JP5557839B2 - Surface treatment method for aluminum-containing magnesium alloy substrate - Google Patents

Surface treatment method for aluminum-containing magnesium alloy substrate Download PDF

Info

Publication number
JP5557839B2
JP5557839B2 JP2011527655A JP2011527655A JP5557839B2 JP 5557839 B2 JP5557839 B2 JP 5557839B2 JP 2011527655 A JP2011527655 A JP 2011527655A JP 2011527655 A JP2011527655 A JP 2011527655A JP 5557839 B2 JP5557839 B2 JP 5557839B2
Authority
JP
Japan
Prior art keywords
magnesium
aluminum
magnesium alloy
reaction time
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011527655A
Other languages
Japanese (ja)
Other versions
JPWO2011021571A1 (en
Inventor
貴裕 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011527655A priority Critical patent/JP5557839B2/en
Publication of JPWO2011021571A1 publication Critical patent/JPWO2011021571A1/en
Application granted granted Critical
Publication of JP5557839B2 publication Critical patent/JP5557839B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8

Description

本発明は、マグネシウムまたはその合金基材の表面処理方法とこの方法により得られるマグネシウム水酸化物並びにマグネシウム・アルミニウム水酸化物のナノ構造体およびそれらのナノ構造体を表面上に成長させたマグネシウムまたはその合金基材に関するものである。また、このナノ構造体によりマグネシウムおよびその合金表面に構造色に基づく色彩を付与する方法に関するものである。   The present invention relates to a surface treatment method of magnesium or an alloy base material thereof, magnesium hydroxide obtained by this method, magnesium-aluminum hydroxide nanostructure, magnesium grown on the surface thereof, or magnesium or It relates to the alloy base material. The present invention also relates to a method for imparting a color based on the structural color to the surface of magnesium and its alloy by using this nanostructure.

自動車部品、電子機器類の筐体、溶液中の毒性公害物質の吸着剤、超撥水表面の構造体形成技術、耐食性皮膜作製等の様々な分野において、マグネシウム水酸化物Mg(OH)2や[Mg1-xAl(OH)2](CO3)x/2・nH2O等のマグネシウム・アルミニウム水酸化物のナノ構造体に注目が集まっている。特に、生体材料や、溶液中の毒性公害物質の吸着剤、超撥水表面の構造体形成技術としてナノスケールを有するMg(OH)2構造体が注目されている。また、マグネシウムやその合金についてはその軽量性から様々な応用が検討されているが、耐食性の向上とともに、電子部品の筐体には、意匠性が必要なため、金属感を有する色彩を付与する技術が求められている。Magnesium hydroxide Mg (OH) 2 and various other fields such as automobile parts, electronic equipment casings, adsorbents of toxic pollutants in solution, super water-repellent surface structure formation technology, and corrosion-resistant film production [Mg 1-x Al x ( OH) 2] (CO 3) noted nanostructure magnesium aluminum hydroxides 2 O such as x / 2 · nH are gathered. In particular, Mg (OH) 2 structures having nanoscales are attracting attention as biomaterials, adsorbents of toxic pollutants in solution, and structures for forming superhydrophobic surfaces. In addition, magnesium and its alloys are being studied for various applications due to their light weight, but with improved corrosion resistance, the design of the electronic component housing requires a design, so it gives a metallic color. Technology is required.

そこで、従来よりマグネシウム水酸化物等のナノ構造体を形成することの方策が様々に検討されてきている(たとえば非特許文献1および2を参照)。   Therefore, various measures for forming nanostructures such as magnesium hydroxide have been conventionally studied (for example, see Non-Patent Documents 1 and 2).

しかしながら、従来の方法では、オートクレーブ等の反応容器内で金属源となるマグネシウム塩と界面活性剤等の有機物を用いて合成するため、有機物が不純物としてマグネシウム構造体に取り込まれる。この結果、作製した構造体の機能を低下させることがあった。   However, in the conventional method, since synthesis is performed using a magnesium salt as a metal source and an organic substance such as a surfactant in a reaction vessel such as an autoclave, the organic substance is taken into the magnesium structure as an impurity. As a result, the function of the manufactured structure may be deteriorated.

また、これらの手法では、作製した水酸化マグネシウムのナノおよびマイクロ構造体を基板上に固定化する必要があり、密着性が低いという問題点があった。このため、密着性を向上させるために加熱処理を行う必要があった。   In addition, these methods have a problem in that the produced magnesium hydroxide nano- and microstructures need to be immobilized on a substrate, resulting in low adhesion. For this reason, in order to improve adhesiveness, it was necessary to heat-process.

さらに、作製したMg(OH)2のナノおよびマイクロ構造体を基板上に固定化するため、構造体を基材に対して垂直方向に制御することが困難であった。Furthermore, since the produced Mg (OH) 2 nano- and microstructures are immobilized on the substrate, it is difficult to control the structure in a direction perpendicular to the base material.

また、たとえば、耐食性の向上のために、物理的に湿式ブラスト処理し、その後、相対湿度80%以上で、高温水蒸気処理して、硫化マグネシウム等の耐食性皮膜を形成することも提案されている(特許文献1)。   In addition, for example, it has been proposed to form a corrosion-resistant film such as magnesium sulfide by physical wet blasting and then high-temperature steaming at a relative humidity of 80% or more in order to improve corrosion resistance ( Patent Document 1).

しかし、このような方法では、ブラスト処理や加熱処理により表面構造、結晶構造等が変化し、目的とする機能が低下する原因となっていた。   However, in such a method, the surface structure, the crystal structure, and the like are changed by blasting or heat treatment, which causes the target function to deteriorate.

さらに、加熱処理に伴う、高エネルギー消費、高CO2排出、プロセスの複雑化なども問題となっていた。しかも、実際的には多くの薬剤を使用するため処理後の廃液処理が必要であり、環境負荷の高いことも問題であった。In addition, high energy consumption, high CO 2 emissions, and complicated processes associated with heat treatment were also problems. Moreover, since a lot of chemicals are actually used, a waste liquid treatment after the treatment is necessary, and the environmental load is also a problem.

Ding, Y.; Zhang, G.; Wu, H.; Hai, B.; Wang, L.; Qian, Y. Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders: Control over Size, Shape, and Structure via Hydrothermal SynthesisChem. Mater., 2001, 13, 435Ding, Y .; Zhang, G .; Wu, H .; Hai, B .; Wang, L .; Qian, Y. Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders: Control over Size, Shape, and Structure via Hydrothermal Synthesis Chem. Mater ., 2001, 13, 435 Li, Y.; Sui, M.; Ding, Y.; Zhang, G.; Zhuang, J. Wang, C.Preparation of Mg(OH)2 NanorodsAdv. Mater., 2000, 12, 818.Li, Y .; Sui, M .; Ding, Y .; Zhang, G .; Zhuang, J. Wang, C. Preparation of Mg (OH) 2 Nanorods Adv. Mater., 2000, 12, 818.

特開2005−54238号公報JP 2005-54238 A

本発明は、以上のとおりの背景から、従来の問題点を解消して、水酸化物等のマグネシウムナノ構造体を、その機能性を損なうことなく、しかも基材としてのマグネシウムがその合金と一体化して形成することを可能とし、簡便な操作で効率的にナノ構造体を形成可能とする新しい技術手段を提供することを課題としている。   The present invention eliminates the conventional problems from the background as described above, and does not impair the functionality of magnesium nanostructures such as hydroxides, and magnesium as a base material is integrated with the alloy. It is an object of the present invention to provide a new technical means that enables formation of nanostructures by simple operation and enables formation of nanostructures.

本発明は、前記手段として以下のことを特徴としている。
<1>基材としてのアルミニウム含有マグネシウム合金を密閉容器内にて純水に浸漬し、0.1〜0.4Mpaの圧力下、100〜130℃の温度の範囲で加熱して、基材表面にマグネシウム水酸化物のマグネシウムナノ構造体及びマグネシウム・アルミニウム水酸化物のマグネシウムナノ構造体を成長させ、その際の加熱温度を制御することにより、マグネシウムナノ構造体の成長を制御し、表面の色調を変更するアルミニウム含有マグネシウム合金基材の表面処理方法である。
<2>成長したマグネシウムナノ構造体の表面上に、疎水性官能基を有する有機単分子膜を被覆するアルミニウム含有マグネシウム合金基材の表面処理方法である。
The present invention is characterized by the following as the means.
<1> An aluminum-containing magnesium alloy as a base material is immersed in pure water in a closed container and heated in a temperature range of 100 to 130 ° C. under a pressure of 0.1 to 0.4 Mpa, and the surface of the base material The magnesium nanostructure of magnesium hydroxide and magnesium nanostructure of magnesium-aluminum hydroxide were grown on the surface, and the heating temperature at that time was controlled to control the growth of the magnesium nanostructure and the surface color tone. Is a surface treatment method for an aluminum-containing magnesium alloy base material .
<2> A surface treatment method for an aluminum-containing magnesium alloy substrate in which an organic monomolecular film having a hydrophobic functional group is coated on the surface of a grown magnesium nanostructure .

以上のとおりの本発明においては、マグネシウムやその合金上にマグネシウム水酸化物Mg(OH)2や、[Mg1-xAl(OH)2](CO3)x/2・nH2O等のナノ構造体の直接成長を可能とする。薬剤等を一切使用しない水溶液プロセスであって、そのナノ構造体のサイズや大きさを制御することにより、構造色に基づく色彩を基材表面に付与することを実現した。In the present invention as described above, magnesium hydroxide Mg (OH) 2 , [Mg 1-x Al x (OH) 2 ] (CO 3 ) x / 2 · nH 2 O, etc. on magnesium or its alloy Enables direct growth of nanostructures. It was an aqueous solution process that did not use any chemicals and so on, and by controlling the size and size of the nanostructure, it was realized to impart a color based on the structural color to the substrate surface.

このプロセスでは、薬剤等を一切使用しない水溶液プロセスにおいて、マグネシウムおよびマグネシウム合金上にナノ構造体を形成させることができるため、結晶化や基板上への固定化のための高温加熱処理を必要としない。   In this process, nanostructures can be formed on magnesium and magnesium alloys in an aqueous solution process that does not use any chemicals, so high temperature heat treatment for crystallization and immobilization on a substrate is not required. .

また、水溶液中に導入するマグネシウムおよびマグネシウム合金を、作製する構造体の原料として用いるため、不要な金属塩や界面活性剤等の薬剤を一切使用しない低環境負荷型のプロセスである。   In addition, since magnesium and a magnesium alloy introduced into an aqueous solution are used as raw materials for the structure to be manufactured, the process is a low environmental load type process that does not use any unnecessary metal salt or a chemical agent such as a surfactant.

更に、マグネシウムおよびマグネシウム合金上に上記のナノ・マイクロ構造体を形成するため、基板との密着性が極めて高い。   Furthermore, since the nano / micro structure is formed on magnesium and a magnesium alloy, the adhesion to the substrate is extremely high.

大型の密閉容器内で処理することにより、大面積化処理が容易にできる。   By processing in a large sealed container, a large area processing can be easily performed.

また、平板上基板以外に、粒子基材、複雑形状基材等も用いることができる。   In addition to a flat plate substrate, a particle substrate, a complex-shaped substrate, or the like can also be used.

マグネシウム合金(AZ31)上のMg(OH)2および[Mg1-xAl(OH)2](CO3)x/2・nH2Oナノ・マイクロ構造体のXRDパターン。(a)反応時間:3時間、(b)反応時間:6時間、(c)反応時間:12時間、(d)反応時間:24時間。XRD pattern of Mg (OH) 2 and [Mg 1-x Al x (OH) 2 ] (CO 3 ) x / 2 nH 2 O nano-microstructure on magnesium alloy (AZ31). (a) Reaction time: 3 hours, (b) Reaction time: 6 hours, (c) Reaction time: 12 hours, (d) Reaction time: 24 hours. マグネシウム合金(AZ31)上のMg(OH)2および[Mg1-xAl(OH)2](CO3)x/2・nH2Oナノ・マイクロ構造体のFE-SEM像。(a)反応時間:1時間、(b)反応時間:2時間、(c)反応時間:3時間、(d)反応時間6時間。FE-SEM images of Mg (OH) 2 and [Mg 1-x Al x (OH) 2 ] (CO 3 ) x / 2 · nH 2 O nano-microstructure on magnesium alloy (AZ31). (a) Reaction time: 1 hour, (b) Reaction time: 2 hours, (c) Reaction time: 3 hours, (d) Reaction time 6 hours. 多結晶性Mg(OH)2ナノ・マイクロ構造体を形成したマグネシウム合金の断面FE-SEM像。(a)反応時間:3時間、(b)反応時間:6時間、(c)反応時間:12時間。Cross-sectional FE-SEM image of a magnesium alloy with a polycrystalline Mg (OH) 2 nano-microstructure. (a) Reaction time: 3 hours, (b) Reaction time: 6 hours, (c) Reaction time: 12 hours. 多結晶性Mg(OH)2ナノ・マイクロ構造体を形成したマグネシウム合金(AZ31)表面の外観写真。(a)反応時間:0時間、(b)反応時間:1時間、(c)反応時間:3時間、(d)反応時間:4時間、(e)反応時間:6時間、(f)反応時間:9時間。An appearance photograph of the surface of a magnesium alloy (AZ31) on which a polycrystalline Mg (OH) 2 nano / micro structure is formed. (a) Reaction time: 0 hours, (b) Reaction time: 1 hour, (c) Reaction time: 3 hours, (d) Reaction time: 4 hours, (e) Reaction time: 6 hours, (f) Reaction time : 9 hours. 多結晶性Mg(OH)2ナノ・マイクロ構造体を形成したマグネシウム合金(AZ31)表面の分光反射率スペクトル。(a)反応時間:0時間、(b)反応時間:1時間、(c)反応時間:3時間、(d)反応時間:6時間、(e)反応時間:9時間。Spectral reflectance spectrum of magnesium alloy (AZ31) surface with polycrystalline Mg (OH) 2 nano / micro structure. (a) Reaction time: 0 hours, (b) Reaction time: 1 hour, (c) Reaction time: 3 hours, (d) Reaction time: 6 hours, (e) Reaction time: 9 hours. マグネシウム合金(AZ31)上に形成した多結晶性Mg(OH)2ナノ・マイクロ構造体のX線光電子分光(XPS)測定結果。反応時間:6時間。X-ray photoelectron spectroscopy (XPS) measurement results of polycrystalline Mg (OH) 2 nano / micro structure formed on magnesium alloy (AZ31). Reaction time: 6 hours. 多結晶性Mg(OH)2ナノ・マイクロ構造体を形成(6時間の処理)したマグネシウム合金(AZ31)表面上に疎水性官能基を有する有機単分子膜を被覆した表面上での水滴挙動。Water droplet behavior on the surface of a magnesium alloy (AZ31) formed with a polycrystalline Mg (OH) 2 nano / micro structure (treated for 6 hours) and coated with an organic monomolecular film having hydrophobic functional groups.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明においてはマグネシウムまたはその合金を基材としているが、この場合の合金は、組成においてマグネシウムを主として、少なくとも50原子%を含有し、マグネシウム合金の特性、機能を発現する各種のものであってよい。共存してもよい添加元素としては、たとえばアルミニウム(Al)、亜鉛(Zn)、マンガン(Mn)等が好適に考慮される。たとえば、合金としては、アルミニウムとの合金であるAZ31、AZ91D、AM60B等が例示されるが、これらに限定されるものではない。   In the present invention, magnesium or an alloy thereof is used as a base material. In this case, the alloy mainly contains magnesium and contains at least 50 atomic%, and exhibits various characteristics and functions of the magnesium alloy. Good. As additive elements that may coexist, for example, aluminum (Al), zinc (Zn), manganese (Mn) and the like are preferably considered. For example, examples of the alloy include AZ31, AZ91D, AM60B and the like, which are alloys with aluminum, but are not limited thereto.

このような基材としては、様々な手段において成形された各種の形状を有していてもよい。   Such a base material may have various shapes formed by various means.

本発明の表面処理は、密閉容器内の純水により好適には、たとえば抵抗率18.2MΩの超純水中に、前記の基材を浸漬し、その後、加熱炉において加熱することで、基材表面にマグネシウム水酸化物Mg(OH)2や合金添加成分との複合物としてのマグネシウム・アルミニウム水酸化物[Mg1-xAl(OH)2](CO3)x/2・nH2O等のマグネシウムナノ構造体を成長させる。The surface treatment of the present invention is preferably performed with pure water in a sealed container, for example, by immersing the base material in ultrapure water having a resistivity of 18.2 MΩ, and then heating in a heating furnace. Magnesium aluminum hydroxide [Mg 1-x Al x (OH) 2 ] (CO 3 ) x / 2 · nH 2 O as a composite with magnesium hydroxide Mg (OH) 2 and alloy additive components on the surface Grow magnesium nanostructures.

ここで、「ナノ」の用語については、本発明では、通常は、1μm未満のナノスケールの大きさであることを意味している。   Here, the term “nano” in the present invention usually means a nanoscale size of less than 1 μm.

基材を浸漬する密閉容器内の圧入は1MPa以下、たとえば0.1〜0.4MPaとすることが好ましい。そして、加熱温度については100〜130℃の範囲が、また加熱時間は3〜12時間が考慮される。   The press-fitting in the sealed container in which the substrate is immersed is preferably 1 MPa or less, for example, 0.1 to 0.4 MPa. And about the heating temperature, the range of 100-130 degreeC and 3-12 hours of heating time are considered.

そして本発明においては、以上のような条件の選択をもってナノ構造体の成長を制御することで、基材の構造色を様々に変更・付与することが可能となる。   In the present invention, by controlling the growth of the nanostructure by selecting the conditions as described above, the structural color of the base material can be variously changed and imparted.

本発明品は、自動車部品、電子機器類の筐体、溶液中の毒性公害物質の吸着剤、超撥水表面の構造体、耐食性皮膜の一部等として利用できる。   The product of the present invention can be used as automobile parts, casings of electronic devices, adsorbents of toxic pollutants in solution, super water-repellent surface structures, part of corrosion-resistant films, and the like.

以下の実施例では、多結晶性のMg(OH)2および[Mg1-xAl(OH)2](CO3)x/2・nH2Oナノ構造体を作製し、反応時間を制御することにより、様々な色彩を基材表面に付与した。ここで、マグネシウム・アルミニウム水酸化物を示す化学式中の係数xについては合金の種類、組成等によって定まってくる。また、実施例では、多結晶性のMg(OH)2および[Mg1-xAl(OH)2](CO3)x/2・nH2Oナノ構造体を形成した基材表面に疎水性官能基を有する有機単分子膜を被覆させることにより、その基材表面に超撥水性を付与した。In the following examples, polycrystalline Mg (OH) 2 and [Mg 1-x Al x (OH) 2 ] (CO 3 ) x / 2 · nH 2 O nanostructures are fabricated and the reaction time is controlled. By doing so, various colors were imparted to the substrate surface. Here, the coefficient x in the chemical formula showing magnesium / aluminum hydroxide is determined by the type and composition of the alloy. In the examples, the surface of the substrate on which the polycrystalline Mg (OH) 2 and [Mg 1-x Al x (OH) 2 ] (CO 3 ) x / 2 · nH 2 O nanostructures are formed is hydrophobic. By coating an organic monomolecular film having a functional functional group, super-water repellency was imparted to the surface of the substrate.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.

抵抗率18.2MΩの超純水20mLとマグネシウム合金(AZ31)を密閉容器内に入れ、電気炉を用いて密閉容器を加熱し、密閉容器内を120℃、内圧0.2MPaに所定時間(1-24時間)、マグネシウム合金(AZ31)を超純水に浸漬した状態で保持し、反応を行った(超純水溶液pH=7.5)。   Put 20 mL of ultrapure water with a resistivity of 18.2 MΩ and magnesium alloy (AZ31) in a sealed container, heat the sealed container using an electric furnace, and keep the inside of the sealed container at 120 ° C and an internal pressure of 0.2 MPa (1-24) Time), the magnesium alloy (AZ31) was kept immersed in ultrapure water and reacted (ultrapure aqueous solution pH = 7.5).

反応終了後、エタノール中で10分間の超音波洗浄を行い、アルゴンガスで乾燥させた。   After completion of the reaction, ultrasonic cleaning was performed in ethanol for 10 minutes, and drying was performed with argon gas.

Mg(OH)2および[Mg1-xAl(OH)2](CO3)x/2・nH2Oナノ構造体の形成により、反応時間に応じて基材表面が赤色や緑色等に着色した。Formation of Mg (OH) 2 and [Mg 1-x Al x (OH) 2 ] (CO 3 ) x / 2 · nH 2 O nanostructures makes the substrate surface red, green, etc. depending on the reaction time Colored.

これは、Mg(OH)2および[Mg1-xAl(OH)2](CO3)x/2・nH2Oナノ構造体形成における可視光の波長に対応した数百nmオーダーの凹凸や膜厚によるものと考えられる。This is because the Mg (OH) 2 and [Mg 1-x Al x (OH) 2 ] (CO 3 ) x / 2 · nH 2 O nanostructure formation has irregularities on the order of several hundred nm corresponding to the wavelength of visible light. It is thought to be due to the film thickness.

また、着色はマグネシウム合金表面の全面に渡って均一であり、構造体の均一性を示している。   Further, the coloring is uniform over the entire surface of the magnesium alloy, indicating the uniformity of the structure.

エタノール中での超音波処理30分において、形成したMg(OH)2および[Mg1-xAl(OH)2](CO3)x/2・nH2Oナノ構造体の破壊や剥離、色彩の変化は見られなかった。Decomposition and delamination of Mg (OH) 2 and [Mg 1-x Al x (OH) 2 ] (CO 3 ) x / 2 · nH 2 O nanostructures formed in 30 minutes of sonication in ethanol There was no change in color.

マグネシウム合金上に形成したMg(OH)2および[Mg1-xAl(OH)2](CO3)x/2・nH2Oナノ構造体のXRDパターンを示す(図1)。FIG. 1 shows an XRD pattern of Mg (OH) 2 and [Mg 1-x Al x (OH) 2 ] (CO 3 ) x / 2 · nH 2 O nanostructures formed on a magnesium alloy (FIG. 1).

2θ=18.5,37.9,および50.8°の位置に回折線が観察され、Mg(OH)2(JCPDS No.44-1482)の001,101,102,110および111回折線に帰属された。また、2θ=11.3,22.6,60.1および62.1°の位置に回折線が観察され、[Mg1-xAl(OH)2](CO3)x/2・nH2Oの003,006,110および1013回折線に帰属された。Diffraction lines were observed at 2θ = 18.5, 37.9, and 50.8 °, and were assigned to the 001, 101, 102, 110, and 111 diffraction lines of Mg (OH) 2 (JCPDS No. 44-1482). In addition, diffraction lines are observed at 2θ = 11.3, 22.6, 60.1 and 62.1 °, and [Mg 1-x Al x (OH) 2 ] (CO 3 ) x / 2 · nH 2 O 003, 006, 110 And assigned to the 1013 diffraction line.

Mg(OH)2の101回折線の強度は非常に強く、高い配向を示している。The intensity of the 101 diffraction line of Mg (OH) 2 is very strong, indicating high orientation.

(101)面に垂直方向の結晶子サイズは、回折線半値幅よりシェラーの式を用いて約15.17nmと見積もられた。   The crystallite size perpendicular to the (101) plane was estimated to be about 15.17 nm using Scherrer's formula from the half-width of the diffraction line.

マグネシウム合金表面には、Mg(OH)2および[Mg1-xAl(OH)2](CO3)x/2・nH2Oに起因する構造体が形成されており、その構造は、ナノスケールの凹凸を有していた(図2)。On the surface of the magnesium alloy, a structure due to Mg (OH) 2 and [Mg 1-x Al x (OH) 2 ] (CO 3 ) x / 2 · nH 2 O is formed. It had nanoscale irregularities (FIG. 2).

Mg(OH)2および[Mg1-xAl(OH)2](CO3)x/2・nH2Oナノ構造体の大きさおよび密度は、反応時間とともに増加した。占有面積は反応時間とともに増加した(図2(a)、(b)、(c)、(d))。The size and density of Mg (OH) 2 and [Mg 1-x Al x (OH) 2 ] (CO 3 ) x / 2 · nH 2 O nanostructures increased with reaction time. The occupied area increased with the reaction time (FIGS. 2 (a), (b), (c), (d)).

Mg(OH)2および[Mg1-xAlx(OH)2](CO3)x/2・nH2Oナノ構造体で形成される膜厚は処理時間に依存して増加した。たとえば、処理時間が3、6、12時間の時の膜厚はそれぞれ400、600、1800nmであった(図3(a)、(b)、(c)矢印表示)。The film thickness formed with Mg (OH) 2 and [Mg 1 -xAl x (OH) 2 ] (CO 3 ) x / 2 · nH 2 O nanostructures increased depending on the treatment time. For example, the film thicknesses when the processing time was 3, 6, and 12 hours were 400, 600, and 1800 nm, respectively (shown by arrows in FIGS. 3 (a), (b), and (c)).

多結晶性Mg(OH)2ナノ構造体を形成したマグネシウム合金(AZ31)表面の外観写真を示す(図4)。反応時間1時間では、金属光沢は無く黒灰色を呈した(b)。反応時間3時間では、赤みを帯びた黄色を呈した(c)。一方、反応時間4、6時間では、青みを帯びた緑色を呈した(d)、(e)。反応時間9時間では、緑と赤色が入り混じった色を示した(f)。An appearance photograph of the surface of a magnesium alloy (AZ31) on which a polycrystalline Mg (OH) 2 nanostructure is formed is shown (FIG. 4). In the reaction time of 1 hour, there was no metallic luster and a black gray color was exhibited (b). When the reaction time was 3 hours, a reddish yellow color was observed (c). On the other hand, the reaction time was 4 or 6 hours, and a bluish green color was exhibited (d) and (e). At a reaction time of 9 hours, green and red were mixed (f).

反応時間に応じて、様々な色彩に対応した反射スペクトルのピークを確認できる(図5(a)、(b)、(c)、(d)、(e))。   Depending on the reaction time, peaks of reflection spectra corresponding to various colors can be confirmed (FIGS. 5 (a), (b), (c), (d), (e)).

Mg(OH)2ナノ構造体は、Bruciteタイプの多結晶性 Mg(OH)2相により構成されていた。The Mg (OH) 2 nanostructure was composed of a Brucite type polycrystalline Mg (OH) 2 phase.

また、6時間反応後のナノ・マイクロ構造体の酸化状態をX線光電子分光法(XPS)により測定した結果、形成した構造体は酸化物(MgO)ではなく水酸化物(Mg(OH)2)であった(図6)。In addition, as a result of measuring the oxidation state of the nano / micro structure after the reaction for 6 hours by X-ray photoelectron spectroscopy (XPS), the formed structure was not oxide (MgO) but hydroxide (Mg (OH) 2 (FIG. 6).

6時間反応させ多結晶性Mg(OH)2ナノ・マイクロ構造体を形成したマグネシウム合金(AZ31)表面に疎水性官能基を有する有機単分子膜を被覆した表面での水滴挙動について、その表面は157°の水滴接触角となり、超撥水性を示した(図7)。The water droplet behavior on the surface of a magnesium alloy (AZ31) surface that has been reacted for 6 hours to form a polycrystalline Mg (OH) 2 nano / microstructure coated with an organic monomolecular film having a hydrophobic functional group. The water contact angle was 157 °, indicating super water repellency (FIG. 7).

多結晶性Mg(OH)2ナノ・マイクロ構造体を形成したマグネシウム合金(AZ31)表面の色彩は、その表面を観察する角度に依存して変化した。この変化は、構造色に起因する。The color of the surface of the magnesium alloy (AZ31) on which the polycrystalline Mg (OH) 2 nano-microstructure was formed varied depending on the angle at which the surface was observed. This change is due to the structural color.

Claims (2)

基材としてのアルミニウム含有マグネシウム合金を密閉容器内にて純水に浸漬し、0.1〜0.4Mpaの圧力下、100〜130℃の温度の範囲で加熱して、基材表面にマグネシウム水酸化物のマグネシウムナノ構造体及びマグネシウム・アルミニウム水酸化物のマグネシウムナノ構造体を成長させ、
その際の加熱温度を制御することにより、マグネシウムナノ構造体の成長を制御し、表面の色調を変更することを特徴とするアルミニウム含有マグネシウム合金基材の表面処理方法。
An aluminum-containing magnesium alloy as a base material is immersed in pure water in a sealed container and heated in a temperature range of 100 to 130 ° C. under a pressure of 0.1 to 0.4 Mpa, and magnesium water is applied to the surface of the base material. Growing magnesium nanostructures of oxide and magnesium-aluminum hydroxide ,
A method for surface treatment of an aluminum-containing magnesium alloy substrate , characterized by controlling the growth temperature of the magnesium nanostructure and changing the color tone of the surface by controlling the heating temperature at that time .
成長したマグネシウムナノ構造体の表面上に、疎水性官能基を有する有機単分子膜を被覆することを特徴とする請求項1に記載のアルミニウム含有マグネシウム合金基材の表面処理方法。 The surface treatment method for an aluminum-containing magnesium alloy substrate according to claim 1, wherein an organic monomolecular film having a hydrophobic functional group is coated on the surface of the grown magnesium nanostructure .
JP2011527655A 2009-08-20 2010-08-12 Surface treatment method for aluminum-containing magnesium alloy substrate Expired - Fee Related JP5557839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011527655A JP5557839B2 (en) 2009-08-20 2010-08-12 Surface treatment method for aluminum-containing magnesium alloy substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009191376 2009-08-20
JP2009191376 2009-08-20
JP2011527655A JP5557839B2 (en) 2009-08-20 2010-08-12 Surface treatment method for aluminum-containing magnesium alloy substrate
PCT/JP2010/063717 WO2011021571A1 (en) 2009-08-20 2010-08-12 Method for surface-treating base of magnesium or alloy thereof, and nanostructures

Publications (2)

Publication Number Publication Date
JPWO2011021571A1 JPWO2011021571A1 (en) 2013-01-24
JP5557839B2 true JP5557839B2 (en) 2014-07-23

Family

ID=43607026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011527655A Expired - Fee Related JP5557839B2 (en) 2009-08-20 2010-08-12 Surface treatment method for aluminum-containing magnesium alloy substrate

Country Status (2)

Country Link
JP (1) JP5557839B2 (en)
WO (1) WO2011021571A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115912B2 (en) * 2012-12-25 2017-04-19 学校法人 芝浦工業大学 High corrosion resistance magnesium-based material, method for producing the same, and surface treatment method for magnesium-based material
WO2015099503A1 (en) * 2013-12-26 2015-07-02 주식회사 포스코 Color-treated base material and base material color treatment method therefor
JP5978376B1 (en) * 2015-11-04 2016-08-24 Toda株式会社 Method for manufacturing acoustic magnesium diaphragm and magnesium diaphragm for acoustic
WO2018062360A1 (en) * 2016-09-28 2018-04-05 国立大学法人愛媛大学 Hybrid material manufacturing method, and hybrid material
JP6345323B1 (en) * 2017-08-03 2018-06-20 株式会社ユー・エム・アイ Bonded body of metal and fluororubber and bonding method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230262A (en) * 1975-09-02 1977-03-07 Kyowa Chem Ind Co Ltd Method of reforming powder surface
JP2005054238A (en) * 2003-08-05 2005-03-03 Araco Corp Method for surface treatment of magnesium material or magnesium alloy material
JP2008266709A (en) * 2007-04-19 2008-11-06 National Institute Of Advanced Industrial & Technology Method for forming metal surface fine structure
JP2009114504A (en) * 2007-11-07 2009-05-28 Shingijutsu Kenkyusho:Kk Magnesium alloy article, magnesium alloy member, and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230262A (en) * 1975-09-02 1977-03-07 Kyowa Chem Ind Co Ltd Method of reforming powder surface
JP2005054238A (en) * 2003-08-05 2005-03-03 Araco Corp Method for surface treatment of magnesium material or magnesium alloy material
JP2008266709A (en) * 2007-04-19 2008-11-06 National Institute Of Advanced Industrial & Technology Method for forming metal surface fine structure
JP2009114504A (en) * 2007-11-07 2009-05-28 Shingijutsu Kenkyusho:Kk Magnesium alloy article, magnesium alloy member, and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2011021571A1 (en) 2013-01-24
WO2011021571A1 (en) 2011-02-24

Similar Documents

Publication Publication Date Title
JP5557839B2 (en) Surface treatment method for aluminum-containing magnesium alloy substrate
Wahab et al. Synthesis, characterization and effect of pH variation on zinc oxide nanostructures
Lu et al. Controlled growth of superhydrophobic films by sol–gel method on aluminum substrate
Feng et al. In-situ hydrothermal crystallization Mg (OH) 2 films on magnesium alloy AZ91 and their corrosion resistance properties
Wahab et al. The role of pH variation on the growth of zinc oxide nanostructures
Zeng et al. Corrosion resistance of in-situ Mg–Al hydrotalcite conversion film on AZ31 magnesium alloy by one-step formation
Li et al. Synthesis and characterization of ZnO–Ag core–shell nanocomposites with uniform thin silver layers
Chen et al. Growth mechanism of ZnO nanostructures in wet-oxidation process
Vikraman et al. Shape-and size-tunable synthesis of tin sulfide thin films for energy applications by electrodeposition
Qu et al. Synthesis of octahedral ZnO mesoscale superstructures via thermal decomposing octahedral zinc hydroxide precursors
Yao et al. Multi-colored hollow carbon-containing titania nanoshells for anti-counterfeiting applications
JP5240813B2 (en) Method for creating metal surface microstructure
Gao et al. Fabrication of hierarchically structured rutile TiO2 nanorods on mica particles and their superhydrophilic coating without UV irridiation
Hatel et al. A novel approach to synthesize nanostructured WO3 and graphene/WO3 nanocomposites: structural and morphological investigations
Navaneethan et al. Morphological evolution of monodispersed ZnO nanorods to 3 dimensional hierarchical flowers by hydrothermal growth
JP2015212213A (en) INTEGRATED ZnO NANOROD WITH GRAPHENE SHEET, AND METHOD FOR PRODUCING ZnO ONTO GRAPHENE SHEET
De et al. Superhydrophobic ZnAl double hydroxide nanostructures and ZnO films on Al and glass substrates
Zhao et al. Orientated anatase TiO 2 nanocrystal array thin films for self-cleaning coating
Ardila Rodriguez et al. Core/shell structure of TiO2-coated MWCNTs for thermal protection for high-temperature processing of metal matrix composites
Chayed et al. Optical band gap energies of magnesium oxide (MgO) thin film and spherical nanostructures
Dikici Temperature-dependent growth of ZnO structures by thermal oxidation of Zn coatings electrodeposited on steel substrates and their photocatalytic activities
Xu et al. A simple “two foil” approach to the fabrication of hierarchical superhydrophobic surfaces
Jadhav et al. Temperature-dependent photoluminescence of graphene oxide
Phani et al. Microwave irradiation as an alternative source for conventional annealing: a study of pure TiO2, NiTiO3, CdTiO3 thin films by a sol–gel process for electronic applications
JP2012087395A (en) Water-repellent magnesium or magnesium alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140603

R150 Certificate of patent or registration of utility model

Ref document number: 5557839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees