KR20010098806A - Transparency conduction film, manufacturing method and the usage thereof - Google Patents

Transparency conduction film, manufacturing method and the usage thereof Download PDF

Info

Publication number
KR20010098806A
KR20010098806A KR1020010021826A KR20010021826A KR20010098806A KR 20010098806 A KR20010098806 A KR 20010098806A KR 1020010021826 A KR1020010021826 A KR 1020010021826A KR 20010021826 A KR20010021826 A KR 20010021826A KR 20010098806 A KR20010098806 A KR 20010098806A
Authority
KR
South Korea
Prior art keywords
film
transparent conductive
resistivity
conductive film
thin film
Prior art date
Application number
KR1020010021826A
Other languages
Korean (ko)
Other versions
KR100764616B1 (en
Inventor
히로미 나카자와
겐타로 우츠미
유이치 나가사키
사토시 구로사와
Original Assignee
토소가부시키가이샤
마츠자키 류조
지오마텍 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 토소가부시키가이샤, 마츠자키 류조, 지오마텍 가부시키가이샤 filed Critical 토소가부시키가이샤
Publication of KR20010098806A publication Critical patent/KR20010098806A/en
Application granted granted Critical
Publication of KR100764616B1 publication Critical patent/KR100764616B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Position Input By Displaying (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

본 발명은 대형 고정밀 EL 패널에 적합한, 막 표면이 평탄하고 저항률이 낮은 투명 도전막과 그 제조방법 및 용도를 제공한다.The present invention provides a transparent conductive film having a flat film surface and low resistivity suitable for large high-precision EL panels, and a method and a use thereof.

본 발명의 투명도전막은 저항률이 250μΩ·Cm이하이고, 표면요철의 최대 고저차(Z-max)/막 두께(t)가 10%이하인 것으로서, 예컨대, 인듐, 주석, 게르마늄 및 산소로 이루어진 스퍼터링 타겟을 dc에 rf를 중첩한 스퍼터 전력으로 스퍼터링 하여서 제조된다.The transparent conductive film of the present invention has a resistivity of 250 μΩ · Cm or less and a maximum height difference (Z-max) / thickness (t) of surface irregularities is 10% or less. For example, a sputtering target made of indium, tin, germanium, and oxygen may be used. It is manufactured by sputtering with sputter power superimposed on rf in dc.

Description

투명 도전막과 그의 제조방법 및 용도{TRANSPARENCY CONDUCTION FILM, MANUFACTURING METHOD AND THE USAGE THEREOF}Transparent conductive film and its manufacturing method and use {TRANSPARENCY CONDUCTION FILM, MANUFACTURING METHOD AND THE USAGE THEREOF}

본 발명은 표면 평탄성이 개선된 저 저항 투명 도전막에 관한 것으로, 특히결정화 된 투명 도전막에 관한 것이다.The present invention relates to a low resistance transparent conductive film with improved surface flatness, and more particularly to a crystallized transparent conductive film.

ITO(Indium Tin Oxide)박막은 고 전도성, 고 투과율이라는 특성을 가지고 있으며, 또한 미세 가공도 용이하게 실시할 수 있어서 플랫 패널 디스플레이(flat panel display)용 표시전극, 저항막 방식의 터치패널(touch panel), 태양 전지용 창 소재, 대전 방지막, 전자파 방지막, 방담(防曇)막, 센서 등 광범위한 분야에 널리 사용되고 있다.ITO (Indium Tin Oxide) thin film has characteristics of high conductivity and high transmittance, and also can be easily processed finely, so that it is a display electrode for flat panel display and a resistive touch panel. ), A solar cell window material, an antistatic film, an electromagnetic wave prevention film, an antifogging film, a sensor, and is widely used in a wide range of fields.

이와 같은 ITO 박막의 제조방법은 스프레이 열분해법, CVD법 등 화학적 성막법과 전자빔 증착법, 이온 플레이팅법, 스퍼터링(sputtering)법 등의 물리적 성막법으로 대별할 수가 있다. 이들 중에서도 스퍼터링은 넓은 면적에 균일한 막 형성이 용이하고, 고 성능의 막을 얻을 수 있는 성막법이기 때문에 여러 가지 분야에서 사용되고 있다.Such an ITO thin film manufacturing method can be roughly divided into chemical film forming methods such as spray pyrolysis and CVD, and physical film forming methods such as electron beam evaporation, ion plating, and sputtering. Among them, sputtering has been used in various fields because it is a film forming method that makes it possible to easily form a uniform film in a large area and obtain a high-performance film.

스퍼터링시 방전의 안정성을 높이기 위하여, 또한 노듈(ITO타겟을 아르곤 가스와 질소가스의 혼합분위기 중에서 연속하여 스퍼터링 할 때에 타겟 표면에 형성되는 흑색의 이물질)의 발생량을 감소시키기 위하여 ITO소결체에 제3의 원소를 첨가하는 시도가 행하여져왔다. 예컨대, 일본 특개소 62-202415호와 같이 ITO소결체에 산화규소 및/또는 산화게르마늄을 함유시키는 방법, 특개평 5-98436호와 같이 ITO소결체에 1∼15중량%의 산화게르마늄을 함유시키는 방법 등이 제안되어 있다.In order to increase the stability of the discharge during sputtering, and to reduce the amount of nodules (black foreign matter formed on the target surface when sputtering the ITO target in the mixed atmosphere of argon gas and nitrogen gas continuously), Attempts have been made to add elements. For example, a method of containing silicon oxide and / or germanium oxide in the ITO sintered body as in Japanese Patent Laid-Open No. 62-202415, a method in which 1 to 15% by weight of germanium oxide is contained in the ITO sintered body as in Japanese Patent Application Laid-Open No. 5-98436, etc. Is proposed.

