JP5240813B2 - Method for creating metal surface microstructure - Google Patents

Method for creating metal surface microstructure Download PDF

Info

Publication number
JP5240813B2
JP5240813B2 JP2007110256A JP2007110256A JP5240813B2 JP 5240813 B2 JP5240813 B2 JP 5240813B2 JP 2007110256 A JP2007110256 A JP 2007110256A JP 2007110256 A JP2007110256 A JP 2007110256A JP 5240813 B2 JP5240813 B2 JP 5240813B2
Authority
JP
Japan
Prior art keywords
metal
substrate
aqueous solution
surface microstructure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007110256A
Other languages
Japanese (ja)
Other versions
JP2008266709A (en
Inventor
豪慎 周
英司 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007110256A priority Critical patent/JP5240813B2/en
Publication of JP2008266709A publication Critical patent/JP2008266709A/en
Application granted granted Critical
Publication of JP5240813B2 publication Critical patent/JP5240813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Description

本発明は、超親水表面、超撥水表面、反射防止膜、電子デバイス、電池材料、センサー材料、光学デバイス、構造材料などの機能が期待できる金属表面微細構造の作成方法に関する。   The present invention relates to a method for producing a metal surface microstructure that can be expected to have functions such as a superhydrophilic surface, a superhydrophobic surface, an antireflection film, an electronic device, a battery material, a sensor material, an optical device, and a structural material.

従来、ナノ構造を有する材料はあらゆる分野での応用に富み、多くの研究開発がなされている。これまでに報告されていない物質の金属酸化物のナノ構造を制御することで、これまで超親水特性のためには紫外線照射が必要だったTiO2膜を紫外線照射を行うことなく超親水特性を示すことができれば、その用途も大きく広がると期待される。また、他の金属酸化物として酸化アルミニウムのナノシート膜を作成することができればその膜の強度も大きく向上する。
産業界への実用のためには、安価な材料で、簡易かつ安価な方法で、短時間で作製するには、金属表面そのものを容易に微細構造制御することが最も必要な技術であると考えられる。
本発明者は、微細構造を作成したガラス表面を用いて、当該ガラス表面に、シラン化合物をコーティングすることにより、超撥水性のガラス表面を作り出すことに成功し、すでに、特許出願をしている(特許文献1参照)。
また、ガラス組成が、100%二酸化珪素(SiO)ではないガラス基板を、pH7以上のアルカリ水溶液に浸漬し、60〜250℃の温度で、0.5〜48時間保持し、その後ガラス基板を取り出して洗浄乾燥させることを特徴とするガラス表面微細構造の作成方法についても既に特許出願をしている(特許文献2参照)。
特願2006-289386 特願2007-084244 DEVELOPMENTOF A TRANSPARENT AND ULTRAHYDROPHOBIC GLASS PLATE OGAWA K, SOGA M, TAKADA Y, NAKAYAMA I JAPANESE JOURNAL OF APPLIEDPHYSICS PART 2-LETTERS 32 (4B): L614-L615 (1993)
Conventionally, materials having nanostructures are rich in applications in various fields, and many researches and developments have been made. By controlling the nanostructure of metal oxides that have not been reported so far, the super-hydrophilic properties of TiO2 films, which had previously required ultraviolet irradiation for super-hydrophilic properties, can be exhibited without UV irradiation. If possible, the use is expected to expand greatly. Moreover, if a nanosheet film of aluminum oxide can be prepared as another metal oxide, the strength of the film is greatly improved.
For practical use in industry, it is considered that the most necessary technology is to easily control the microstructure of the metal surface itself in order to produce it in a short time with a simple and inexpensive method using an inexpensive material. It is done.
The present inventor succeeded in creating a super-water-repellent glass surface by coating a silane compound on the glass surface using a finely structured glass surface, and has already filed a patent application. (See Patent Document 1).
In addition, a glass substrate whose glass composition is not 100% silicon dioxide (SiO 2 ) is immersed in an alkaline aqueous solution having a pH of 7 or more, and held at a temperature of 60 to 250 ° C. for 0.5 to 48 hours. A patent application has already been filed for a method for producing a glass surface microstructure characterized by taking out and washing and drying (see Patent Document 2).
Japanese Patent Application 2006-289386 Japanese Patent Application No. 2007-084244 DEVELOPMENTOF A TRANSPARENT AND ULTRAHYDROPHOBIC GLASS PLATE OGAWA K, SOGA M, TAKADA Y, NAKAYAMA I JAPANESE JOURNAL OF APPLIEDPHYSICS PART 2-LETTERS 32 (4B): L614-L615 (1993)

本発明は、金属基板表面に金属表面微細構造の作成する方法を提供する。   The present invention provides a method for creating a metal surface microstructure on a metal substrate surface.

すなわち、本発明は、Mg,Al,Ca,Sc,Ti,V,Co,Mn,Fe,Co, Ni,Cu,Zn,Ga,Sr,Y,Zr, Nb,Mo,Ag,In,Sn,Sb,Ba, La, Hf,Ta, W, Bi, Ceから選ばれる金属基板を、純水もしくはpH7以上のアルカリ水溶液に浸漬し、50〜250℃の温度で、0.05〜96時間保持し、その後金属基板を取り出して洗浄乾燥させることを特徴とする金属表面微細構造の作成方法である。
また本発明は、金属基板として、金属若しくは基板の表面を金属コートした基板とすることができる。
さらに本発明は、金属基板として、Ti,Zn,Al,Mn,Mg,Niであるか若しくはTi,Zn,Al,Mn,Mg,Niをコートした基板を用いることが好ましい。
また本発明は、純水であるイオン交換水の他アルカリ水溶液に用いられるアルカリ剤が、アルカリとしてLiOH,NaOH,KOH、MnOOH、NH4OH、尿素からなる群れより選ばれる1種を用いることができる。
さらに本発明は、アルカリ水溶液がpH9〜11のNaOHであり、アルカリ水溶液の温度が95〜200℃であり、浸漬時間が1〜24時間とすることが好ましい。
That is, the present invention is Mg, Al, Ca, Sc, Ti, V, Co, Mn, Fe, Co, Ni, Cu, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ag, In, Sn, A metal substrate selected from Sb, Ba, La, Hf, Ta, W, Bi, and Ce is immersed in pure water or an alkaline aqueous solution having a pH of 7 or higher and maintained at a temperature of 50 to 250 ° C. for 0.05 to 96 hours. Thereafter, the metal substrate is taken out and washed and dried.
Moreover, this invention can be made into the board | substrate which coated the metal or the surface of the board | substrate as a metal substrate.
Furthermore, in the present invention, it is preferable to use a substrate made of Ti, Zn, Al, Mn, Mg, Ni or coated with Ti, Zn, Al, Mn, Mg, Ni as the metal substrate.
In the present invention, the alkali agent used in the alkaline aqueous solution in addition to ion-exchanged water, which is pure water, uses one kind selected from the group consisting of LiOH, NaOH, KOH, MnOOH, NH 4 OH, and urea as an alkali. it can.
Further, in the present invention, it is preferable that the alkaline aqueous solution is NaOH having a pH of 9 to 11, the temperature of the alkaline aqueous solution is 95 to 200 ° C., and the immersion time is 1 to 24 hours.

本発明の金属表面微細構造の作成方法は、特別な装置を必要とせず、安価に容易に行える画期的な金属表面微細構造の作成方法である。   The method for creating a metal surface microstructure of the present invention is an epoch-making method for creating a metal surface microstructure that can be easily performed at low cost without requiring a special apparatus.

本発明で用いる各種金属基板としては、通常の金属基板のほか、あらかじめ他の基板(ガラスなど)に金属をスパッタや無電解メッキ、メッキ等、様々な方法を用いてコートしておけば、それを処理することによって、あらゆる基材の表面を各種ナノ構造材料で覆うことができる。   As various metal substrates used in the present invention, in addition to ordinary metal substrates, other substrates (such as glass) may be coated in advance using various methods such as sputtering, electroless plating, plating, etc. The surface of any substrate can be covered with various nanostructured materials.

本発明においては、本発明が適用できる金属は、水もしくはアルカリで腐食する金属なら何でも良いが、代表的には、Mg,Al,Ca,Sc,Ti,V,Co,Mn,Fe,Co, Ni,Cu,Zn,Ga,Sr,Y,Zr, Nb,Mo,Ag,In,Sn,Sb,Ba, La, Hf,Ta, W, Bi, Ceから選ばれる金属を挙げることができる。とくに身近な金属としては、Ti,Zn,Al,Mn,Mg,Ni,Snを挙げることができる。   In the present invention, the metal to which the present invention can be applied is any metal that corrodes with water or alkali, but typically, Mg, Al, Ca, Sc, Ti, V, Co, Mn, Fe, Co, Examples include metals selected from Ni, Cu, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ag, In, Sn, Sb, Ba, La, Hf, Ta, W, Bi, and Ce. Particularly familiar metals include Ti, Zn, Al, Mn, Mg, Ni, and Sn.

また、作製されたナノ構造材料を熱処理することにより、形態を変化させることなく、金属水和物や金属水酸化物を金属酸化物とすることができる。これにより、熱処理の前後で、電子、電池、センサー、光学、構造材料として異なる機能を有したり、デバイスの特性の向上を行うことができる。例としては、熱処理によって酸化アルミニウムナノシート膜とすることで、高強度材料とすることができ、アナターゼTiO2ナノシート膜を作成することで、紫外線を必要としない超親水TiO2膜を作成することができる。
得られたナノ構造体を基材として、また、さらにこの上に機能性材料を作製することにより、新たなデバイス(電子、電池、センサー、光学、構造材料)或いは超親水、超撥水表面、反射防止膜としての機能の発現、特性の向上も可能となる。
In addition, by heat-treating the manufactured nanostructured material, a metal hydrate or metal hydroxide can be converted into a metal oxide without changing the form. Thereby, before and after the heat treatment, it can have different functions as an electron, a battery, a sensor, optics, and a structural material, and can improve device characteristics. As an example, a high-strength material can be obtained by forming an aluminum oxide nanosheet film by heat treatment, and a superhydrophilic TiO2 film that does not require ultraviolet light can be formed by forming an anatase TiO2 nanosheet film.
By using the obtained nanostructure as a base material and further producing a functional material thereon, a new device (electronic, battery, sensor, optical, structural material) or superhydrophilic, superhydrophobic surface, The function as an antireflection film can be expressed and the characteristics can be improved.

本発明で造られるナノ構造材料は、電子材料、電池材料、センサー材料、光学材料、構造材料から超撥水や超親水などの界面現象など、多種多様なデバイスの高機能化において、用いることができる。
産業界への実用のためには、その安価かつ簡易な作製プロセスが必要とされる。また、ナノ材料をパウダーとして作製するプロセスが多いが、電子、電池、センサー、などの高機能化を考慮すると、凝集の抑制や結晶配向性の付与、基板から直立したナノロッドやナノシートなどの形態、基板との密着性などから、各種基材(基板など)に直接ナノ構造材料が作製されることが望ましいので、本発明の金属表面微細構造の作成方法は、応用範囲が広い。
The nanostructured material produced in the present invention can be used for enhancing the functionality of a wide variety of devices such as electronic materials, battery materials, sensor materials, optical materials, structural materials, and interfacial phenomena such as superhydrophobic and superhydrophilic. it can.
For practical use in the industry, an inexpensive and simple manufacturing process is required. In addition, there are many processes for producing nanomaterials as powder, but considering higher functionality such as electrons, batteries, sensors, etc., suppression of aggregation and provision of crystal orientation, forms such as nanorods and nanosheets standing upright from the substrate, Since it is desirable that the nanostructured material is directly produced on various base materials (substrate and the like) from the viewpoint of adhesion to the substrate, etc., the metal surface microstructure production method of the present invention has a wide range of applications.

本発明の製造方法においては、アルカリとしてLiOH,NaOH,KOH、MnOOH、NH4OH、尿素からなる群れより選ばれる1種或いは数種を用いることができる。
さらに、本発明の製造方法においては、純水もしくはアルカリ水溶液がpH9〜11のNaOHであり、アルカリ水溶液の温度が95〜200℃であり、浸漬時間が1〜24時間とすることが望ましい。
本発明について実施例を用いてさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
In the production method of the present invention, one kind or several kinds selected from the group consisting of LiOH, NaOH, KOH, MnOOH, NH 4 OH, and urea can be used as the alkali.
Furthermore, in the production method of the present invention, it is desirable that the pure water or the alkaline aqueous solution is NaOH having a pH of 9 to 11, the temperature of the alkaline aqueous solution is 95 to 200 ° C., and the immersion time is 1 to 24 hours.
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

Ti板を尿素に溶解させた水溶液に入れ、100°Cにて4日間静置したサンプルのSEM像を図1(a)に示す。直立したナノシートによって構成された膜であることが分かる。尿素の代わりにアンモニア水を加えた場合も同様の形態を作製することができる。得られた材料はチタン酸アンモニウムであると考えられ、これを400°Cで30分空気中で熱処理すると図1(b)に示されるように、形態を維持したままTiO2のアナターゼ型の結晶となった。また、これを600°Cで30分空気中で熱処理すると図1(c)に示されるように、形態を維持したままTiO2のアナターゼ型の結晶となった。図1(d)に示すように作成されたアナターゼTiO2ナノシート膜は、紫外線照射を行うことなく超親水特性を示した。   FIG. 1 (a) shows an SEM image of a sample in which a Ti plate is placed in an aqueous solution dissolved in urea and allowed to stand at 100 ° C. for 4 days. It can be seen that the film is composed of upright nanosheets. A similar form can be produced when ammonia water is added instead of urea. The obtained material is considered to be ammonium titanate, and when this was heat-treated at 400 ° C for 30 minutes in air, as shown in Fig. 1 (b), anatase-type crystals of TiO2 were maintained while maintaining the form. became. Further, when this was heat-treated at 600 ° C. for 30 minutes in the air, as shown in FIG. 1 (c), an anatase-type crystal of TiO 2 was maintained while maintaining the form. The anatase TiO2 nanosheet film prepared as shown in FIG. 1 (d) exhibited superhydrophilic properties without being irradiated with ultraviolet rays.

Ti板をイオン交換水に入れ、200°Cにて4日間静置したサンプルのSEM像を図2に示す。表面に八面体型のアナターゼ結晶が生成し、pHが中性であるイオン交換水を用いた場合もナノの凹凸構造を有していることが分かる。   Fig. 2 shows an SEM image of a sample that was placed in ion-exchanged water and allowed to stand at 200 ° C for 4 days. It can be seen that an octahedral anatase crystal is formed on the surface, and even when ion-exchanged water having a neutral pH is used, it has a nano uneven structure.

Ti板を尿素を溶解させた水溶液に入れ、90°Cにて24時間静置したサンプルのSEM像を図3(a)に示す。ナノシートからなる膜が、水が沸騰する温度以下においても作製されていることが分かる。
Ti板を5MのNaOH水溶液に入れ、90°Cにて24時間静置したサンプルのSEM像を図3(b)示す。ナノワイヤーが直立した膜がこちらも水が沸騰する温度以下においても作製されていることが分かる。これらから、安価かつ簡易なプロセスでナノ構造の作製が可能であることが分かる。
FIG. 3 (a) shows an SEM image of a sample in which a Ti plate was placed in an aqueous solution in which urea was dissolved and allowed to stand at 90 ° C. for 24 hours. It turns out that the film | membrane which consists of nanosheets is produced also below the temperature which water boils.
FIG. 3 (b) shows an SEM image of a sample in which a Ti plate was placed in a 5M NaOH aqueous solution and allowed to stand at 90 ° C. for 24 hours. It can be seen that the nanowire upright film is also produced below the temperature at which water boils. From these, it can be seen that nanostructures can be produced by an inexpensive and simple process.

石英ガラスにTiを30nmスパッタした後、5MのNaOH水溶液に入れ、90°Cにて90分間静置したサンプルのSEM像を図4(a)に示す。ナノワイヤー構造が石英ガラス基板上に生成していることが分かり、図4(b)から透明な膜を作製できたことが分かる。   FIG. 4 (a) shows an SEM image of a sample that was sputtered with 30 nm of Ti on quartz glass, placed in a 5M NaOH aqueous solution, and allowed to stand at 90 ° C. for 90 minutes. It can be seen that the nanowire structure is formed on the quartz glass substrate, and it can be seen from FIG. 4 (b) that a transparent film has been produced.

図5(a)にはMn板をイオン交換水に入れ、100°Cにて10時間静置したサンプルのSEM写真を示す。ナノロッドが直立した膜ができていることが分かる。   FIG. 5 (a) shows an SEM photograph of a sample in which an Mn plate is placed in ion exchange water and allowed to stand at 100 ° C. for 10 hours. It can be seen that the nanorods are upright.

Mg板をイオン交換水に入れ、90°Cにて30分静置したサンプルのSEM写真を図6に示す。低温かつ短時間でナノシートが直立した膜ができていることが分かる。   FIG. 6 shows an SEM photograph of a sample in which an Mg plate is placed in ion exchange water and allowed to stand at 90 ° C. for 30 minutes. It can be seen that a film in which the nanosheets are upright is formed at a low temperature in a short time.

図7(a)にはガラス基板にAlを140nmスパッタした後、イオン交換水に入れ、90°Cにて60分間静置したサンプルのSEM像を示す。ナノシート構造がガラス基板上に生成していることが分かり、図7(b)から透明な膜を作製できたことが分かる。図7(c)にはガラス基板にAlを70nmスパッタした後、イオン交換水に入れ、90°Cにて90分間静置した後1000°Cにて10分間熱処理したサンプルのSEM像を示す。熱処理により酸化アルミニウムとなった後もナノシート構造を維持していることが分かる。   FIG. 7 (a) shows an SEM image of a sample obtained by sputtering Al on a glass substrate for 140 nm, placing in ion exchange water, and allowing to stand at 90 ° C. for 60 minutes. It can be seen that the nanosheet structure is formed on the glass substrate, and it can be seen from FIG. 7 (b) that a transparent film has been produced. FIG. 7 (c) shows an SEM image of a sample obtained by sputtering Al on a glass substrate to 70 nm, placing in ion-exchanged water, allowing to stand at 90 ° C. for 90 minutes, and then heat-treating at 1000 ° C. for 10 minutes. It can be seen that the nanosheet structure is maintained even after aluminum oxide is formed by heat treatment.

図8には、Ni板を5MのNaOH水溶液に入れ、60°Cにて20時間静置したサンプルのSEM像を図8に示す。ナノシート構造が60°Cの低温からもできていることが分かる。   FIG. 8 shows an SEM image of a sample in which a Ni plate is placed in a 5M NaOH aqueous solution and allowed to stand at 60 ° C. for 20 hours. It can be seen that the nanosheet structure is made even at a low temperature of 60 ° C.

Zn板を5MのNaOH水溶液に入れ、100°Cにて20時間静置したサンプルのSEM像を図9に示す。ナノシートの凹凸構造ができていることが分かる。   FIG. 9 shows an SEM image of a sample in which a Zn plate was placed in a 5M NaOH aqueous solution and allowed to stand at 100 ° C. for 20 hours. It can be seen that the uneven structure of the nanosheet is formed.

本発明により得られる金属表面微細構造は、ナノ構造体を基材として、また、さらにこの上に機能性材料を作製することにより、紫外線照射を行わない超親水や新たなデバイス(電子、電池、センサー、光学、構造材料)としての機能の発現も可能であり、産業上極めて利用可能性が高いものである。   The metal surface microstructure obtained by the present invention can be obtained by using a nanostructure as a base material, and further producing a functional material thereon, so that a superhydrophilic material or a new device (electronic, battery, It is possible to develop functions as a sensor, optics, and structural material), and it is extremely useful in industry.

(a)Ti板上のナノシートのSEM写真 (b)TiO2のアナターゼ型結晶のナノシートのSEM写真 (c)TiO2のアナターゼ型結晶のナノシートのSEM写真 (d)TiO2のアナターゼ型結晶のナノシートの超親水特性(a) SEM photo of nanosheet on Ti plate (b) SEM photo of nanosheet of TiO2 anatase crystal (c) SEM photo of nanosheet of TiO2 anatase crystal (d) Super hydrophilicity of nanosheet of TiO2 anatase crystal Characteristic Ti板上の八面体型アナターゼTiO2のナノ凹凸構造のSEM写真SEM photograph of the nano-relief structure octahedral anatase TiO 2 on Ti plate (a)Ti板上のナノシートのSEM写真 (b)Ti板上のナノワイヤーのSEM写真(a) SEM photograph of nanosheet on Ti plate (b) SEM photograph of nanowire on Ti plate (a)石英ガラス上にスパッタしたTiから作製したナノワイヤーのSEM写真 (b)(a)の膜の透明な写真(a) SEM photograph of nanowires made from Ti sputtered on quartz glass (b) Transparent photograph of film in (a) (a)Mn板上のナノロッドのSEM写真(a) SEM photograph of nanorods on Mn plate Mg板上のナノシートのSEM写真SEM photo of nanosheet on Mg plate (a)ガラス上にスパッタしたAlから作製したナノシートのSEM写真 (b)(a)の膜の透明な写真 (c)ガラス上にスパッタしたAlから作製したナノシートの熱処理により作成した酸化アルミニウムナノシートのSEM写真(a) SEM photo of nanosheets made from Al sputtered on glass (b) Transparent photo of film in (a) (c) Aluminum oxide nanosheets made by heat treatment of nanosheets made from Al sputtered on glass SEM photo Ni板上のナノシートのSEM写真SEM photo of nanosheet on Ni plate Zn板上のナノシートのSEM写真SEM photo of nanosheet on Zn plate

Claims (4)

Mg,Ti,Mn,Ni,Znから選ばれる金属基板を、中性である純水もしくはpH7以上のアルカリ水溶液に浸漬し、50〜250℃の温度で、0.05〜96時間保持し、その後金属基板を取り出して洗浄乾燥させることを特徴とする金属表面微細構造の作成方法であって、
純水を用いる場合は、金属基板はMg,Ti,Mnから選ばれる金属基板であり、Mgの場合は温度が90℃、浸漬時間が0.5時間であり、Tiの場合は温度が200℃、浸漬時間が96時間であり、Mnの場合は、温度が100℃、浸漬時間が10時間であり、
アルカリ水溶液を用いる場合は、アルカリ水溶液は5MのNaOH水溶液であり、温度が60〜200℃、浸漬時間が1〜24時間である、金属表面微細構造の作成方法。
A metal substrate selected from Mg, Ti, Mn, Ni, and Zn is immersed in neutral pure water or an alkaline aqueous solution having a pH of 7 or more, held at a temperature of 50 to 250 ° C. for 0.05 to 96 hours, and thereafter It is a method for creating a metal surface microstructure characterized by taking out a metal substrate and washing and drying,
When pure water is used, the metal substrate is a metal substrate selected from Mg, Ti, and Mn. In the case of Mg, the temperature is 90 ° C., the immersion time is 0.5 hours, and in the case of Ti, the temperature is 200 ° C. In the case of Mn, the temperature is 100 ° C., the immersion time is 10 hours,
In the case of using an alkaline aqueous solution, the alkaline aqueous solution is a 5 M NaOH aqueous solution, the temperature is 60 to 200 ° C., and the immersion time is 1 to 24 hours.
金属基板が、Mg,Ti,Mn,Ni,Znから選ばれる金属からなる基板、若しくは基板の表面にMg,Ti,Mn,Ni,Znから選ばれる金属をコートした基板である請求項1に記載した金属表面微細構造の作成方法。   The metal substrate is a substrate made of a metal selected from Mg, Ti, Mn, Ni, and Zn, or a substrate in which a metal selected from Mg, Ti, Mn, Ni, and Zn is coated on the surface of the substrate. To create a fine metal surface microstructure. 請求項1または請求項2に記載した金属表面微細構造の作成方法によって作成された材料を空気中で400〜1000℃で熱処理することにより、請求項1または請求項2に記載した方法によって作成された金属水和物または金属水酸化物による金属表面微細構造の形態が維持された金属酸化物の微細構造を作製する、金属酸化物の微細構造を有する金属表面微細構造の作製方法。   The material produced by the method for producing a metal surface microstructure according to claim 1 or claim 2 is heat-treated in air at 400 to 1000 ° C, thereby being produced by the method according to claim 1 or 2. A method for producing a metal surface microstructure having a metal oxide microstructure, wherein a metal oxide microstructure in which the form of the metal surface microstructure is maintained by a metal hydrate or metal hydroxide is maintained. 請求項1〜請求項3のいずれかに記載した方法で作成された金属表面微細構造により超親水特性が付与された金属基板。   A metal substrate provided with superhydrophilic properties by a metal surface microstructure produced by the method according to any one of claims 1 to 3.
JP2007110256A 2007-04-19 2007-04-19 Method for creating metal surface microstructure Expired - Fee Related JP5240813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007110256A JP5240813B2 (en) 2007-04-19 2007-04-19 Method for creating metal surface microstructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007110256A JP5240813B2 (en) 2007-04-19 2007-04-19 Method for creating metal surface microstructure

Publications (2)

Publication Number Publication Date
JP2008266709A JP2008266709A (en) 2008-11-06
JP5240813B2 true JP5240813B2 (en) 2013-07-17

Family

ID=40046588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007110256A Expired - Fee Related JP5240813B2 (en) 2007-04-19 2007-04-19 Method for creating metal surface microstructure

Country Status (1)

Country Link
JP (1) JP5240813B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5557839B2 (en) * 2009-08-20 2014-07-23 独立行政法人産業技術総合研究所 Surface treatment method for aluminum-containing magnesium alloy substrate
CN102242356A (en) * 2011-06-09 2011-11-16 哈尔滨工业大学 Titanium-zirconium solid solution micro/nano film on amorphous metal surface and preparation method of titanium-zirconium solid solution micro/nano film
CN102383162A (en) * 2011-09-28 2012-03-21 湖南工业大学 Method for preparing super-hydrophobic aluminum alloy with low carbon, energy saving and environmental protection
CN102502814B (en) * 2011-10-17 2014-03-26 哈尔滨工业大学 Application of solid-solution type sodium zirconate titanate micro/nanobelt powdery material
CN102407220B (en) * 2011-11-09 2014-02-12 西北师范大学 Method for preparing super hydrophobic film on surface of zinc substrate
JP5656026B2 (en) 2011-11-14 2015-01-21 株式会社豊田中央研究所 Water repellent material and method for producing the same
KR101686498B1 (en) * 2011-11-24 2016-12-14 유니버시티 오브 매니토바 Oxidation of metallic films
KR101690840B1 (en) * 2014-12-19 2016-12-29 한양대학교 산학협력단 Method of fabricating mirco/nano structure using intense pulsed light

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142438A (en) * 1975-06-03 1976-12-08 Nitsutetsu Kaatenooru Kk Solution for forming conversion coatings on aluminum and its alloy
JPH0233789B2 (en) * 1983-04-26 1990-07-30 Rikagaku Kenkyusho ARUMINIUMUMATAHASONOGOKINNOKYUSHITSUSEISANKAMAKUNOSEISEIHOHO
JPH0913179A (en) * 1995-04-24 1997-01-14 Kao Corp Method of imparting lypophilicity to metal surface
JPH08319580A (en) * 1995-05-19 1996-12-03 Furukawa Electric Co Ltd:The Method for treating surface of copper or copper alloy
JP4589474B2 (en) * 2000-01-06 2010-12-01 ディップソール株式会社 Cleaning method and anticorrosion treatment method of magnesium or its alloy surface
JP4112219B2 (en) * 2001-12-07 2008-07-02 ミリオン化学株式会社 Surface treatment method for lithium-based magnesium alloy material
JP5035590B2 (en) * 2005-03-02 2012-09-26 Toto株式会社 Method for producing functional materials

Also Published As

Publication number Publication date
JP2008266709A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP5240813B2 (en) Method for creating metal surface microstructure
US7704549B2 (en) Nanomaterials of composite metal oxides
Gao et al. Room temperature deposition of a TiO 2 thin film from aqueous peroxotitanate solution
US6355308B1 (en) Methods for producing oxides or composites thereof
JP2875993B2 (en) Anatase dispersion and method for producing the same
US6838160B2 (en) Titania ultrathin film and method for producing it
Tettey et al. Progress in superhydrophilic surface development
Yin et al. Mild solution synthesis of zinc oxide films with superhydrophobicity and superhydrophilicity
JP2008230895A (en) ZnO WHISKER, ZnO WHISKER FILM AND MANUFACTURING METHOD THEREOF
JP2018536767A (en) Film forming treatment agent for composite chemical film for magnesium alloy, and film forming method
JP2015212213A (en) INTEGRATED ZnO NANOROD WITH GRAPHENE SHEET, AND METHOD FOR PRODUCING ZnO ONTO GRAPHENE SHEET
JP5205675B2 (en) Photocatalyst nanosheet and photocatalyst material
JP5630746B2 (en) Manganese oxide nanowire-covered structure and method for producing the same
Masuda et al. Anatase TiO2 films crystallized on SnO2: F substrates in an aqueous solution
Ohya et al. Preparation and characterization of titania thin films from aqueous solutions
JP5557839B2 (en) Surface treatment method for aluminum-containing magnesium alloy substrate
JP5339372B2 (en) Hybrid film made of Zn (OH) 2 nanosheet and ZnO nanowhisker film, hybrid film made of ZnO nanosheet and ZnO nanowhisker film, and method for producing them
JP4863471B2 (en) A method for producing a super water-repellent glass substrate.
JP2008063173A (en) Rutile type titanium oxide film, its production method, and optical material
JP4958280B2 (en) Method for creating glass surface microstructure for organic coating formation
JP5580983B2 (en) Method for forming fine crystal containing Mg (OH) 2
JP5482989B2 (en) Film manufacturing method and film forming member
KR101519302B1 (en) Cerium oxide superhydrophobic nano/micro structure grown on various substrates and manufacturing method
JP2008025009A (en) Method for producing crystalline fine particle film of compound oxide
Kuo et al. Development of biomineralization-inspired hybrids based on β-chitin and zinc hydroxide carbonate and their conversion into zinc oxide thin films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5240813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees