目的は、イオン注入法に
比べてはるかに簡便な方法で、可視光線の領域でも光触
媒活性を有する酸化チタンを製造する方法を提供するこ
とにある。さらに本発明の目的は、上記方法により製造
される新たな可視光線の領域で光触媒活性を有する光触
媒を提供することにある。
Accordingly, an object of the present invention is to provide a method for producing titanium oxide having photocatalytic activity even in the visible light region by a method much easier than the ion implantation method. It is a further object of the present invention to provide a photocatalyst having photocatalytic activity in a new visible light region produced by the above method.

【0006】[0006]

【課題を解決するための手段】本発明は、フルオロ錯チ
タン化合物及び金属化合物を含有する水溶液にフッ素捕
捉剤を添加して、前記金属化合物由来の金属イオンがド
ープされた酸化チタンを析出させることを特徴とする可
視光吸収性酸化チタンの製造方法に関する。また、本発
明は上記製造方法により製造された金属イオンがドープ
された酸化チタンからなることを特徴とする可視光吸収
性光触媒に関する。
According to the present invention, there is provided a method of adding a fluorine scavenger to an aqueous solution containing a fluoro complex titanium compound and a metal compound to precipitate titanium oxide doped with metal ions derived from the metal compound. The present invention relates to a method for producing visible light-absorbing titanium oxide, characterized by the following. The present invention also relates to a visible light absorbing photocatalyst comprising titanium oxide doped with metal ions produced by the above production method.

【0007】[0007]

【発明の実施の形態】本発明の可視光吸収性酸化チタン
の製造方法は、フルオロ錯チタン化合物及び金属化合物
を含有する水溶液にフッ素捕捉剤を添加して、前記金属
化合物由来の金属イオンがドープされた酸化チタンを析
出させることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The process for producing a visible light absorbing titanium oxide according to the present invention comprises the steps of: adding a fluorine scavenger to an aqueous solution containing a fluorocomplex titanium compound and a metal compound; The deposited titanium oxide is deposited.

【0008】本発明の可視光吸収性酸化チタンは、酸化
チタンに金属イオンをドープしたものである。酸化チタ
ンに金属イオンをドープすることで、酸化チタンに可視
光吸収性を付与し、紫外線のみならず、可視光によって
も光触媒活性を発現できるようになる。可視光吸収性を
付与する目的でのドープに適した金属イオンとしては、
例えば、クロムイオン、鉄イオン及びバナジウムイオン
からなる群から選ばれる少なくとも1種のイオンを挙げ
ることができる。但し、これらに限定されず、可視光吸
収性を付与できる金属イオンであればよい。そのような
金属イオンとしては、アルミニウム、ビスマス、エルビ
ウム、ガリウム、ガトリニウム、ボロミウム、インジウ
ム、ランタン、ルテチウム、マンガン、ニオブ、ネオジ
ウム、プラセオジウム、白金、ロジウム、スカンジウ
ム、サマリウム、スズ、タンタル、テルビウム、ツリウ
ム、タングステン、イットリウム、イッテルビウム、ジ
ムコニウム等のイオンを挙げることができる。また、金
属イオンのドープ量は、金属イオンの種類と酸化チタン
に要求される可視光吸収性及び光触媒活性を考慮して適
宜決定することができる。本発明の製造方法において
は、フルオロ錯チタン化合物及び金属化合物を含有する
水溶液を用意する。フルオロ錯チタン化合物を含有する
水溶液は、酸化チタンをフッ化水素酸に溶解させること
で調製することができる。あるいは、チタンの水酸化物
もしくはオキシ水酸化物を、二フッ化水素アンモニウ
ム、または二フッ化水素ナトリウムのような二フッ化水
素アルカリ金属の水溶液に溶解させて、フルオロ錯チタ
ン化合物を合成することもできる。フルオロ錯チタン化
合物及び金属化合物を含有する水溶液は、上記フルオロ
錯チタン化合物を含有する水溶液と金属化合物を含有す
る水溶液とを混合して調製することができる。
[0008] The visible light absorbing titanium oxide of the present invention is obtained by doping metal ions into titanium oxide. Doping titanium oxide with a metal ion imparts visible light absorption to the titanium oxide, so that photocatalytic activity can be exhibited not only by ultraviolet light but also by visible light. As metal ions suitable for doping for the purpose of imparting visible light absorption,
For example, at least one ion selected from the group consisting of chromium ions, iron ions, and vanadium ions can be given. However, the present invention is not limited to these, and any metal ion that can impart visible light absorption may be used. Such metal ions include aluminum, bismuth, erbium, gallium, gadolinium, boromium, indium, lanthanum, lutetium, manganese, niobium, neodymium, praseodymium, platinum, rhodium, scandium, samarium, tin, tantalum, terbium, thulium, Examples of the ion include tungsten, yttrium, ytterbium, and zymconium. The doping amount of the metal ion can be appropriately determined in consideration of the type of the metal ion and the visible light absorption and photocatalytic activity required for titanium oxide. In the production method of the present invention, an aqueous solution containing a fluorocomplex titanium compound and a metal compound is prepared. The aqueous solution containing the fluoro complex titanium compound can be prepared by dissolving titanium oxide in hydrofluoric acid. Alternatively, a titanium hydroxide or oxyhydroxide is dissolved in an aqueous solution of an alkali metal hydrogen difluoride such as ammonium hydrogen difluoride or sodium hydrogen difluoride to synthesize a fluoro complex titanium compound. Can also. The aqueous solution containing the fluoro complex titanium compound and the metal compound can be prepared by mixing the aqueous solution containing the fluoro complex titanium compound and the aqueous solution containing the metal compound.

【0009】フルオロ錯チタン化合物の濃度は適宜選択
することができるが、析出物の透明性や均質性を良好に
するためには、フルオロ錯チタン化合物は、金属量とし
て、通常10-9〜9×10-2mol/L、好ましくは10-6〜6×1
0-2mol/Lの濃度の水溶液に調製して用いることが好まし
い。
The concentration of the fluoro complex titanium compound can be appropriately selected, but in order to improve the transparency and homogeneity of the precipitate, the fluoro complex titanium compound is usually used in an amount of 10 -9 to 9 as a metal. × 10 −2 mol / L, preferably 10 −6 to 6 × 1
It is preferable to prepare and use an aqueous solution having a concentration of 0 -2 mol / L.

【0010】また、酸化チタンに金属イオンをドープす
るための金属化合物としては、例えば、Cr(NO3)3
・xH2O、VOSiO4・2H2O、VOCl 3、Cr2
(SO43・18H2O、CrCl3・xH2O、FeC
2・4H2O、FeCl2、FeCl3・6H2O、Fe
Cl3、Fe(NO3)2・9H2O、FeSO4・7H
2O、FeSO4、(NH4)Fe(SO43・xH2O、
Co(NO3)2・6H2O、などが例示される。金属化合
物の濃度は、溶解度や酸化チタンへのドープ量を考慮し
て、例えば、処理液1リットルに対して10-4〜10m
olの範囲とすることができる。また、金属化合物を反
応の途中で補充添加することもできる。
As a metal compound for doping titanium oxide with metal ions, for example, Cr (NO 3 ) 3
· XH 2 O, VOSiO 4 · 2H 2 O, VOCl 3, Cr 2
(SO 4 ) 3 · 18H 2 O, CrCl 3 · xH 2 O, FeC
l 2 · 4H 2 O, FeCl 2, FeCl 3 · 6H 2 O, Fe
Cl 3, Fe (NO 3) 2 · 9H 2 O, FeSO 4 · 7H
2 O, FeSO 4 , (NH 4 ) Fe (SO 4 ) 3 .xH 2 O,
Co (NO 3 ) 2 .6H 2 O is exemplified. The concentration of the metal compound is, for example, 10 −4 to 10 m per liter of the treatment liquid in consideration of the solubility and the doping amount to titanium oxide.
ol. Further, the metal compound can be supplemented and added during the reaction.

【0011】本発明で用いられるフッ化物イオン捕捉剤
は、フルオロ錯チタン化合物を含む水溶液からフッ素イ
オンを捕捉して酸化チタンを析出させることができるも
のであれば良い。一般に、フッ化物イオン捕捉剤には、
液相内に溶解させて用いる均一系と、固形物である不均
一系とがある。目的に応じて、これら両者の一方を用い
ても、併用しても差し支えない。
[0011] The fluoride ion scavenger used in the present invention may be any as long as it can trap fluorine ions from an aqueous solution containing a fluoro complex titanium compound and precipitate titanium oxide. Generally, fluoride ion scavengers include:
There are a homogeneous system which is used by being dissolved in a liquid phase, and a heterogeneous system which is a solid. Depending on the purpose, either one of these two may be used or both may be used.

【0012】均一系フッ化物イオン捕捉剤は、フッ化水
素と反応して安定なフルオロ錯チタン化合物および/ま
たはフッ化物を形成することにより、酸化チタンを析出
させるようにフッ素イオンの平衡を移動させるものであ
る。オルトホウ酸、メタホウ酸などのホウ酸のほか:塩
化アルミニウム、水酸化ナトリウム、アンモニア水など
が例示される。このような捕捉剤は、通常、水溶液の形
で用いられるが、粉末の形で添加して、系中に溶解させ
てもよい。このような捕捉剤の添加は、1回に、または
数回に分けて間欠的に行ってもよく、制御された供給速
度、たとえば一定の速度で連続的に行ってもよい。
The homogeneous fluoride ion scavenger moves the equilibrium of fluorine ions to precipitate titanium oxide by reacting with hydrogen fluoride to form a stable fluoro complex titanium compound and / or fluoride. Things. Besides boric acid such as orthoboric acid and metaboric acid, examples thereof include aluminum chloride, sodium hydroxide, and aqueous ammonia. Such a capture agent is usually used in the form of an aqueous solution, but may be added in the form of a powder and dissolved in the system. Such addition of the scavenger may be performed once or several times intermittently, or may be performed continuously at a controlled feed rate, for example, at a constant rate.

【0013】不均一系フッ化物イオン捕捉剤としては、
アルミニウム、チタン、鉄、ニッケル、マグネシウム、
銅、亜鉛などの金属、ガラスなどのセラミックス、およ
びケイ素、酸化カルシウム、酸化ホウ素、酸化アルミニ
ウム、二酸化ケイ素、酸化マグネシウムなどの化合物が
例示される。このような固形物を水溶液に添加または挿
入すると、固形物近傍のF-が消費されて、その濃度が減
少するので、その部分の化学平衡がシフトして、酸化チ
タンが析出する。このような固形物を用いると、その添
加または挿入する方法と反応条件により、水溶液に浸漬
した基材表面の全体に酸化チタンを析出させることも、
その析出を選択された局部、すなわち該固形物の存在す
る近傍に限定することも可能である。あるいは、均一系
と不均一系のフッ化物イオン捕捉剤を併用することによ
り、基材表面の析出物薄膜を部分的に厚くすることもで
きる。均一系フッ化物イオン捕捉剤は、溶液中のフッ化
物イオンの当量に相当する量に対して、通常、10-4
1,000%であり、好ましくは10-2〜500%の範囲
で用いられる。
As the heterogeneous fluoride ion scavenger,
Aluminum, titanium, iron, nickel, magnesium,
Examples thereof include metals such as copper and zinc, ceramics such as glass, and compounds such as silicon, calcium oxide, boron oxide, aluminum oxide, silicon dioxide, and magnesium oxide. When such solid matter is added or inserted into the solution, F near solids - are consumed, because its concentration decreases, the chemical equilibrium of the portion is shifted, titanium oxide is precipitated. When such a solid is used, depending on the method of adding or inserting and the reaction conditions, it is also possible to precipitate titanium oxide on the entire surface of the substrate immersed in the aqueous solution,
It is also possible to limit the precipitation to selected localities, i.e. in the vicinity where the solids are present. Alternatively, by using a combination of a homogeneous and a heterogeneous fluoride ion scavenger, the thickness of the deposit thin film on the substrate surface can be partially increased. The homogeneous fluoride ion scavenger is usually used in an amount of 10 −4 to 10 equivalents to the equivalent of the fluoride ions in the solution.
It is 1,000%, and preferably used in the range of 10 -2 to 500%.

【0014】本発明の製造方法においては、フルオロ錯
チタン化合物及び金属化合物を含有する水溶液に種結晶
として、酸化チタン粒子を含有させることもできる。種
結晶は0.001〜10μm の範囲、好ましくは0.0
01〜1μm程度の微小なものがよく、その添加量は、
析出させる酸化チタンの量等を勘案して適宜決定でき
る。種結晶の粒子径や添加量を選ぶことで、析出速度を
制御することもできる。必要により析出途中で種結晶を
補充することもできる。
In the production method of the present invention, the aqueous solution containing the fluoro complex titanium compound and the metal compound may contain titanium oxide particles as seed crystals. The seed crystal is in the range of 0.001 to 10 μm, preferably 0.0
Fine particles having a size of about 01 to 1 μm are preferable.
It can be appropriately determined in consideration of the amount of titanium oxide to be deposited and the like. The precipitation rate can be controlled by selecting the particle size and the amount of the seed crystal to be added. If necessary, seed crystals can be replenished during the precipitation.

【0015】本発明の製造方法では、水溶液に析出した
金属イオンがドープされた酸化チタン粒子を、水溶液か
ら回収して、金属イオンがドープされた酸化チタン粒子
(粉末)を得ることができる。酸化チタン粒子の水溶液か
らの回収は、常法により行うことができる。あるいは、
本発明の製造方法では、水溶液に基板を浸漬し、この基
板上に金属イオンがドープされた酸化チタンの薄膜を析
出させることをできる。基板は、例えば、ガラス製また
はプラスチック(有機高分子材料)製であることができ
る。プラスチックは、熱可塑性樹脂であっても、熱硬化
性樹脂であってもよい。本発明の製造方法は、加熱を必
要としないことから、耐熱性の劣るプラスチック基材で
あっても適用することができるという利点がある。プラ
スチック基材の形状及び形態は任意であり、板状に限定
されず、複雑な形状のものも使用可能である。例えば、
バルク体、板状、多孔質体であることができる。
In the production method of the present invention, the titanium oxide particles doped with metal ions precipitated in the aqueous solution are recovered from the aqueous solution, and the titanium oxide particles doped with the metal ions are recovered.
(Powder) can be obtained. The recovery of the titanium oxide particles from the aqueous solution can be performed by a conventional method. Or,
According to the production method of the present invention, the substrate can be immersed in an aqueous solution, and a metal oxide-doped titanium oxide thin film can be deposited on the substrate. The substrate can be made of, for example, glass or plastic (organic polymer material). The plastic may be a thermoplastic resin or a thermosetting resin. Since the production method of the present invention does not require heating, there is an advantage that it can be applied to a plastic substrate having poor heat resistance. The shape and form of the plastic substrate are arbitrary, and are not limited to plate shapes, and those having complicated shapes can also be used. For example,
It can be a bulk, plate, or porous body.

【0016】さらに、上記基板には、必要に応じて、光
触媒薄膜を形成する表面に下地層を有することが、基板
と薄膜との接着力の向上と薄膜の光触媒作用による基板
の劣化を防止するという観点から好ましい。このような
下地層としては、例えば、SiO2、Al23、Zr
2、ITO等の酸化物層やCaF2等のフッ化物層等を
挙げることができる。下地層の厚みは、下地層の効果を
十分に発揮するという観点から、0.1〜1μm程度で
あることができる。下地層は、真空蒸着法やスパッタリ
ング法等の乾式法でも、水溶液法やゾルゲル法等の湿式
法でも作製することができる。
Further, if necessary, the substrate has an underlayer on the surface on which the photocatalytic thin film is formed, so that the adhesion between the substrate and the thin film is improved and the deterioration of the substrate due to the photocatalytic action of the thin film is prevented. It is preferable from the viewpoint of. As such an underlayer, for example, SiO 2 , Al 2 O 3 , Zr
Examples include an oxide layer such as O 2 and ITO, and a fluoride layer such as CaF 2 . The thickness of the underlayer can be about 0.1 to 1 μm from the viewpoint of sufficiently exhibiting the effect of the underlayer. The underlayer can be formed by a dry method such as a vacuum evaporation method or a sputtering method, or a wet method such as an aqueous solution method or a sol-gel method.

【0017】基板をフルオロ錯体化合物の水溶液に浸漬
する時期は、フッ化物捕捉剤を添加ないし挿入する前で
も、同時でも、後でも差し支えない。ただし、系によっ
て侵されるおそれのある基材を用いる場合は、溶液の組
成、反応条件、および浸漬する時期に注意する必要があ
る。析出反応温度は、系が水溶液を維持する範囲で任意
に設定できるが、10〜80℃の範囲が好ましい。反応
時間も任意であり、たとえば、目的とする析出物が多い
ときは、それに応じて反応時間を長くすることができ
る。
The substrate may be immersed in the aqueous solution of the fluoro complex compound before, during or after the addition or insertion of the fluoride scavenger. However, when using a substrate that may be affected by the system, attention must be paid to the composition of the solution, the reaction conditions, and the timing of immersion. The precipitation reaction temperature can be arbitrarily set as long as the system maintains an aqueous solution, but is preferably in the range of 10 to 80 ° C. The reaction time is also arbitrary. For example, when the target precipitate is large, the reaction time can be lengthened accordingly.

【0018】このようにして得られる、金属イオンドー
プ酸化チタンの粉末及び薄膜は、熱処理することで、金
属イオンのドープレベルを均一化することが好ましい。
ドープレベルの均一化のための熱処理は、例えば、400
〜600℃の温度で5〜120分間程度行うことができる。熱
処理条件は、ドープされる金属イオンや必要とされるド
ープレベル等を考慮して、適宜決定することができる。
また、尚、金属イオンドープ酸化チタンが基板に設けら
れた薄膜の場合、ドープレベルの均一化のための熱処理
条件は、基板の材質も考慮して決定される。
The thus obtained powder and thin film of metal ion-doped titanium oxide are preferably subjected to a heat treatment to make the doping level of metal ions uniform.
Heat treatment for uniform doping level, for example, 400
It can be performed at a temperature of about 600 ° C. for about 5 to 120 minutes. The heat treatment conditions can be appropriately determined in consideration of the metal ions to be doped, the required doping level, and the like.
In addition, when the metal ion-doped titanium oxide is a thin film provided on a substrate, the heat treatment conditions for making the doping level uniform are determined in consideration of the material of the substrate.

【0019】[0019]

【実施例】以下、本発明を実施例によりさらに詳細に説
明する。 実施例1 TiO2アナターゼ微粒子30mgを予め400mlの純水中に
懸濁させた。この懸濁液に、アンモニウムヘキサフルオ
ロチタネート(NH4)2TiF6 2.8gを添加し、攪拌して溶解
させた。次いで、硝酸クロム [Cr(NO3)3・xH2O]0.35gを
添加溶解し、処理液とした。このようにして調製した処
理液を35-40℃に維持しながら、酸化ホウ素10gを加え攪
拌した。その後、50×70×1mmの無アルカリガラス基板
をこの処理液に浸漬した。この状態を保持しながら4.5
時間放置した。処理時間経過後、基板を水槽から取り出
して、水洗し、乾燥した。さらに、この基板を電気炉内
に入れ、500℃まで昇温し、1時間保持し、本発明のクロ
ムイオンドープ酸化チタン薄膜が形成された基板を得
た。この基板の透過スペクトルを図1に(a)として示す。
クロムイオンドープ酸化チタン薄膜は酸化チタン薄膜
(c)に比べて吸収端が長波長(可視光)側にシフトしてい
るのが分かる。尚、酸化チタン薄膜は、硝酸クロム [Cr
(NO3)3・xH2O]0.35gを含まない処理液を用いた以外は同
様の条件で作成したものである。
The present invention will be described in more detail with reference to the following examples. Example 1 30 mg of TiO 2 anatase fine particles were previously suspended in 400 ml of pure water. To this suspension, 2.8 g of ammonium hexafluorotitanate (NH 4 ) 2 TiF 6 was added and stirred to dissolve. Next, 0.35 g of chromium nitrate [Cr (NO 3 ) 3 .xH 2 O] was added and dissolved to obtain a treatment liquid. While maintaining the treatment liquid thus prepared at 35 to 40 ° C., 10 g of boron oxide was added and stirred. Thereafter, a 50 × 70 × 1 mm non-alkali glass substrate was immersed in this treatment liquid. 4.5 while maintaining this state
Left for hours. After the elapse of the treatment time, the substrate was taken out of the water bath, washed with water, and dried. Further, the substrate was placed in an electric furnace, heated to 500 ° C., and held for 1 hour to obtain a substrate on which the chromium ion-doped titanium oxide thin film of the present invention was formed. The transmission spectrum of this substrate is shown as (a) in FIG.
Chromium ion doped titanium oxide thin film is titanium oxide thin film
It can be seen that the absorption edge is shifted to the longer wavelength (visible light) side as compared with (c). The titanium oxide thin film is made of chromium nitrate [Cr
It was prepared under the same conditions except that a processing solution not containing (NO 3 ) 3 .xH 2 O] 0.35 g was used.

【0020】実施例2 硝酸クロム [Cr(NO3)3・xH2O]の添加量を1.0gとし、処理
液へのガラス基板の浸漬を30-40℃に維持して行った以
外、実施例1と同様にして、基板上に本発明のクロムイ
オンドープチタン薄膜を形成した。この基板の透過スペ
クトルを図1に(b)として示す。クロムイオンドープ酸化
チタン薄膜は酸化チタン薄膜(c)に比べて吸収端が長波
長(可視光)側にシフトしているのが分かる。
Example 2 The procedure was performed except that the addition amount of chromium nitrate [Cr (NO 3 ) 3 .xH 2 O] was 1.0 g, and the immersion of the glass substrate in the treatment liquid was maintained at 30-40 ° C. In the same manner as in Example 1, a chromium ion-doped titanium thin film of the present invention was formed on a substrate. The transmission spectrum of this substrate is shown as (b) in FIG. It can be seen that the absorption edge of the chromium ion-doped titanium oxide thin film is shifted to the longer wavelength (visible light) side as compared with the titanium oxide thin film (c).

【0021】実施例3 処理液の調製を硝酸クロム [Cr(NO3)3・xH2O]の代わりに
硝酸第2鉄[Fe(NO3)3・xH2O]1.0gを用いて行った以外は実
施例2と同様にして、基板上に本発明の鉄イオンドープ
チタン薄膜を形成した。この基板の透過スペクトルを図
2に(a)として示す。鉄イオンドープ酸化チタン薄膜は酸
化チタン薄膜(c)に比べて吸収端が長波長(可視光)側に2
5〜30nmシフトしているのが分かる。
Example 3 A treatment liquid was prepared using 1.0 g of ferric nitrate [Fe (NO 3 ) 3 .xH 2 O] instead of chromium nitrate [Cr (NO 3 ) 3 .xH 2 O]. An iron ion-doped titanium thin film of the present invention was formed on a substrate in the same manner as in Example 2 except for the above. The transmission spectrum of this substrate is
This is shown as (a) in FIG. The absorption edge of the iron ion-doped titanium oxide thin film is longer at the longer wavelength (visible light) side than the titanium oxide thin film (c).
It can be seen that the shift is 5 to 30 nm.

【0022】実施例4 実施例3で調製した鉄イオンドープ酸化チタン薄膜及び
酸化チタン薄膜に、それぞれサラダオイルを0.1mg/cm2
の割合で塗布した。次いで両者をブラックライト(10W)
下に置き、重量減少からオイルの分解能を比較した。そ
の結果、何れも、7〜10日間で完全にオイルが分解され
た。また、同様の分解実験をブラックライトの代わりに
紫外線量が少ない白熱灯を用いて行った。その結果、酸
化チタン薄膜では殆ど重量減少は見られなかったが、鉄
イオンドープ酸化チタン薄膜では、ブラックライトを用
いた場合は1/5ほどの速度でオイルの重量減少が観測
された。
Example 4 Salad oil was added to the iron ion-doped titanium oxide thin film and the titanium oxide thin film prepared in Example 3, respectively, at 0.1 mg / cm 2.
At a rate of Next, both are black light (10W)
Placed below, oil resolution was compared from weight loss. As a result, in each case, the oil was completely decomposed in 7 to 10 days. Further, the same decomposition experiment was performed using an incandescent lamp having a small amount of ultraviolet light instead of the black light. As a result, while weight loss was hardly observed in the titanium oxide thin film, oil weight loss was observed in the iron ion-doped titanium oxide thin film at a rate of about 1/5 when black light was used.

【0023】[0023]

【発明の効果】本発明によれば、イオン注入法に比べて
はるかに簡便な方法で、可視光線の領域でも光触媒活性
を有する酸化チタンを製造することができる。さらに本
発明の方法により得られる金属イオンをドープした酸化
チタンは、酸化チタンに比べて可視光線領域での吸収性
に優れ、酸化チタンに比べてより優れた光触媒活性を有
する光触媒である。
According to the present invention, titanium oxide having photocatalytic activity even in the visible light region can be produced by a method much simpler than the ion implantation method. Further, the titanium oxide doped with metal ions obtained by the method of the present invention is a photocatalyst having excellent absorption in the visible light region as compared with titanium oxide and having more excellent photocatalytic activity than titanium oxide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1及び2で調製されたクロムイオンドー
プチタン薄膜を形成した基板の透過スペクトル(a)及
び(b)並びに酸化チタン薄膜形成した基板の透過スペ
クトル(c)を示す。
1 shows transmission spectra (a) and (b) of a substrate on which a chromium ion-doped titanium thin film prepared in Examples 1 and 2 is formed, and transmission spectra (c) of a substrate on which a titanium oxide thin film is formed.

【図2】実施例3で調製された鉄イオンドープチタン薄
膜を形成した基板の透過スペクトル(a)及び酸化チタ
ン薄膜形成した基板の透過スペクトル(b)を示す。
FIG. 2 shows a transmission spectrum (a) of a substrate on which an iron ion-doped titanium thin film prepared in Example 3 was formed and a transmission spectrum (b) of a substrate on which a titanium oxide thin film was formed.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 フルオロ錯チタン化合物及び金属化合物
を含有する水溶液にフッ素捕捉剤を添加して、前記金属
化合物由来の金属イオンがドープされた酸化チタンを析
出させることを特徴とする可視光吸収性酸化チタンの製
造方法。
1. A visible light absorbing agent comprising adding a fluorine scavenger to an aqueous solution containing a fluorocomplex titanium compound and a metal compound to precipitate titanium oxide doped with metal ions derived from the metal compound. A method for producing titanium oxide.
【請求項2】 金属イオンがクロムイオン、鉄イオン及
びバナジウムイオンからなる群から選ばれる少なくとも
1種のイオンである請求項1に記載の製造方法。
2. The method according to claim 1, wherein the metal ions are at least one ion selected from the group consisting of chromium ions, iron ions, and vanadium ions.
【請求項3】 水溶液に酸化チタンからなる種結晶を含
有させる請求項1または2に記載の製造方法。
3. The production method according to claim 1, wherein the aqueous solution contains a seed crystal composed of titanium oxide.
【請求項4】 水溶液に析出した金属イオンがドープさ
れた酸化チタン粒子を、水溶液から回収する請求項1〜
3のいずれか1項に記載の製造方法。
4. The titanium oxide particles doped with metal ions precipitated in the aqueous solution are recovered from the aqueous solution.
4. The production method according to any one of 3.
【請求項5】 水溶液に基板を浸漬し、この基板上に金
属イオンがドープされた酸化チタンの薄膜を析出させる
請求項1〜3のいずれか1項に記載の製造方法。
5. The production method according to claim 1, wherein the substrate is immersed in an aqueous solution, and a thin film of titanium oxide doped with metal ions is deposited on the substrate.
【請求項6】 析出した金属イオンがドープされた酸化
チタンに、ドープレベルの均一化のための熱処理を施す
請求項1〜5のいずれか1項に記載の製造方法。
6. The method according to claim 1, wherein the titanium oxide doped with the precipitated metal ions is subjected to a heat treatment for making the doping level uniform.
【請求項7】 請求項1〜6のいずれか1項に記載の製
造方法により製造された金属イオンがドープされた酸化
チタンからなることを特徴とする可視光吸収性光触媒。
7. A visible light-absorbing photocatalyst comprising titanium oxide doped with metal ions produced by the production method according to claim 1. Description:
【請求項8】 金属イオンがドープされた酸化チタンが
粉末または基板上の薄膜である請求項7に記載の光触
媒。
8. The photocatalyst according to claim 7, wherein the titanium oxide doped with metal ions is a powder or a thin film on a substrate.
JP10059742A 1997-12-18 1998-03-11 Production of visible light absorptive titanium oxide Pending JPH11255514A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10059742A JPH11255514A (en) 1998-03-11 1998-03-11 Production of visible light absorptive titanium oxide
EP98123962A EP0924164A3 (en) 1997-12-18 1998-12-17 Methods for producing oxides or composites thereof
US09/215,123 US6355308B1 (en) 1997-12-18 1998-12-18 Methods for producing oxides or composites thereof
US10/042,217 US6589906B2 (en) 1997-12-18 2002-01-11 Methods for producing oxides or composites thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10059742A JPH11255514A (en) 1998-03-11 1998-03-11 Production of visible light absorptive titanium oxide

Publications (1)

Publication Number Publication Date
JPH11255514A true JPH11255514A (en) 1999-09-21

Family

ID=13121997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10059742A Pending JPH11255514A (en) 1997-12-18 1998-03-11 Production of visible light absorptive titanium oxide

Country Status (1)

Country Link
JP (1) JPH11255514A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515518A (en) * 1999-12-01 2003-05-07 アイシス・イノベーション・リミテッド Particles comprising a matrix lattice and a guest, their preparation and use of UV-blocking compositions
KR100440785B1 (en) * 2001-10-24 2004-07-21 오승훈 Photocatalyst optical thin films activated in the visible light and their preparations
JP2012200698A (en) * 2011-03-28 2012-10-22 Daicel Corp Photocatalyst and oxidation method for organic compound using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515518A (en) * 1999-12-01 2003-05-07 アイシス・イノベーション・リミテッド Particles comprising a matrix lattice and a guest, their preparation and use of UV-blocking compositions
KR100440785B1 (en) * 2001-10-24 2004-07-21 오승훈 Photocatalyst optical thin films activated in the visible light and their preparations
JP2012200698A (en) * 2011-03-28 2012-10-22 Daicel Corp Photocatalyst and oxidation method for organic compound using the same

Similar Documents

Publication Publication Date Title
US6589906B2 (en) Methods for producing oxides or composites thereof
JP2875993B2 (en) Anatase dispersion and method for producing the same
Kumar et al. Nd-doped ZnO as a multifunctional nanomaterial
JP4304235B2 (en) Method for producing titanium oxide thin film and photolysis catalyst
Shukla et al. A review on rare earth (Ce and Er)-doped zinc oxide nanostructures
JP3273294B2 (en) Electrolyte for zinc oxide film production
JP5240813B2 (en) Method for creating metal surface microstructure
Bouhouche et al. Effect of Er3+ doping on structural, morphological and photocatalytical properties of ZnO thin films
Lghazi et al. Nucleation/growth and optical proprieties of co-doped zno electrodeposited on ito substrate
Murakami et al. Preparations of ultrafine IrO2-SnO2 binary oxide particles by a sol-gel process
JP2004149367A (en) Aqueous solution for producing zinc oxide particle or film, and method for producing zinc oxide particle or film
Masuda et al. Anatase TiO2 films crystallized on SnO2: F substrates in an aqueous solution
US20050095194A1 (en) Method for preparing zno nanopowder
Zulkiflee et al. Bismuth oxyhalides: recent progress and its applications in photocatalysis, hydrogen production, antibacterial studies, and sensors
JP5339346B2 (en) Method for producing aluminum-substituted α-type nickel hydroxide
JPH11255514A (en) Production of visible light absorptive titanium oxide
Ohya et al. Aqueous titanate sols from Ti alkoxide-α-hydroxycarboxylic acid system and preparation of titania films from the sols
KR100890632B1 (en) Preparation of silver colloid from impure silver salt
Waghmare et al. Zirconium oxide films: deposition techniques and their applications in dye-sensitized solar cells
JP4471728B2 (en) Method for forming metal nitride thin film in molten salt
Hosono et al. Fabrication of nanoparticulate porous LaOF films through film growth and thermal decomposition of ion-modified lanthanum diacetate hydroxide
JPH11158691A (en) Aqueous solution for forming titanium oxide film, and production of titanium oxide film
JP3256776B2 (en) Composition for forming zinc oxide film
JP2004195439A (en) Photocatalyst and its production method
Lu et al. Room temperature electrodeposition of Ag3PO4 films