최근 정보화 사회의 발전에 따라, 상기 플랫 패널 디스플레이 등에 요구되는 기술수준이 높아지고 있다. 무기 전기냉광(EL; Electro Luminescence)패널은 도 1에 나타낸 바와 같이 절연층(2)에 의해서 협지(挾持)되는 발광층(3)에 투명전극(1)과 금속제 배면전극(4)을 통해서 10E8V/㎝라는 강전계를 발광층에 인가(印加)하여 발광시키는 구조로 되어 있다. 자발광이기 때문에 시인성(視認性)이 높고 전고체이기 때문에 진동에 강하다는 우수한 특성을 가지고 있다. 패널 구조는 띠 모양으로 직교시킨 투명 전극과 배면 전극으로 이루어진 X-Y매트릭스 구조로 되어 있다. 그래서 패널의 대형화 및 고 정밀화에 따라, 특히 투명전극에 사용되는 투명 도전막의 저항률을 낮추는 기술이 요구되고 있다.Recently, with the development of the information society, the level of technology required for the flat panel display is increasing. As shown in FIG. 1, an inorganic electroluminescent panel (EL) is formed of a light emitting layer 3 sandwiched by an insulating layer 2 through a transparent electrode 1 and a metal back electrode 4. A strong electric field of cm is applied to the light emitting layer to emit light. Because it is self-luminous, the visibility is high, and because it is an all-solid, it has excellent characteristics of being resistant to vibration. The panel structure has an X-Y matrix structure composed of a transparent electrode and a back electrode that are orthogonal in a band shape. Therefore, as the panel becomes larger and more precise, there is a demand for a technology for lowering the resistivity of the transparent conductive film used for the transparent electrode.

또한, 발광층을 발광시킬 때, 10E8V/㎝라는 강전계가 인가되기 때문에 투명전극(1)의 표면에 큰 요철부분이 있으면 그 부분에서 전계집중이 일어나고, 절연파괴가 발생하기 쉽게 된다. 절연파괴가 일어나면 해당 화소부(畵素部)에 대한 표시가 불가능하게 되어 디스플레이로서의 표시 품질이 열악해 지기 때문에 전극 표면의 요철을 낮출 필요가 있다.In addition, when a light emitting layer emits light, a strong electric field of 10E8V / cm is applied, so that if there is a large uneven portion on the surface of the transparent electrode 1, electric field concentration occurs at that portion, and insulation breakdown is likely to occur. When insulation breakdown occurs, the display of the pixel portion becomes impossible and the display quality of the display becomes poor. Therefore, the unevenness of the electrode surface needs to be reduced.

한편, ITO박막을 실온에서 성막하면 특별한 조건을 가하지 않으면 아몰퍼스(amorphous)한 막이 얻어진다. 그러나 박막의 저항률을 저하시키기 위해서는 막을 결정화시키는 것이 좋다. ITO의 결정화 온도는 150℃ 전후(성막조건에 따라 다르다.)이고, 결정막을 얻기 위해서는 이 온도 이상의 성막 온도에서 성막할 필요가 있다. 그러나, 스퍼터링법을 사용하여 결정성 ITO박막을 형성한 경우에는 ITO박막에 특징적인 막의 돌기 및 도메인 구조가 형성된다.On the other hand, when an ITO thin film is formed at room temperature, an amorphous film is obtained unless special conditions are applied. However, in order to lower the resistivity of the thin film, it is preferable to crystallize the film. The crystallization temperature of ITO is around 150 ° C. (depends on the film forming conditions). In order to obtain a crystal film, it is necessary to form the film at a film forming temperature equal to or higher than this temperature. However, when the crystalline ITO thin film is formed using the sputtering method, protrusions and domain structures of the film characteristic to the ITO thin film are formed.

일반적으로, ITO막을 스퍼터링법으로 형성할 경우에는 스퍼터링 가스로서 아르곤과 산소가 사용된다. 가스 중의 산소량을 변화시킴에 따라 얻어지는 박막의 저항률이 변화하고, 특정한 산소 분압치에서 최소의 값을 나타낸다. 그래서 이와 같이 박막의 저항률이 최소값을 나타내는 산소 분압치에서 막을 형성할 경우, 상술한 박막표면의 돌기 및 도메인 구조가 현저하게 드러나서, 평탄성이 불량한 표면상태로 된다. 이와 같은 막의 경우, 막 두께 200nm에서 표면요철의 최대 고저차(Z-max)가 100nm에 달하는 경우도 있다.In general, when the ITO film is formed by the sputtering method, argon and oxygen are used as the sputtering gas. As the amount of oxygen in the gas is changed, the resistivity of the obtained thin film changes, showing a minimum value at a specific oxygen partial pressure value. Thus, when the film is formed at the oxygen partial pressure value where the resistivity of the thin film has a minimum value as described above, the projections and domain structures of the thin film surface are remarkably revealed, resulting in a poor surface flatness. In such a film, the maximum height difference (Z-max) of surface irregularities may reach 100 nm at a film thickness of 200 nm.

한편, 박막의 평탄성을 추구하기 위해서는 상기 최적 산소 분압치에서 벗어나는 범위에서 성막하던지, 성막시의 기판온도를 저하시켜서 아몰퍼스화 하는 방법을 이용 할 수 있다. 그러나 어느 방법을 이용하는 경우에도 박막의 평탄성이 확보되는 만큼 저항률은 증가되어 버린다.On the other hand, in order to pursue the flatness of the thin film, a film may be formed in a range deviating from the optimum oxygen partial pressure value, or an amorphous method may be used by lowering the substrate temperature at the time of film formation. However, in either case, the resistivity increases as the flatness of the thin film is secured.

이와 같이 평탄성과 저저항률이라는 두 가지 특성을 만족하는 투명 도전막의 개발이 요구되어 왔다.As such, development of a transparent conductive film that satisfies two characteristics of flatness and low resistivity has been required.

본 발명의 과제는 대형 고정밀 EL 패널에 적합하고, 막 표면이 평탄하며 저항률이 낮은 결정성 투명 도전막을 제공하는 것이다.An object of the present invention is to provide a crystalline transparent conductive film suitable for a large high precision EL panel and having a flat film surface and low resistivity.

도 1은 무기 EL 패널의 구조를 나타낸 도면이다.1 is a diagram showing the structure of an inorganic EL panel.

도 2는 실시예 1에서 얻어진 막의 저항률 및 Z-max/t를 나타낸 도면이다.2 is a diagram showing the resistivity and Z-max / t of the film obtained in Example 1. FIG.

도 3은 실시예 1에서 얻어진 박막의 X선 회절 스펙트럼(XRD)을 나타낸 도면이다.3 is a diagram showing an X-ray diffraction spectrum (XRD) of the thin film obtained in Example 1. FIG.

도 4는 실시예 2에서 얻어진 막의 저항률 및 Z-max/t를 나타낸 도면이다.4 is a graph showing the resistivity and Z-max / t of the film obtained in Example 2. FIG.

도 5는 실시예 2에서 얻어진 박막의 X선 회절 스펙트럼(XRD)을 나타낸 도면이다.5 is a diagram showing an X-ray diffraction spectrum (XRD) of the thin film obtained in Example 2. FIG.

< 도면의 주요부분에 대한 부호의 설명 ><Description of Symbols for Major Parts of Drawings>

1 : 투명전극 2 : 절연층1 transparent electrode 2 insulating layer

3 : 발광층 4 : 배면전극3: light emitting layer 4: back electrode

5 : 유리기판5: glass substrate

본 발명자들은 ITO에 이종원소를 도핑한 도전성 금속 산화물에 관하여 예의검토를 거듭한 결과, 저항률을 250μΩ·Cm이하, 또한Z-max/t를 10%이하가 되도록 함으로서, 패널의 대형화 및 고 정밀화에 대응하여 강전계가 인가되는 EL 패널에 있어서도 높은 신뢰성을 갖는 투명 도전막이 얻어지는 것을 발견하였다. 또한, 이와 같은 박막은 게르마늄을 도펀트로 함유하는 ITO박막에 의해서 달성되는 것을 발견하고, 본 발명을 완성하였다.The present inventors have conducted extensive studies on conductive metal oxides doped with different elements in ITO, and have resulted in resistivity of 250 μΩ · Cm and Z-max / t of 10% or less, thereby increasing the size and precision of the panel. Correspondingly, it was found that a transparent conductive film having high reliability was obtained even in an EL panel to which a strong electric field was applied. In addition, such a thin film was found to be achieved by an ITO thin film containing germanium as a dopant, and completed the present invention.

본 발명은 저항률이 250μΩ·Cm이하이고, 동시에 Z-max/t가 10%이하인 것을 만족하는 투명도전막(단, 투명도전막이 실질적으로 인듐, 주석, 칼륨 및 산소로 이루어지는 것은 제외)에 관한 것으로서, 이와 같은 도전막은 예컨대, 실질적으로 인듐, 주석, 게르마늄 및 산소로 구성되는 막에 의해서 달성된다. 여기서, '실질적으로' 란 의미는 '불가피한 불순물을 제외하고' 라는 의미이다.The present invention relates to a transparent conductive film having a resistivity of 250 μΩ · Cm or less and at the same time satisfying that Z-max / t is 10% or less, except that the transparent conductive film is substantially made of indium, tin, potassium, and oxygen. Such a conductive film is achieved by, for example, a film substantially composed of indium, tin, germanium, and oxygen. Here, "substantially" means "except inevitable impurities."

본 발명에서 Z-max는 물질 표면의 요철 정도를 수치로 나타낸 파라메타로서, 표면의 특정 영역 내에서 가장 높은 산의 정상과 가장 낮은 골의 깊이와의 차이를 의미한다. 그 측정방법으로는 원자간력 현미경(AFM; Atomic Force Microscopy)에 의한 측정이 일반적이다. 원자간력 현미경은 미세한 레버(lever)를 물질표면에 접근시켜 종횡방향으로 특정 영역 내에 주사하고, 이때 발생하는 레버의 굴곡을 시료면 수직방향의 높이로 환산하여 표면의 요철을 측정하는 장치이다. 본 발명에서는 세이코전자 공업주식회사의 원자간력 현미경(상품명; SPI 3700)을 사용하되 레버를 3㎛×3㎛의 영역 내를 주사하여 측정하였다.In the present invention, Z-max is a parameter representing the degree of irregularities of the surface of the material, and means the difference between the highest peak of the highest acid and the lowest valley depth within a specific area of the surface. As a measuring method, the measurement by atomic force microscopy (AFM) is common. An atomic force microscope is a device for measuring the surface irregularities by converting the minute lever (closer) to the surface of the material in a specific area in the longitudinal and horizontal direction, and converting the bending of the lever to the height in the vertical direction of the sample surface. In the present invention, using the atomic force microscope (trade name: SPI 3700) of Seiko Electronics Industrial Co., Ltd. was measured by scanning the lever in the region of 3㎛ 3㎛.

이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명에 관한 박막 및 그 박막을 포함하는 기기는 예컨대, 다음의 방법으로 제조한다.The thin film concerning this invention and the apparatus containing this thin film are manufactured, for example by the following method.

먼저, 박막형성용 스퍼터링 타겟을 제조한다. 스퍼터링 타겟으로 이용하기위한 소결체로는 얻어지는 소결체의 소결밀도가 95%이상인 것이 좋고, 보다 바람직하기로는 98%이상인 것이 좋다.First, the sputtering target for thin film formation is manufactured. As a sintered compact for using as a sputtering target, it is good that the sintered compact obtained is 95% or more, More preferably, it is 98% or more.

소결밀도가 상기 밀도 미만이 되면 스퍼터링 중에 이상 방전이 발생하기 쉽고, 이때 발생하는 스플랫을 핵으로 하여 이상성장입자가 형성되기 때문에 평탄한 막을 얻기 어렵게 되기 때문이다.This is because when the sintered density is less than the above density, abnormal discharge easily occurs during sputtering, and since abnormal growth particles are formed using the generated splat as a nucleus, it is difficult to obtain a flat film.

또한, 본 발명에서 말하는 상대밀도(D)는 In2O3, SnO2및 GeO2의 진밀도의 상가평균에서 얻어지는 이론밀도(d)에 대한 상대치를 나타낸다. 상가평균에서 얻어지는 이론밀도(d)란, 타겟 조성에 있어서 In2O3, SnO2및 GeO2분말의 혼합량을 각각 a, b 및 c (g)이라 했을 때, 각각의 진밀도 7.179, 6.95, 6.239 (g/cm3)을 이용하여, d= (a+b+c)/((a/7.179)+(b/6.95)+(c/6.239))에 의해 얻어진다. 소결체의 측정밀도를 d1이라 하면 그 상대밀도는, 식 D=d1/d×100(%)으로 얻어진다.Further, the relative density (D) according to the present invention exhibit a relative value of the theoretical density (d) obtained in the additive average of the true density of the In 2 O 3, SnO 2 and GeO 2. The theoretical density (d) obtained from the average of the averages means that when the mixed amounts of In 2 O 3 , SnO 2 and GeO 2 powders in the target composition are a, b and c (g), respectively, the true density is 7.179, 6.95, Using 6.239 (g / cm 3 ), d = (a + b + c) / ((a / 7.179) + (b / 6.95) + (c / 6.239)). When the measured density of a sintered compact is d1, the relative density is obtained by Formula D = d1 / d * 100 (%).

소결밀도가 95%이상인 소결체는 예컨대, 다음과 같은 방법으로 제조할 수 있다.A sintered compact having a sintered density of 95% or more can be produced, for example, by the following method.

먼저, 원료분말로서 예컨대, 산화인듐 분말, 산화주석 분말 및 산화게르마늄 분말을 혼합한다. 산화인듐 분말과 산화주석 분말 대신에 산화주석 고용(固溶)산화인듐 분말을 사용할 수도 있다. 이때 사용하는 분말의 평균입경이 크면 소결후의 밀도가 충분히 올라가지 않아서 상대밀도가 95%이상인 소결체를 얻기 어렵기 때문에 사용하는 분말의 평균입경은 1.5μm이하인 것이 좋고, 더욱 바람직하기로는 0.1∼1.5μm인 것이 좋다. 분말의 혼합은 볼밀 등에 의해 건식 혼합 또는 습식 혼합해도 좋다.First, for example, indium oxide powder, tin oxide powder and germanium oxide powder are mixed as the raw powder. Instead of indium oxide powder and tin oxide powder, tin oxide solid solution indium oxide powder may be used. In this case, if the average particle diameter of the powder to be used is large, the density after sintering does not sufficiently increase, so that it is difficult to obtain a sintered body having a relative density of 95% or more, so that the average particle diameter of the powder to be used is preferably 1.5 μm or less, and more preferably 0.1 to 1.5 μm. It is good. The powder may be mixed by dry mixing or wet by a ball mill or the like.

여기서 산화주석의 혼합량은 Sn/(Sn+In)의 원자비로 5∼20%가 좋다. 더욱 바람직하기로는 8∼17%, 더더욱 바람직하기로는 10∼14%인 것이 좋다. 이것은 본 발명의 타겟을 이용하여 ITO박막을 제조할 때, 박막의 저항률이 가장 낮은 조성이기 때문이다.Here, the mixing amount of tin oxide is 5 to 20% by an atomic ratio of Sn / (Sn + In). More preferably, it is 8 to 17%, More preferably, it is 10 to 14%. This is because when the ITO thin film is manufactured using the target of the present invention, the resistivity of the thin film is the lowest.

산화게르마늄의 혼합량은 Ge/(In+Sn+Ge)의 원자비로 1∼6%가 좋다. 더욱 바람직하기로는 2∼5%, 더더욱 바람직하기로는 3∼5%인 것이 좋다. 산화게르마늄의 첨가량이 상기 범위보다 적으면 박막의 평탄화 효과가 적어서 요철이 큰 막이 얻어질 수가 있고, 또한 상기 범위를 초과하면 저항률이 높게 될 수가 있다.The mixed amount of germanium oxide is preferably 1 to 6% by an atomic ratio of Ge / (In + Sn + Ge). More preferably, it is 2 to 5%, More preferably, it is 3 to 5%. When the amount of germanium oxide added is less than the above range, the planarization effect of the thin film is small, so that a film having large unevenness can be obtained, and when the above range is exceeded, the resistivity can be high.

상기와 같이하여 얻어진 혼합분말에 바인더 등을 가하여 프레스법 혹은 주입법 등의 방법으로 성형하여 성형체를 제조한다. 프레스법에 따라 성형체를 제조할 경우에는 소정의 금형에 혼합분말을 충진한 후, 분말 프레스기를 이용하여 100∼300kg/cm2의 압력으로 프레싱한다. 분말의 성형성이 나쁜 경우에는 필요에 따라서 파라핀이나 폴리비닐알곤 등의 파인더를 첨가해도 좋다.A molded article is produced by adding a binder or the like to the mixed powder obtained as described above and molding by a press method or an injection method. In the case of producing a molded article by the pressing method, after filling the powder with a predetermined mold, the powder is pressed at a pressure of 100 to 300 kg / cm 2 using a powder press machine. When the moldability of powder is bad, you may add finders, such as a paraffin and polyvinyl argon, as needed.

주입법에 따라 성형체를 제조할 경우에는 ITO 혼합분말에 바인더, 분산제, 이온교환수를 첨가하고, 볼밀 등으로 혼합하므로서 주입 성형체 제조용 슬러리를 제조한다. 이어서, 얻어진 슬러리를 이용하여 주입을 실시한다. 주형에 슬러리를 주입하기 전에 슬러리의 기포를 제거하는 것이 좋다. 탈포는 예컨대, 폴리 알킬렌 글리콜계의 탈포제를 슬러리에 첨가하여 진공 중에서 탈포 처리를 행하면 좋다. 이어서 주입 성형체를 건조처리 한다.When the molded article is prepared by the injection method, a slurry for preparing the injection molded article is prepared by adding a binder, a dispersant, ion-exchanged water to the ITO mixed powder, and mixing with a ball mill. Subsequently, injection is performed using the obtained slurry. It is advisable to remove the bubbles from the slurry before pouring the slurry into the mold. Degassing | defoaming may be performed, for example in a vacuum by adding the polyalkylene glycol type defoamer to a slurry. The injection molded body is then dried.

다음으로, 얻어진 성형체에 필요에 따라서 냉간정수압 프레스(CIP)등으로 압착 처리를 행한다. 이때 CIP압력은 충분한 압착효과를 얻을 수 있도록 1톤/cm2이상,바람직하기로는 2∼5톤/cm2인 것이 좋다. 여기서 초기 성형을 주입법으로 행한 경우에는 CIP후의 성형체 중에 존재하는 수분 및 바인더 등의 유기물을 제거할 목적으로 탈 바인더 처리를 실시해도 좋다. 또한, 초기 성형을 프레스법으로 행한 경우에도 성형시에 바인더를 사용한 경우에는 같은 방법으로 탈 바인더처리를 행하는 것이 좋다.Next, a crimping process is performed on the obtained molded object by a cold hydrostatic press (CIP) etc. as needed. At this time, the CIP pressure is 1 ton / cm 2 or more, preferably 2 to 5 ton / cm 2 to obtain a sufficient compression effect. In the case where the initial molding is performed by the injection method, the binder removal treatment may be performed for the purpose of removing organic matter such as moisture and binder present in the molded body after CIP. Further, even when the initial molding is performed by the press method, when the binder is used at the time of molding, it is preferable to perform the binder removal treatment in the same manner.

이와 같이 하여 얻어진 성형체를 소결로 내에 투입하여 소결한다. 소결방법으로는 어떤 방법도 가능하지만 생산설비의 원가 등을 고려하면 대기 중 소결이 바람직하다. 그러나 그 외 핫프레스(IIP)법, 열간정수압 프레스(HIP)법 및 산소가압 소결법 등 종래에 알려져 있는 다른 소결법을 사용할 수도 있다.The molded article thus obtained is introduced into the sintering furnace and sintered. Any method may be used as the sintering method, but sintering in the air is preferable considering the cost of the production equipment. However, other conventionally known sintering methods such as hot press (IIP), hot hydrostatic press (HIP) and oxygen pressure sintering may also be used.

또한, 소결조건에 있어서도 적당히 선택할 수가 있으나, 충분한 밀도 상승효과를 얻기 위해서, 또한 산화주석의 증발을 억제하기 위해서 소결온도가 1450∼1650℃인 것이 좋다. 또한 소결시의 분위기는 대기, 혹은 완전 산소분위기 인 것이 좋다. 소결시간은 충분한 밀도 상승 효과를 얻기 위하여 5시간 이상, 바람직하기로는 5∼30시간인 것이 좋다. 이렇게 하여 게르마늄 함유 ITO소결체를 제조할 수가 있다.Moreover, although it can select suitably also in sintering conditions, in order to acquire sufficient density synergy effect, and to suppress evaporation of tin oxide, it is good that it is 1450-1650 degreeC. In addition, the atmosphere at the time of sintering should be an atmosphere or an oxygen atmosphere completely. The sintering time is 5 hours or more, preferably 5 to 30 hours in order to obtain a sufficient density synergistic effect. In this way, the germanium-containing ITO sintered body can be produced.

이어서 얻어진 소결체를 원하는 향상으로 가공한 후, 필요에 따라 무산소 구리로 된 패킹플레이트에 인듐 땜납 등을 이용하여 접합하므로서, 스퍼터링 타겟을 제조한다.Next, after processing the obtained sintered compact with desired improvement, a sputtering target is manufactured by joining to the packing plate which consists of oxygen-free copper using indium solder etc. as needed.

얻어진 스퍼터링 타겟을 이용하여 가스 기판이나 필름 기판 등의 기판 상에서 본 발명의 투명 도전성 박막을 형성할 수가 있다. 이때, 박막의 제조방법으로는박막의 저항률 저하 및 평탄화를 위하여 dc에 rf를 중첩시킨 50∼500W의 전력(단, 캐소드의 크기에 따라 다르다.)을 사용한 스퍼터링 방법을 사용하는 것이 좋다. 여기서, dc에 중첩시킨 rf의 비율은 인가전력으로 rf/dc가 50∼100%로 하는 것이 좋다. 또한, rf로는 13.56MHz±0.05%의 고주파가 좋다.Using the obtained sputtering target, the transparent conductive thin film of this invention can be formed on board | substrates, such as a gas substrate and a film substrate. At this time, as a method of manufacturing the thin film, it is preferable to use a sputtering method using 50 to 500 W of power (however, it depends on the size of the cathode) in which rf is superimposed on dc for reducing the resistivity and planarization of the thin film. Here, the ratio of rf superimposed on dc should be 50-100% of rf / dc as applied power. As rf, a high frequency of 13.56 MHz ± 0.05% is preferable.

성막시의 기판온도는 박막을 결정화시키기 위하여 200℃이상, 보다 바람직하기로는 300℃이상으로 하는 것이 좋다.The substrate temperature at the time of film formation is preferably 200 ° C. or higher, more preferably 300 ° C. or higher in order to crystallize the thin film.

또한 산화인듐, 산화주석 및 산화게르마늄의 3종류, 또는 이들 3종 중 2종의 혼합 산화물과 나머지 산화물의 2종류로 이루어진 스퍼터링 타겟을 이용하여 다원동시 스퍼터링으로 막을 제조하여도 좋다. 또한, 각 스퍼터링 타겟의 일부 또는 전부를 금속 또는 합금으로 교체하여 사용해도 좋다.In addition, a film may be produced by sputtering at the same time using a sputtering target consisting of three kinds of indium oxide, tin oxide and germanium oxide, or two kinds of mixed oxides of these three kinds and the remaining oxides. In addition, you may replace and use one part or all part of each sputtering target with a metal or an alloy.

성막시에는 스퍼터링 가스로서 아르곤과 산소를 진공 장치 내에 도입하여 스퍼터링을 행한다. 막의 저항률을 낮추기 위해서는 이들 도입가스의 유량을 제어하여 저항률이 낮아지는 값으로 적당히 설정한다.At the time of film formation, argon and oxygen are introduced into the vacuum apparatus as sputtering gas to perform sputtering. In order to lower the resistivity of the membrane, the flow rate of these introduced gases is controlled to appropriately set the value at which the resistivity is lowered.

이와 같이 하여 얻어진 박막은 저항률이 250μΩ·Cm이하, 바람직하기로는 220μΩ·Cm이하이고, 동시에 Z-max/t가 10%이하, 바람직하기로는 6%이하이며, 아주 평탄하고 저항률도 낮게 된다. 또한, 형성하는 막의 두께는 100∼500nm로 하는 것이 좋다.The thin film thus obtained has a resistivity of 250 μΩ · Cm or less, preferably 220 μΩ · Cm or less, and at the same time Z-max / t of 10% or less, preferably 6% or less, which is very flat and has low resistivity. In addition, the thickness of the film to form is good to be 100-500 nm.

한편, 기판상에 형성된 박막은 필요에 따라서 원하는 패턴으로 에칭 시킨 후, 본원 청구항 제 4항의 발명인 기기를 구성 할 수가 있다.On the other hand, the thin film formed on the substrate can be etched in a desired pattern as necessary, and can constitute a device according to claim 4 of the present application.

본 발명에 따른 박막에 부가기능을 갖도록 하기 위하여 제 4의 원소를 첨가할 수도 있다. 제 4의 원소로는 예컨대, Mg, Al, Si, Ti, Zn, Y, Zr, Nb, Hf, Ta 등을 들 수가 있다. 이들 원소의 첨가량은, 이에 한정되는 것은 아니지만, 본 발명에 따른 박막의 우수한 전기특성 및 평탄성을 약화시키지 않도록 하기 위하여 (제 4원소의 산화물의 총량)/(In2O3+SnO2+GeO2+제 4원소의 산화물의 총량)/100의 값이 0 %이상 20%이하(중량비)로 되도록 하는 것이 좋다.In order to have an additional function in the thin film according to the present invention, a fourth element may be added. As a 4th element, Mg, Al, Si, Ti, Zn, Y, Zr, Nb, Hf, Ta, etc. are mentioned, for example. The amount of these elements added is not limited thereto, but in order not to weaken the excellent electrical properties and flatness of the thin film according to the present invention (total amount of oxide of the fourth element) / (In 2 O 3 + SnO 2 + GeO 2 The total amount of oxide of the fourth element) / 100 is preferably 0% or more and 20% or less (weight ratio).

[실시예]EXAMPLE

이하, 본 발명의 실시예에 대하여 보다 상세히 설명한다. 그러나 본 발명이 여기에 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described in more detail. However, the present invention is not limited thereto.

실시예 1Example 1

산화인듐분말 440g, 산화주석분말 60g 및 소정 분량의 산화게르마늄분말을 폴리에틸렌 재질의 포트에 넣고, 건식 볼밀로 72시간 혼합하여 혼합분말을 제조하였다.440 g of indium oxide powder, 60 g of tin oxide powder, and a predetermined amount of germanium oxide powder were placed in a polyethylene pot, and mixed with a dry ball mill for 72 hours to prepare a mixed powder.

이 분말을 금형에 넣고, 300Kg/Cm2의 압력으로 프레싱하여 성형체를 제조하였다. 이 성형체를 3톤/Cm2의 압력에서 CIP에 의해 정밀화 처리하고, 이어 그 성형체를 완전 산소분위기 소결로 내에 설치하여 다음 조건으로 소결하였다.This powder was put into a mold and pressed at a pressure of 300 Kg / Cm 2 to prepare a molded article. The molded body was refined by CIP at a pressure of 3 ton / Cm 2 , and then the molded body was placed in a complete oxygen atmosphere sintering furnace and sintered under the following conditions.

(소결 조건)(Sintering condition)

소결온도 : 1500℃, 승온속도 : 25℃/시간, 소결시간 : 6시간, 산소압 : 50mmH2O(게이지 압), 산소선속 : 2.7㎝/분.Sintering temperature: 1500 ° C., Heating rate: 25 ° C./hour, Sintering time: 6 hours, Oxygen pressure: 50 mmH 2 O (gauge pressure), Oxygen flux: 2.7 cm / min.

얻어진 소결체의 밀도를 아르키메데스 법에 따라 측정한 바, 모두 95%이상이었다. 이 소결체를 습식 가공법에 따라 직경 4인치, 두께 6mm의 소결체로 가공하고, 인듐 땜납을 이용하여 무산소 동 재질의 패킹플레이트에 본딩한 후, 이것을 타겟으로 하였다.It was 95% or more when the density of the obtained sintered compact was measured in accordance with the Archimedes method. The sintered compact was processed into a sintered compact having a diameter of 4 inches and a thickness of 6 mm according to a wet working method, and bonded to a packing plate made of an oxygen-free copper material using indium solder, which was then used as a target.

이 타겟을 다음 스퍼터링 조건에서 스퍼터링하여 박막의 평가를 하였다.This target was sputtered under the following sputtering conditions to evaluate the thin film.

(스퍼터링 조건)(Sputtering condition)

기판 : 유리 기판, 인가전력 : dc150W+rf100W, 가스압 : 1.1mTorr, 스퍼터링 가스 : Ar+O2, O2/Ar : 저항률이 최소로 되는 값으로 제어, 기판온도 : 200℃, 막두께 : 200nm.Substrate: a glass substrate, the applied electric power: dc150W + rf100W, gas pressure: 1.1mTorr, sputtering gas: Ar + O 2, O 2 / Ar: resistivity to a value which is a minimum control, substrate temperature: 200 ℃, film thickness: 200nm.

얻어진 막의 조성을 EPMA(Electron Prove Micro Analysis)로 분석하고, 박막의 저항률 및 Z-max/t를 측정하여 얻어진 결과를 도 2에 나타내었다. Ge/(In+Sn +Ge)의 함량이 1∼6%일 때 바람직한 결과가 얻어졌다.The composition of the obtained film was analyzed by EPMA (Electron Prove Micro Analysis), and the results obtained by measuring the resistivity and Z-max / t of the thin film are shown in FIG. 2. Preferred results were obtained when the content of Ge / (In + Sn + Ge) was 1 to 6%.

Ge/(In+Sn+Ge)가 3%일 때의 박막의 결정성을 XRD를 이용하여 조사하고, 그 결과를 도 3에 나타내었다. (100)면에 배향하여 결정화한 막이였다.The crystallinity of the thin film when Ge / (In + Sn + Ge) was 3% was investigated using XRD, and the results are shown in FIG. 3. It was the film which orientated and crystallized on the (100) plane.

실시예 2Example 2

산화인듐분말 450g, 산화주석분말 50g 및 소정 분량의 산화게르마늄분말을 폴리에틸렌 재질의 포트에 넣고, 건식 볼밀로 72시간 혼합하여 혼합분말을 제조하였다.450 g of indium oxide powder, 50 g of tin oxide powder, and a predetermined amount of germanium oxide powder were placed in a polyethylene pot, and mixed with a dry ball mill for 72 hours to prepare a mixed powder.

이 분말을 이용하여 실시예 1과 같은 방법으로 타겟을 제조하였다. 얻어진 타겟을 이용하여 실시예 1과 같은 조건으로 박막을 제조하였다.Using this powder, a target was prepared in the same manner as in Example 1. The thin film was manufactured on the conditions similar to Example 1 using the obtained target.

얻어진 막의 조성을 EPMA(Electron Prove Micro Analysis)로 분석하고, 박막의 저항률 및 Z-max/t를 측정하였다. 얻어진 결과를 도 3에 나타내었다. Ge/(In+Sn+ Ge)의 함량이 1∼6%일 때, 바람직한 결과가 얻어졌다.The composition of the obtained film was analyzed by EPMA (Electron Prove Micro Analysis), and the resistivity and Z-max / t of the thin film were measured. The obtained result is shown in FIG. When the content of Ge / (In + Sn + Ge) is 1 to 6%, preferable results were obtained.

Ge/(In+Sn+Ge)가 5%일 때의 박막의 결정성을 XRD를 이용하여 조사하였다. 그 결과를 도 5에 나타내었다. 특별히 강한 배향면은 없지만 결정화한 막이었다.The crystallinity of the thin film when Ge / (In + Sn + Ge) is 5% was investigated using XRD. The results are shown in FIG. Although there was no particularly strong orientation surface, it was a crystallized film.

실시예 3Example 3

실시예 1에서 제조한 타겟 중에서 박막의 Ge조성이 3원자%로 된 타겟을 이용하되 스퍼터링 시간 이외에는 실시예 1과 동일한 조건으로 스퍼터링을 실시하여 막 두께가 500nm인 박막을 작성하였다. 얻어진 막의 저항률 및 Z-max/t을 측정한 결과, 저항률=195μΩ·Cm, Z-max/t=6.1%이었다.Among the targets prepared in Example 1, a thin film having a thickness of 500 nm was prepared by sputtering under the same conditions as in Example 1 except for the sputtering time using a target having a Ge composition of 3 atomic%. The resistivity and Z-max / t of the obtained film were measured, and the resistivity was 195 µΩ · Cm and Z-max / t = 6.1%.

비교예 1Comparative Example 1

실시예 1에서 제조한 타겟 중에서 박막의 Ge조성이 3원자%로 된 타겟을 이용하여 다음 스퍼터링 조건에서 스퍼터링한 후, 박막을 평가하였다.After sputtering in the following sputtering conditions using the target whose Ge composition of the thin film was 3 atomic% among the target prepared in Example 1, the thin film was evaluated.

(스퍼터링 조건)(Sputtering condition)

기판 : 유리 기판, 인가전력 : dc200W, 가스압 : 1.1mTorr, 스퍼터링 가스 : Ar+O2, O2/Ar : 저항률이 최소로 되는 값으로 제어, 기판온도 : 200℃, 막두께 : 200nm.Substrate: a glass substrate, the applied electric power: dc200W, gas pressure: 1.1mTorr, sputtering gas: Ar + O 2, O 2 / Ar: resistivity to a value which is a minimum control, substrate temperature: 200 ℃, film thickness: 200nm.

얻어진 막의 저항률 및 Z-max/t을 측정한 결과, 저항률=260μΩ·Cm, Z-max/t=6.9% 이었다.When the resistivity and Z-max / t of the obtained film were measured, the resistivity was 260 µΩ · Cm and Z-max / t = 6.9%.

비교예 2Comparative Example 2

실시예 2에서 제조한 타겟 중에서 박막의 Ge 조성이 5원자%로 된 타겟을 이용하여 다음 스퍼터링 조건에서 스퍼터링한 후, 박막을 평가하였다.After sputtering in the following sputtering conditions using the target whose Ge composition was 5 atomic% of the thin film among the targets prepared in Example 2, the thin film was evaluated.

(스퍼터링 조건)(Sputtering condition)

기판 : 유리 기판, 인가전력 : dc200W, 가스압 : 1.1mTorr, 스퍼터링 가스 : Ar+O2, O2/Ar : 저항률이 최소로 되는 값으로 제어, 기판온도 : 200℃, 막두께 : 200nm.Substrate: a glass substrate, the applied electric power: dc200W, gas pressure: 1.1mTorr, sputtering gas: Ar + O 2, O 2 / Ar: resistivity to a value which is a minimum control, substrate temperature: 200 ℃, film thickness: 200nm.

얻어진 막의 저항률 및 Z-max/t을 측정한 결과, 저항률=280μΩ·Cm, Z-max/t=8.5%이었다.When the resistivity and Z-max / t of the obtained film were measured, the resistivity was 280 µΩ · Cm and Z-max / t = 8.5%.

본 발명에 따르면, 대형 고정밀 EL 패널에 적합하도록 막표면이 평탄하고 저항률이 낮은 투명 도전막을 얻을 수 있다.According to the present invention, a transparent conductive film having a flat film surface and low resistivity can be obtained so as to be suitable for a large high precision EL panel.

Claims (7)

저항률이 250μΩ·Cm이하이고, 표면요철의 최대 고저차(Z-max)/막 두께(t) 가 10%이하인 것을 특징으로 하는 투명 도전막(단, 투명 도전막이 실질적으로 인듐, 주석, 갈륨 및 산소로 이루어진 경우는 제외).A transparent conductive film having a resistivity of 250 μΩ · Cm or less and having a maximum height difference (Z-max) / film thickness (t) of surface irregularities of 10% or less, provided that the transparent conductive film is substantially indium, tin, gallium and oxygen. Unless it consists of). 제 1항에 있어서,The method of claim 1, 실질적으로 인듐, 주석, 게르마늄 및 산소로 이루어진 것을 특징으로 하는 것 투명 도전막.A substantially transparent conductive film comprising indium, tin, germanium and oxygen. 제 2항에 있어서,The method of claim 2, 게르마늄이 Ge/(In+Sn+Ge)의 원자비로 1.0%∼6.0%의 비율로 포함되어 있는 것을 특징으로 하는 투명 도전막.Germanium is contained in the ratio of 1.0%-6.0% by the atomic ratio of Ge / (In + Sn + Ge), The transparent conductive film characterized by the above-mentioned. 제 1항 내지 3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 박막의 구조가 결정막인 것을 특징으로 하는 투명 도전막.A transparent conductive film, wherein the structure of the thin film is a crystal film. 제 1항 내지 4항 중 어느 한 항에 기재된 투명 도전성막을 포함하여 이루어진 기기.An apparatus comprising the transparent conductive film according to any one of claims 1 to 4. 실질적으로 인듐, 주석, 게르마늄 및 산소로 이루어진 스퍼터링 타겟을 dc 에 rf를 중첩시킨 스퍼터 전력으로 스퍼터링 하는 것을 특징으로 하는, 저항률이 250μΩ·Cm이하이고, 또한 표면요철의 최대 고저차(Z-max)/막 두께(t)가 10%이하인 투명 도전막의 제조방법.The sputtering target consisting substantially of indium, tin, germanium and oxygen is sputtered with sputtering power with rf superimposed on rf, and the resistivity is 250 μΩ · Cm or less, and the maximum height difference of surface irregularities (Z-max) / The manufacturing method of the transparent conductive film whose film thickness t is 10% or less. 제 6항에 있어서,The method of claim 6, 게르마늄이 Ge/(In+Sn+Ge)의 원자비로 1.0%∼6.0%의 비율로 포함되어 있는 것을 특징으로 하는 투명 도전막의 제조방법.A method for producing a transparent conductive film, wherein germanium is contained in an amount of 1.0% to 6.0% by an atomic ratio of Ge / (In + Sn + Ge).
KR1020010021826A 2000-04-24 2001-04-23 Transparency conduction film, manufacturing method and the usage thereof KR100764616B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000122664A JP2001307553A (en) 2000-04-24 2000-04-24 Transparent conductive film, its manufacturing method, and its application
JP2000-122664 2000-04-24

Publications (2)

Publication Number Publication Date
KR20010098806A true KR20010098806A (en) 2001-11-08
KR100764616B1 KR100764616B1 (en) 2007-10-08

Family

ID=18633114

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010021826A KR100764616B1 (en) 2000-04-24 2001-04-23 Transparency conduction film, manufacturing method and the usage thereof

Country Status (3)

Country Link
JP (1) JP2001307553A (en)
KR (1) KR100764616B1 (en)
TW (1) TW529043B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741653B2 (en) 2005-11-16 2010-06-22 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042582A (en) * 2000-07-25 2002-02-08 Nippon Sheet Glass Co Ltd Manufacturing method of substrate with transparent conductive film, and the substrate manufactured by the method, and touch panel using the substrate
JP5855948B2 (en) * 2012-01-12 2016-02-09 ジオマテック株式会社 Transparent conductive film, substrate with transparent conductive film, IPS liquid crystal cell, capacitive touch panel, and method for manufacturing substrate with transparent conductive film
WO2020261748A1 (en) * 2019-06-28 2020-12-30 株式会社アルバック Sputtering target and sputtering target production method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202415A (en) * 1984-12-06 1987-09-07 三井金属鉱業株式会社 Indium oxide system light transmitting conductive film
JPH0465023A (en) * 1990-07-03 1992-03-02 Tonen Corp Transparent conductive film and manufacture thereof
US5407602A (en) * 1993-10-27 1995-04-18 At&T Corp. Transparent conductors comprising gallium-indium-oxide
US6351068B2 (en) * 1995-12-20 2002-02-26 Mitsui Chemicals, Inc. Transparent conductive laminate and electroluminescence light-emitting element using same
TW364275B (en) * 1996-03-12 1999-07-11 Idemitsu Kosan Co Organic electroluminescent element and organic electroluminescent display device
JP3855307B2 (en) * 1996-05-24 2006-12-06 東洋紡績株式会社 Transparent conductive film and method for producing the same
JP3507623B2 (en) * 1996-06-27 2004-03-15 シャープ株式会社 Method for producing transparent conductive film and thin-film solar cell using the same
JPH10330916A (en) * 1997-06-03 1998-12-15 Mitsubishi Chem Corp Electrically conductive laminated body
JPH1161398A (en) * 1997-08-12 1999-03-05 Tdk Corp Production of electrode and electrode
JPH1167460A (en) * 1997-08-12 1999-03-09 Tdk Corp Organic electroluminescent element and its manufacture
JP3542475B2 (en) * 1997-11-28 2004-07-14 キヤノン株式会社 Manufacturing method of membrane
JP3515688B2 (en) * 1998-05-15 2004-04-05 株式会社神戸製鋼所 Low electric resistance transparent conductive film
JP3780100B2 (en) * 1998-05-15 2006-05-31 株式会社神戸製鋼所 Transparent conductive film with excellent processability
JP3887494B2 (en) * 1998-07-13 2007-02-28 株式会社リコー Thin film forming apparatus and thin film forming method
JP2000040591A (en) * 1998-07-21 2000-02-08 Sony Corp Organic electroluminescence element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741653B2 (en) 2005-11-16 2010-06-22 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device
KR100972359B1 (en) * 2005-11-16 2010-07-26 쇼와 덴코 가부시키가이샤 Gallium nitride-based compound semiconductor light-emitting device
US7952116B2 (en) 2005-11-16 2011-05-31 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device

Also Published As

Publication number Publication date
JP2001307553A (en) 2001-11-02
KR100764616B1 (en) 2007-10-08
TW529043B (en) 2003-04-21

Similar Documents

Publication Publication Date Title
KR101006037B1 (en) Gallium oxide/zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
US8920683B2 (en) Sputtering target, transparent conductive film and transparent electrode
KR101184353B1 (en) Transparent conductive film, sintered body target for transparent conductive film fabrication, and transparent conductive base material and display device using the same
JP5716768B2 (en) Oxide sintered body, target, transparent conductive film obtained using the same, and transparent conductive substrate
KR101768833B1 (en) Oxide sinter, method for producing same, target and transparent conductive film
JP4730204B2 (en) Oxide sintered compact target and method for producing oxide transparent conductive film using the same
KR100957733B1 (en) Gallium oxide-zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
EP2039798B1 (en) Transparent conductive film, process for production of the film, and sputtering target for use in the production of the film
KR100626700B1 (en) Oxide sintered body and sputtering target and manufacturing method for transparent oxide etectrode film
KR20070088246A (en) Sintered body target for transparent conductive film fabrication, transparent conductive film fabricated by using the same, and transparent conductive base material comprising this conductive film formed thereon
JP5146443B2 (en) Transparent conductive film, method for producing the same, and sputtering target used for the production thereof
JP2006188392A (en) Oxide sintered compact, transparent electroconductive thin film, and element packaged with the same
KR100764616B1 (en) Transparency conduction film, manufacturing method and the usage thereof
JP4917725B2 (en) Transparent conductive film, method for producing the same, and use thereof
KR20110133449A (en) Transparent conducting film, target for transparent conducting film and method for preparing target for transparent conducting film
JP4625558B2 (en) Transparent conductive film, method for producing the same, and use thereof
JP2002226966A (en) Transparent electrode film, and sputtering target for deposition of the electrode film
KR100628542B1 (en) The sinter of metal oxide compound and use thereof
JP2002050231A (en) Transparent conductive film, its manufacturing method and its application
KR100754356B1 (en) ITO sputtering target
JP2012132089A (en) Method for forming electrically conductive transparent zinc oxide-based film, electrically conductive transparent zinc oxide-based film and electrically conductive transparent substrate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120827

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130903

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140903

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150821

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee